导航:首页 > 网络数据 > 大数据网络部署图

大数据网络部署图

发布时间:2023-11-19 16:09:49

A. 大数据架构流程图

大数据管理数据处理过程图

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察力。大数据处理的主要流程包括数据收集、数据存储、数据处理、数据应用等主要环节。随着业务的增长,大量和流程、规则相关的非结构化数据也爆发式增长。

平台数据架构流程图

标准大数据平台架构,标准大数据平台架构,大数据平台架构,数据仓库,数据集市,大数据平台层级结构,数据挖掘,举报,包含该模版的分享。数据架构设计(数据架构组) 概述 总体描述 相对于业务架构和应用架构,数据架构在总体架构中处于基础和核心地位。

产品体验结构流程图

产品的功能结构图,产品功能结构图,产品主要流程图,产品的核心流程,我们继续围绕着得到app的核心流程探究。还原产品,产品结构、核心流程体验、核心页面体验的情况,而不仅仅是界面表层;从产品视角、用户视角来分析,而不是自我感觉,撰写报告,推出报告。产品体验从产品现状、目标用户及场景、关键功能体验

程序流程图

程序流程图又称程序框图,是用统一规定的标准符号描述程序运行具体步骤的图形表示。程序框图的设计是在处理流程图的基础上,通过对输入输出数据和处理过程的详细分析,将计算机的主要运行步骤和内容标识出来。

软件开发周期

软件生命周期(Software Life Cycle,SLC)是软件的产生直到报废或停止使用的生命周期。软件生命周期内有问题定义、可行性分析、总体描述、系统设计、编码、调试和测试、验收与运行、维护升级到废弃等阶段一个软件产品或软件系统也要经历孕育、诞生、成长、成熟、衰亡等阶段

软件测试流程鱼骨图

软件测试流程: 需求分析,制订测试计划,设计测试用例与编写,实施测试,提交缺陷报告,生成测试总结和报告。软件测试按照研发阶段一般分为5个部分:单元测试、集成测试、确认测试、系统测试、验收测试。根据设计用例的方法不同,黑盒测试包括等价划分法、边界值分析法、错误推测法、因果图法等。

云平台整体架构图

云计算的体系结构由5部分组成,分别为应用层,平台层,资源层,用户访问层和管理层,云计算的本质是通过网络提供服务,所以其体系结构以服务为核心。公认的云架构是划分为基础设施层、平台层和软件服务层三个层次的。

项目管理九大体系

项目管理思维导图包括项目采购管理、项目成本核算、时间管理等关于项目管理的九大体系。项目管理十大领域:进度、成本、质量、范围等4个核心领域,风险、沟通、采购、人力资源、干系人等5个辅助领域,1个整体领域。

产品经理项目管理思维导图

思维导图可以帮助产品经理梳理多而乱的产品思路,也可以帮助产品经理进行需求管理、产品分析等。产品经理会使用思维导图来对产品的思路进行一个有效的分析,梳理产品逻辑,然后再画原型图。一个优秀的产品经理,不仅仅是会画原型,写需求文档,更重要的是做出用户满意的产品。

项目规划时间轴流程图

项目规划时间轴流程图,对一个项目从开始到竣工的整个过程进行总结归纳。时间线图,又叫时间轴图,能以历史进程为载体,将过往的重要事项或者里程碑,标注在轴线上,并加以说明。它的作用是能够可视化内容,以图文的形式呈现出来。时间轴是一种表达事物发展进程的可视化图示,被许多商业管理人士所使用。

