导航:首页 > 网络数据 > 大数据的算法人工智能

大数据的算法人工智能

发布时间:2023-11-25 09:47:59

㈠ 什么叫人工智能、大数据

人工智能,它的范围很广,广义上的人工智能泛指通过计算机(机器)实现人的头脑思维,使机器像人一样去决策。机器学习是实现人工智能的一种技术。机器学习是很多学科的知识融合,而数据分析是机器学习的基础。只有学会了数据分析处理数据的方法,你才能看懂机器学习方面的知识。
总的来说:1人工智能是指使机器像人一样去决策。2机器学习是实现人工智能的一种技术。3机器学习分很多方法(算法),不同的方法解决不同的问题。深度学习是机器学习中的一个分支方法。4数据分析可以帮助你从零进入人工智能时代。如果你喜欢深入技术,学会了数据分析,你才能打好基础,去学习机器学习。如果你喜欢商业方面的内容,可以往人工智能业务方向发展。

㈡ 什么叫人工智能、大数据

人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。硬件体系能力的不足加上发展道路上曾经出现偏差,以及算法的缺陷,使得人工智能技术的发展在上世纪80—90年代曾经一度低迷。近年来,成本低廉的大规模并行计算、大数据、深度学习算法、人脑芯片4大催化剂的齐备,导致人工智能的发展出现了向上的拐点。
人工智能和大数据的区别_大数据人工智能哪个好
什么是大数据
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
人工智能和大数据的区别_大数据人工智能哪个好
人工智能和大数据的区别
大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。
人工智能打个比喻为一个人吸收了人类大量的知识,不断的深度学习、进化成为一方高人。人工智能离不开大数据,更是基于云计算平台完成深度学习进化。
人工智能是基于大数据的支持和采集,运用于人工设定的特定性能和运算方式来实现的,大数据是不断采集、沉淀、分类等数据积累。
与以前的众多数据分析技术相比,人工智能技术立足于神经网络,同时发展出多层神经网络,从而可以进行深度机器学习。与以外传统的算法相比,这一算法并无多余的假设前提(比如线性建模需要假设数据之间的线性关系),而是完全利用输入的数据自行模拟和构建相应的模型结构。这一算法特点决定了它是更为灵活的、且可以根据不同的训练数据而拥有自优化的能力。
但这一显著的优点带来的便是显著增加的运算量。在计算机运算能力取得突破以前,这样的算法几乎没有实际应用的价值。大概十几年前,我们尝试用神经网络运算一组并不海量的数据,整整等待三天都不一定会有结果。但今天的情况却大大不同了。高速并行运算、海量数据、更优化的算法共同促成了人工智能发展的突破。这一突破,如果我们在三十年以后回头来看,将会是不弱于互联网对人类产生深远影响的另一项技术,它所释放的力量将再次彻底改变我们的生活。

㈢ 人工智能算法简介

人工智能的三大基石—算法、数据和计算能力,算法作为其中之一,是非常重要的,那么人工智能都会涉及哪些算法呢?不同算法适用于哪些场景呢?

一、按照模型训练方式不同可以分为监督学习(Supervised Learning),无监督学习(Unsupervised Learning)、半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)四大类。

常见的监督学习算法包含以下几类:
(1)人工神经网络(Artificial Neural Network)类:反向传播(Backpropagation)、波尔兹曼机(Boltzmann Machine)、卷积神经网络(Convolutional Neural Network)、Hopfield网络(hopfield Network)、多层感知器(Multilyer Perceptron)、径向基函数网络(Radial Basis Function Network,RBFN)、受限波尔兹曼机(Restricted Boltzmann Machine)、回归神经网络(Recurrent Neural Network,RNN)、自组织映射(Self-organizing Map,SOM)、尖峰神经网络(Spiking Neural Network)等。
(2)贝叶斯类(Bayesin):朴素贝叶斯(Naive Bayes)、高斯贝叶斯(Gaussian Naive Bayes)、多项朴素贝叶斯(Multinomial Naive Bayes)、平均-依赖性评估(Averaged One-Dependence Estimators,AODE)
贝叶斯信念网络(Bayesian Belief Network,BBN)、贝叶斯网络(Bayesian Network,BN)等。
(3)决策树(Decision Tree)类:分类和回归树(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5算法(C4.5 Algorithm)、C5.0算法(C5.0 Algorithm)、卡方自动交互检测(Chi-squared Automatic Interaction Detection,CHAID)、决策残端(Decision Stump)、ID3算法(ID3 Algorithm)、随机森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)线性分类器(Linear Classifier)类:Fisher的线性判别(Fisher’s Linear Discriminant)
线性回归(Linear Regression)、逻辑回归(Logistic Regression)、多项逻辑回归(Multionmial Logistic Regression)、朴素贝叶斯分类器(Naive Bayes Classifier)、感知(Perception)、支持向量机(Support Vector Machine)等。

常见的无监督学习类算法包括:
(1) 人工神经网络(Artificial Neural Network)类:生成对抗网络(Generative Adversarial Networks,GAN),前馈神经网络(Feedforward Neural Network)、逻辑学习机(Logic Learning Machine)、自组织映射(Self-organizing Map)等。
(2) 关联规则学习(Association Rule Learning)类:先验算法(Apriori Algorithm)、Eclat算法(Eclat Algorithm)、FP-Growth算法等。
(3)分层聚类算法(Hierarchical Clustering):单连锁聚类(Single-linkage Clustering),概念聚类(Conceptual Clustering)等。
(4)聚类分析(Cluster analysis):BIRCH算法、DBSCAN算法,期望最大化(Expectation-maximization,EM)、模糊聚类(Fuzzy Clustering)、K-means算法、K均值聚类(K-means Clustering)、K-medians聚类、均值漂移算法(Mean-shift)、OPTICS算法等。
(5)异常检测(Anomaly detection)类:K最邻近(K-nearest Neighbor,KNN)算法,局部异常因子算法(Local Outlier Factor,LOF)等。

常见的半监督学习类算法包含:生成模型(Generative Models)、低密度分离(Low-density Separation)、基于图形的方法(Graph-based Methods)、联合训练(Co-training)等。

常见的强化学习类算法包含:Q学习(Q-learning)、状态-行动-奖励-状态-行动(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度算法(Policy Gradients)、基于模型强化学习(Model Based RL)、时序差分学习(Temporal Different Learning)等。

常见的深度学习类算法包含:深度信念网络(Deep Belief Machines)、深度卷积神经网络(Deep Convolutional Neural Networks)、深度递归神经网络(Deep Recurrent Neural Network)、分层时间记忆(Hierarchical Temporal Memory,HTM)、深度波尔兹曼机(Deep Boltzmann Machine,DBM)、栈式自动编码器(Stacked Autoencoder)、生成对抗网络(Generative Adversarial Networks)等。

二、按照解决任务的不同来分类,粗略可以分为二分类算法(Two-class Classification)、多分类算法(Multi-class Classification)、回归算法(Regression)、聚类算法(Clustering)和异常检测(Anomaly Detection)五种。
1.二分类(Two-class Classification)
(1)二分类支持向量机(Two-class SVM):适用于数据特征较多、线性模型的场景。
(2)二分类平均感知器(Two-class Average Perceptron):适用于训练时间短、线性模型的场景。
(3)二分类逻辑回归(Two-class Logistic Regression):适用于训练时间短、线性模型的场景。
(4)二分类贝叶斯点机(Two-class Bayes Point Machine):适用于训练时间短、线性模型的场景。(5)二分类决策森林(Two-class Decision Forest):适用于训练时间短、精准的场景。
(6)二分类提升决策树(Two-class Boosted Decision Tree):适用于训练时间短、精准度高、内存占用量大的场景
(7)二分类决策丛林(Two-class Decision Jungle):适用于训练时间短、精确度高、内存占用量小的场景。
(8)二分类局部深度支持向量机(Two-class Locally Deep SVM):适用于数据特征较多的场景。
(9)二分类神经网络(Two-class Neural Network):适用于精准度高、训练时间较长的场景。

解决多分类问题通常适用三种解决方案:第一种,从数据集和适用方法入手,利用二分类器解决多分类问题;第二种,直接使用具备多分类能力的多分类器;第三种,将二分类器改进成为多分类器今儿解决多分类问题。
常用的算法:
(1)多分类逻辑回归(Multiclass Logistic Regression):适用训练时间短、线性模型的场景。
(2)多分类神经网络(Multiclass Neural Network):适用于精准度高、训练时间较长的场景。
(3)多分类决策森林(Multiclass Decision Forest):适用于精准度高,训练时间短的场景。
(4)多分类决策丛林(Multiclass Decision Jungle):适用于精准度高,内存占用较小的场景。
(5)“一对多”多分类(One-vs-all Multiclass):取决于二分类器效果。