B. 五种大数据处理架构

五种大数据处理架构
大数据是收集、整理、处理大容量数据集,并从中获得见解所需的非传统战略和技术的总称。虽然处理数据所需的计算能力或存储容量早已超过一台计算机的上限,但这种计算类型的普遍性、规模,以及价值在最近几年才经历了大规模扩展。
本文将介绍大数据系统一个最基本的组件:处理框架。处理框架负责对系统中的数据进行计算,例如处理从非易失存储中读取的数据,或处理刚刚摄入到系统中的数据。数据的计算则是指从大量单一数据点中提取信息和见解的过程。
下文将介绍这些框架:
· 仅批处理框架:
Apache Hadoop
· 仅流处理框架:
Apache Storm
Apache Samza
· 混合框架:
Apache Spark
Apache Flink
大数据处理框架是什么?
处理框架和处理引擎负责对数据系统中的数据进行计算。虽然“引擎”和“框架”之间的区别没有什么权威的定义,但大部分时候可以将前者定义为实际负责处理数据操作的组件,后者则可定义为承担类似作用的一系列组件。
例如Apache Hadoop可以看作一种以MapRece作为默认处理引擎的处理框架。引擎和框架通常可以相互替换或同时使用。例如另一个框架Apache Spark可以纳入Hadoop并取代MapRece。组件之间的这种互操作性是大数据系统灵活性如此之高的原因之一。
虽然负责处理生命周期内这一阶段数据的系统通常都很复杂,但从广义层面来看它们的目标是非常一致的:通过对数据执行操作提高理解能力,揭示出数据蕴含的模式,并针对复杂互动获得见解。
为了简化这些组件的讨论,我们会通过不同处理框架的设计意图,按照所处理的数据状态对其进行分类。一些系统可以用批处理方式处理数据,一些系统可以用流方式处理连续不断流入系统的数据。此外还有一些系统可以同时处理这两类数据。
在深入介绍不同实现的指标和结论之前,首先需要对不同处理类型的概念进行一个简单的介绍。
批处理系统
批处理在大数据世界有着悠久的历史。批处理主要操作大容量静态数据集,并在计算过程完成后返回结果。
批处理模式中使用的数据集通常符合下列特征…
· 有界:批处理数据集代表数据的有限集合
· 持久:数据通常始终存储在某种类型的持久存储位置中
· 大量:批处理操作通常是处理极为海量数据集的唯一方法
批处理非常适合需要访问全套记录才能完成的计算工作。例如在计算总数和平均数时,必须将数据集作为一个整体加以处理,而不能将其视作多条记录的集合。这些操作要求在计算进行过程中数据维持自己的状态。
需要处理大量数据的任务通常最适合用批处理操作进行处理。无论直接从持久存储设备处理数据集,或首先将数据集载入内存,批处理系统在设计过程中就充分考虑了数据的量,可提供充足的处理资源。由于批处理在应对大量持久数据方面的表现极为出色,因此经常被用于对历史数据进行分析。
大量数据的处理需要付出大量时间,因此批处理不适合对处理时间要求较高的场合。
Apache Hadoop
Apache Hadoop是一种专用于批处理的处理框架。Hadoop是首个在开源社区获得极大关注的大数据框架。基于谷歌有关海量数据处理所发表的多篇论文与经验的Hadoop重新实现了相关算法和组件堆栈,让大规模批处理技术变得更易用。
新版Hadoop包含多个组件,即多个层,通过配合使用可处理批数据:
· HDFS:HDFS是一种分布式文件系统层,可对集群节点间的存储和复制进行协调。HDFS确保了无法避免的节点故障发生后数据依然可用,可将其用作数据来源,可用于存储中间态的处理结果,并可存储计算的最终结果。
· YARN:YARN是Yet Another Resource Negotiator(另一个资源管理器)的缩写,可充当Hadoop堆栈的集群协调组件。该组件负责协调并管理底层资源和调度作业的运行。通过充当集群资源的接口,YARN使得用户能在Hadoop集群中使用比以往的迭代方式运行更多类型的工作负载。
· MapRece:MapRece是Hadoop的原生批处理引擎。
批处理模式
Hadoop的处理功能来自MapRece引擎。MapRece的处理技术符合使用键值对的map、shuffle、rece算法要求。基本处理过程包括:
· 从HDFS文件系统读取数据集
· 将数据集拆分成小块并分配给所有可用节点
· 针对每个节点上的数据子集进行计算(计算的中间态结果会重新写入HDFS)
· 重新分配中间态结果并按照键进行分组
· 通过对每个节点计算的结果进行汇总和组合对每个键的值进行“Recing”
· 将计算而来的最终结果重新写入 HDFS
优势和局限
由于这种方法严重依赖持久存储,每个任务需要多次执行读取和写入操作,因此速度相对较慢。但另一方面由于磁盘空间通常是服务器上最丰富的资源,这意味着MapRece可以处理非常海量的数据集。同时也意味着相比其他类似技术,Hadoop的MapRece通常可以在廉价硬件上运行,因为该技术并不需要将一切都存储在内存中。MapRece具备极高的缩放潜力,生产环境中曾经出现过包含数万个节点的应用。
MapRece的学习曲线较为陡峭,虽然Hadoop生态系统的其他周边技术可以大幅降低这一问题的影响,但通过Hadoop集群快速实现某些应用时依然需要注意这个问题。
围绕Hadoop已经形成了辽阔的生态系统,Hadoop集群本身也经常被用作其他软件的组成部件。很多其他处理框架和引擎通过与Hadoop集成也可以使用HDFS和YARN资源管理器。
总结
Apache Hadoop及其MapRece处理引擎提供了一套久经考验的批处理模型,最适合处理对时间要求不高的非常大规模数据集。通过非常低成本的组件即可搭建完整功能的Hadoop集群,使得这一廉价且高效的处理技术可以灵活应用在很多案例中。与其他框架和引擎的兼容与集成能力使得Hadoop可以成为使用不同技术的多种工作负载处理平台的底层基础。
流处理系统
流处理系统会对随时进入系统的数据进行计算。相比批处理模式,这是一种截然不同的处理方式。流处理方式无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作。
· 流处理中的数据集是“无边界”的,这就产生了几个重要的影响:
· 完整数据集只能代表截至目前已经进入到系统中的数据总量。
· 工作数据集也许更相关,在特定时间只能代表某个单一数据项。
处理工作是基于事件的,除非明确停止否则没有“尽头”。处理结果立刻可用,并会随着新数据的抵达继续更新。
流处理系统可以处理几乎无限量的数据,但同一时间只能处理一条(真正的流处理)或很少量(微批处理,Micro-batch Processing)数据,不同记录间只维持最少量的状态。虽然大部分系统提供了用于维持某些状态的方法,但流处理主要针对副作用更少,更加功能性的处理(Functional processing)进行优化。
功能性操作主要侧重于状态或副作用有限的离散步骤。针对同一个数据执行同一个操作会或略其他因素产生相同的结果,此类处理非常适合流处理,因为不同项的状态通常是某些困难、限制,以及某些情况下不需要的结果的结合体。因此虽然某些类型的状态管理通常是可行的,但这些框架通常在不具备状态管理机制时更简单也更高效。
此类处理非常适合某些类型的工作负载。有近实时处理需求的任务很适合使用流处理模式。分析、服务器或应用程序错误日志,以及其他基于时间的衡量指标是最适合的类型,因为对这些领域的数据变化做出响应对于业务职能来说是极为关键的。流处理很适合用来处理必须对变动或峰值做出响应,并且关注一段时间内变化趋势的数据。
Apache Storm
Apache Storm是一种侧重于极低延迟的流处理框架,也许是要求近实时处理的工作负载的最佳选择。该技术可处理非常大量的数据,通过比其他解决方案更低的延迟提供结果。
流处理模式
Storm的流处理可对框架中名为Topology(拓扑)的DAG(Directed Acyclic Graph,有向无环图)进行编排。这些拓扑描述了当数据片段进入系统后,需要对每个传入的片段执行的不同转换或步骤。
拓扑包含:
· Stream:普通的数据流,这是一种会持续抵达系统的无边界数据。
· Spout:位于拓扑边缘的数据流来源,例如可以是API或查询等,从这里可以产生待处理的数据。