回归
回归问题通常被用来预测具体的数值而非分类。除了返回的结果不同,其他方法与分类问题类似。我们将定量输出,或者连续变量预测称为回归;将定性输出,或者离散变量预测称为分类。长巾的算法有:
(1)排序回归(Ordinal Regression):适用于对数据进行分类排序的场景。
(2)泊松回归(Poission Regression):适用于预测事件次数的场景。
(3)快速森林分位数回归(Fast Forest Quantile Regression):适用于预测分布的场景。
(4)线性回归(Linear Regression):适用于训练时间短、线性模型的场景。
(5)贝叶斯线性回归(Bayesian Linear Regression):适用于线性模型,训练数据量较少的场景。
(6)神经网络回归(Neural Network Regression):适用于精准度高、训练时间较长的场景。
(7)决策森林回归(Decision Forest Regression):适用于精准度高、训练时间短的场景。
(8)提升决策树回归(Boosted Decision Tree Regression):适用于精确度高、训练时间短、内存占用较大的场景。

聚类
聚类的目标是发现数据的潜在规律和结构。聚类通常被用做描述和衡量不同数据源间的相似性,并把数据源分类到不同的簇中。
(1)层次聚类(Hierarchical Clustering):适用于训练时间短、大数据量的场景。
(2)K-means算法:适用于精准度高、训练时间短的场景。
(3)模糊聚类FCM算法(Fuzzy C-means,FCM):适用于精确度高、训练时间短的场景。
(4)SOM神经网络(Self-organizing Feature Map,SOM):适用于运行时间较长的场景。
异常检测
异常检测是指对数据中存在的不正常或非典型的分体进行检测和标志,有时也称为偏差检测。
异常检测看起来和监督学习问题非常相似,都是分类问题。都是对样本的标签进行预测和判断,但是实际上两者的区别非常大,因为异常检测中的正样本(异常点)非常小。常用的算法有:
(1)一分类支持向量机(One-class SVM):适用于数据特征较多的场景。
(2)基于PCA的异常检测(PCA-based Anomaly Detection):适用于训练时间短的场景。

常见的迁移学习类算法包含:归纳式迁移学习(Inctive Transfer Learning) 、直推式迁移学习(Transctive Transfer Learning)、无监督式迁移学习(Unsupervised Transfer Learning)、传递式迁移学习(Transitive Transfer Learning)等。

算法的适用场景:
需要考虑的因素有:
(1)数据量的大小、数据质量和数据本身的特点
(2)机器学习要解决的具体业务场景中问题的本质是什么?
(3)可以接受的计算时间是什么?
(4)算法精度要求有多高?
————————————————

原文链接: https://blog.csdn.net/nfzhlk/article/details/82725769

㈣ 物联网,云计算,大数据和人工智能有什么关系

一.大数据支撑物联网,云计算供给大数据

由于这四者的关系比较复杂,所以只能逐个来给你做解释。

首先说物联网吧,其实简单通俗的去解释,就是物物联网,说白了就是任何事物都可以连接到互联网端来共享数据,如果非要去细究这个词的含义,我相信这个世界上没有人能给出你一个标准的定义,所以姑且先这么解释。

这种物联网的模式并不是很轻易就可以完成的,如果你了解互联网的发展史你会发现,完全依靠数据来运行的互联网其实早就有向物联网发展的趋势,说白了,人类不会满足于只拥有虚拟数据的互联网。

相较于传统算法,云计算更为多元化、快速化、有效化,简单来说就是更为强大。

而将大数据写入人工智能,则会让其可实现的行为或功能越来越多,最简单的呈现形式就是智能机器人,原来可能只会走路,现在可能都会变型或跑步了,这就是大数据制造出的人工智能相较于之前的进步吧,总之,人工智能的数据太过繁琐,如果不通过这样的方式很容易出现错误,人脑固然强大,但机械固化的大量运算还是没有系统计算来的可靠。

㈤ 大数据与人工智能的关系

大数据作为人工智能发展的三个重要基础之一(数据、算法、算力),本身与人工智能就存在紧密的联系,正是基于大数据技术的发展,目前人工智能技术才在落地应用方面获得了诸多突破。

在当前大数据产业链逐渐成熟的大背景下,大数据与人工智能的结合也在向更全面的方向发展,大数据与人工智能的结合涉及到以下几个方式:

第一:大数据分析。从技术的角度来看,大数据分析是与人工智能一个重要的结合点,机器学习作为大数据重要的分析方式之一,正在被更多的数据分析场景所采用。机器学习不仅是人工智能领域的六大主要研究方向之一,同时也是入门人工智能技术的常见方式,不少大数据研发人员就是通过机器学习转入了人工智能领域。