· Bolt:Bolt代表需要消耗流数据,对其应用操作,并将结果以流的形式进行输出的处理步骤。Bolt需要与每个Spout建立连接,随后相互连接以组成所有必要的处理。在拓扑的尾部,可以使用最终的Bolt输出作为相互连接的其他系统的输入。
Storm背后的想法是使用上述组件定义大量小型的离散操作,随后将多个组件组成所需拓扑。默认情况下Storm提供了“至少一次”的处理保证,这意味着可以确保每条消息至少可以被处理一次,但某些情况下如果遇到失败可能会处理多次。Storm无法确保可以按照特定顺序处理消息。
为了实现严格的一次处理,即有状态处理,可以使用一种名为Trident的抽象。严格来说不使用Trident的Storm通常可称之为Core Storm。Trident会对Storm的处理能力产生极大影响,会增加延迟,为处理提供状态,使用微批模式代替逐项处理的纯粹流处理模式。
为避免这些问题,通常建议Storm用户尽可能使用Core Storm。然而也要注意,Trident对内容严格的一次处理保证在某些情况下也比较有用,例如系统无法智能地处理重复消息时。如果需要在项之间维持状态,例如想要计算一个小时内有多少用户点击了某个链接,此时Trident将是你唯一的选择。尽管不能充分发挥框架与生俱来的优势,但Trident提高了Storm的灵活性。
Trident拓扑包含:
· 流批(Stream batch):这是指流数据的微批,可通过分块提供批处理语义。
· 操作(Operation):是指可以对数据执行的批处理过程。
优势和局限
目前来说Storm可能是近实时处理领域的最佳解决方案。该技术可以用极低延迟处理数据,可用于希望获得最低延迟的工作负载。如果处理速度直接影响用户体验,例如需要将处理结果直接提供给访客打开的网站页面,此时Storm将会是一个很好的选择。
Storm与Trident配合使得用户可以用微批代替纯粹的流处理。虽然借此用户可以获得更大灵活性打造更符合要求的工具,但同时这种做法会削弱该技术相比其他解决方案最大的优势。话虽如此,但多一种流处理方式总是好的。
Core Storm无法保证消息的处理顺序。Core Storm为消息提供了“至少一次”的处理保证,这意味着可以保证每条消息都能被处理,但也可能发生重复。Trident提供了严格的一次处理保证,可以在不同批之间提供顺序处理,但无法在一个批内部实现顺序处理。
在互操作性方面,Storm可与Hadoop的YARN资源管理器进行集成,因此可以很方便地融入现有Hadoop部署。除了支持大部分处理框架,Storm还可支持多种语言,为用户的拓扑定义提供了更多选择。
总结
对于延迟需求很高的纯粹的流处理工作负载,Storm可能是最适合的技术。该技术可以保证每条消息都被处理,可配合多种编程语言使用。由于Storm无法进行批处理,如果需要这些能力可能还需要使用其他软件。如果对严格的一次处理保证有比较高的要求,此时可考虑使用Trident。不过这种情况下其他流处理框架也许更适合。
Apache Samza
Apache Samza是一种与Apache Kafka消息系统紧密绑定的流处理框架。虽然Kafka可用于很多流处理系统,但按照设计,Samza可以更好地发挥Kafka独特的架构优势和保障。该技术可通过Kafka提供容错、缓冲,以及状态存储。
Samza可使用YARN作为资源管理器。这意味着默认情况下需要具备Hadoop集群(至少具备HDFS和YARN),但同时也意味着Samza可以直接使用YARN丰富的内建功能。
流处理模式
Samza依赖Kafka的语义定义流的处理方式。Kafka在处理数据时涉及下列概念:
· Topic(话题):进入Kafka系统的每个数据流可称之为一个话题。话题基本上是一种可供消耗方订阅的,由相关信息组成的数据流。
· Partition(分区):为了将一个话题分散至多个节点,Kafka会将传入的消息划分为多个分区。分区的划分将基于键(Key)进行,这样可以保证包含同一个键的每条消息可以划分至同一个分区。分区的顺序可获得保证。
· Broker(代理):组成Kafka集群的每个节点也叫做代理。
· Procer(生成方):任何向Kafka话题写入数据的组件可以叫做生成方。生成方可提供将话题划分为分区所需的键。
· Consumer(消耗方):任何从Kafka读取话题的组件可叫做消耗方。消耗方需要负责维持有关自己分支的信息,这样即可在失败后知道哪些记录已经被处理过了。
由于Kafka相当于永恒不变的日志,Samza也需要处理永恒不变的数据流。这意味着任何转换创建的新数据流都可被其他组件所使用,而不会对最初的数据流产生影响。
优势和局限
乍看之下,Samza对Kafka类查询系统的依赖似乎是一种限制,然而这也可以为系统提供一些独特的保证和功能,这些内容也是其他流处理系统不具备的。
例如Kafka已经提供了可以通过低延迟方式访问的数据存储副本,此外还可以为每个数据分区提供非常易用且低成本的多订阅者模型。所有输出内容,包括中间态的结果都可写入到Kafka,并可被下游步骤独立使用。
这种对Kafka的紧密依赖在很多方面类似于MapRece引擎对HDFS的依赖。虽然在批处理的每个计算之间对HDFS的依赖导致了一些严重的性能问题,但也避免了流处理遇到的很多其他问题。
Samza与Kafka之间紧密的关系使得处理步骤本身可以非常松散地耦合在一起。无需事先协调,即可在输出的任何步骤中增加任意数量的订阅者,对于有多个团队需要访问类似数据的组织,这一特性非常有用。多个团队可以全部订阅进入系统的数据话题,或任意订阅其他团队对数据进行过某些处理后创建的话题。这一切并不会对数据库等负载密集型基础架构造成额外的压力。
直接写入Kafka还可避免回压(Backpressure)问题。回压是指当负载峰值导致数据流入速度超过组件实时处理能力的情况,这种情况可能导致处理工作停顿并可能丢失数据。按照设计,Kafka可以将数据保存很长时间,这意味着组件可以在方便的时候继续进行处理,并可直接重启动而无需担心造成任何后果。
Samza可以使用以本地键值存储方式实现的容错检查点系统存储数据。这样Samza即可获得“至少一次”的交付保障,但面对由于数据可能多次交付造成的失败,该技术无法对汇总后状态(例如计数)提供精确恢复。
Samza提供的高级抽象使其在很多方面比Storm等系统提供的基元(Primitive)更易于配合使用。目前Samza只支持JVM语言,这意味着它在语言支持方面不如Storm灵活。
总结
对于已经具备或易于实现Hadoop和Kafka的环境,Apache Samza是流处理工作负载一个很好的选择。Samza本身很适合有多个团队需要使用(但相互之间并不一定紧密协调)不同处理阶段的多个数据流的组织。Samza可大幅简化很多流处理工作,可实现低延迟的性能。如果部署需求与当前系统不兼容,也许并不适合使用,但如果需要极低延迟的处理,或对严格的一次处理语义有较高需求,此时依然适合考虑。
混合处理系统:批处理和流处理
一些处理框架可同时处理批处理和流处理工作负载。这些框架可以用相同或相关的组件和API处理两种类型的数据,借此让不同的处理需求得以简化。
如你所见,这一特性主要是由Spark和Flink实现的,下文将介绍这两种框架。实现这样的功能重点在于两种不同处理模式如何进行统一,以及要对固定和不固定数据集之间的关系进行何种假设。
虽然侧重于某一种处理类型的项目会更好地满足具体用例的要求,但混合框架意在提供一种数据处理的通用解决方案。这种框架不仅可以提供处理数据所需的方法,而且提供了自己的集成项、库、工具,可胜任图形分析、机器学习、交互式查询等多种任务。
Apache Spark
Apache Spark是一种包含流处理能力的下一代批处理框架。与Hadoop的MapRece引擎基于各种相同原则开发而来的Spark主要侧重于通过完善的内存计算和处理优化机制加快批处理工作负载的运行速度。
Spark可作为独立集群部署(需要相应存储层的配合),或可与Hadoop集成并取代MapRece引擎。
批处理模式
与MapRece不同,Spark的数据处理工作全部在内存中进行,只在一开始将数据读入内存,以及将最终结果持久存储时需要与存储层交互。所有中间态的处理结果均存储在内存中。