第二:AIoT体系。AIoT技术体系的核心就是物联网与人工智能技术的整合,从物联网的技术层次结构来看,在物联网和人工智能之间还有重要的“一层”,这一层就是大数据层,所以在AIoT得到更多重视的情况下,大数据与人工智能的结合也增加了新的方式。

第三:云计算体系。随着云计算服务的逐渐深入和发展,目前云计算平台正在向“全栈云”和“智能云”方向发展,这两个方向虽然具有一定的区别(行业),但是一个重要的特点是都需要大数据的参与,尤其是智能云。

大数据的发展本身开辟出了一个新的价值空间,但是大数据本身并不是目的,大数据的应用才是最终的目的,而人工智能正是大数据应用的重要出口,所以未来大数据与人工智能的结合途径会越来越多。

㈥ 云计算,大数据,人工智能三者有何关系

云计算、大数据、人工智能是相辅相成的,三者缺少了谁都不行。

云计算相当于人的大脑,是物联网的神经中枢。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。

大数据相当于人的大脑从小学到大学记忆和存储的海量知识,这些知识只有通过消化,吸收、再造才能创造出更大的价值。

人工智能就好像为一个人吸收了人类大量的知识(数据),不断的深度学习、进化成为一方高人。人工智能离不开大数据,更是基于云计算平台完成深度学习进化。

(6)大数据的算法人工智能扩展阅读

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。

云计算早期,简单地说,就是简单的分布式计算,解决任务分发,并进行计算结果的合并。因而,云计算又称为网格计算。通过这项技术,可以在很短的时间内(几秒钟)完成对数以万计的数据的处理,从而达到强大的网络服务。

㈦ 大数据与人工智能之间有何联系

大数据


Big data,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。


人工智能


Artificial Intelligence,英文缩写为AI。它的领域范畴是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。


大数据技术主要是围绕数据本身进行一系列的价值化操作,包括数据的采集、整理、存储、安全、分析、呈现和应用等。大数据技术与物联网、云计算都有密切的联系,物联网为大数据提供了主要的数据来源,而云计算则为大数据提供了支撑平台。


人工智能目前还处在初级阶段,主要的研究方向集中在自然语言处理、知识表示、自动推理、机器学习、计算机视觉和机器人学等六个方面。人工智能是典型的交叉学科,涉及到哲学、数学、计算机、经济学、神经学、语言学等诸多领域。


大数据与人工智能的关系


大数据和人工智能虽然关注点不相同,但关系密切,可以这样说,大数据是人工智能的基石,动力。大数据和AI中的深度学习是密不可分的,有了大量数据,作为深度学习的“学习资料”,计算机可以从中找到规律,海量数据,加上算法的突破和计算力的支撑让人工智能获得突破、走向应用。


一是人工智能需要大量的数据作为“思考”和“决策”的基础,二是大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品)。


人工智能就是大数据应用的体现,是大数据、云计算的应用场景。没有大数据就没有人工智能,人工智能应用的数据越多,其获得的结果就越准确。


关于大数据与人工智能之间有何联系,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈧ 大数据和人工智能的联系与区别是什么

了解大数据与人工智能的区别与联系,首先我们从认知和理解大数据和人工智能的概念开始。

1、大数据

大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。

2、人工智能

人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。

3、大数据与人工智能

大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化操作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。

目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。

㈨ 什么叫人工智能、大数据

人工智能(Artificial Intelligence),英文缩写为AI。人工智能是计算机科学的一个分支,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。


大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。

若帮助到您,求采纳,更多人工智能知识可进入3D视觉开发者社区~

阅读全文

与大数据的算法人工智能相关的资料

热点内容
linux服务器启动oracle 浏览:621
win10怎么语音呼唤小娜 浏览:456
qq飞车银天使 浏览:612
骑车赚钱app 浏览:111
怎么从电脑上下编程 浏览:508
linux如何复制到其他文件夹 浏览:70
碧蓝航线文件找不到怎么办 浏览:937
苹果备份的文件夹怎么恢复 浏览:941
看小黄APP有哪些 浏览:206
怎样在手机看264文件 浏览:80
常熟有哪里学编程的 浏览:162
我的下载的文件在哪里 浏览:563
文本显示器编程教程 浏览:942
电脑应用如何设置密码 浏览:336
怎么编程搜狗指南 浏览:155
代聊微信号 浏览:623
linux切换用户执行脚本 浏览:841
局内人未删减版本 浏览:159
app计步器软件如何同步支付宝 浏览:979
iPhone516g升级ios9 浏览:744

友情链接