虽然内存中处理方式可大幅改善性能,Spark在处理与磁盘有关的任务时速度也有很大提升,因为通过提前对整个任务集进行分析可以实现更完善的整体式优化。为此Spark可创建代表所需执行的全部操作,需要操作的数据,以及操作和数据之间关系的Directed Acyclic Graph(有向无环图),即DAG,借此处理器可以对任务进行更智能的协调。
为了实现内存中批计算,Spark会使用一种名为Resilient Distributed Dataset(弹性分布式数据集),即RDD的模型来处理数据。这是一种代表数据集,只位于内存中,永恒不变的结构。针对RDD执行的操作可生成新的RDD。每个RDD可通过世系(Lineage)回溯至父级RDD,并最终回溯至磁盘上的数据。Spark可通过RDD在无需将每个操作的结果写回磁盘的前提下实现容错。
流处理模式
流处理能力是由Spark Streaming实现的。Spark本身在设计上主要面向批处理工作负载,为了弥补引擎设计和流处理工作负载特征方面的差异,Spark实现了一种叫做微批(Micro-batch)*的概念。在具体策略方面该技术可以将数据流视作一系列非常小的“批”,借此即可通过批处理引擎的原生语义进行处理。
Spark Streaming会以亚秒级增量对流进行缓冲,随后这些缓冲会作为小规模的固定数据集进行批处理。这种方式的实际效果非常好,但相比真正的流处理框架在性能方面依然存在不足。
优势和局限
使用Spark而非Hadoop MapRece的主要原因是速度。在内存计算策略和先进的DAG调度等机制的帮助下,Spark可以用更快速度处理相同的数据集。
Spark的另一个重要优势在于多样性。该产品可作为独立集群部署,或与现有Hadoop集群集成。该产品可运行批处理和流处理,运行一个集群即可处理不同类型的任务。
除了引擎自身的能力外,围绕Spark还建立了包含各种库的生态系统,可为机器学习、交互式查询等任务提供更好的支持。相比MapRece,Spark任务更是“众所周知”地易于编写,因此可大幅提高生产力。
为流处理系统采用批处理的方法,需要对进入系统的数据进行缓冲。缓冲机制使得该技术可以处理非常大量的传入数据,提高整体吞吐率,但等待缓冲区清空也会导致延迟增高。这意味着Spark Streaming可能不适合处理对延迟有较高要求的工作负载。
由于内存通常比磁盘空间更贵,因此相比基于磁盘的系统,Spark成本更高。然而处理速度的提升意味着可以更快速完成任务,在需要按照小时数为资源付费的环境中,这一特性通常可以抵消增加的成本。
Spark内存计算这一设计的另一个后果是,如果部署在共享的集群中可能会遇到资源不足的问题。相比HadoopMapRece,Spark的资源消耗更大,可能会对需要在同一时间使用集群的其他任务产生影响。从本质来看,Spark更不适合与Hadoop堆栈的其他组件共存一处。
总结
Spark是多样化工作负载处理任务的最佳选择。Spark批处理能力以更高内存占用为代价提供了无与伦比的速度优势。对于重视吞吐率而非延迟的工作负载,则比较适合使用Spark Streaming作为流处理解决方案。
Apache Flink
Apache Flink是一种可以处理批处理任务的流处理框架。该技术可将批处理数据视作具备有限边界的数据流,借此将批处理任务作为流处理的子集加以处理。为所有处理任务采取流处理为先的方法会产生一系列有趣的副作用。
这种流处理为先的方法也叫做Kappa架构,与之相对的是更加被广为人知的Lambda架构(该架构中使用批处理作为主要处理方法,使用流作为补充并提供早期未经提炼的结果)。Kappa架构中会对一切进行流处理,借此对模型进行简化,而这一切是在最近流处理引擎逐渐成熟后才可行的。
流处理模型
Flink的流处理模型在处理传入数据时会将每一项视作真正的数据流。Flink提供的DataStream API可用于处理无尽的数据流。Flink可配合使用的基本组件包括:
· Stream(流)是指在系统中流转的,永恒不变的无边界数据集
· Operator(操作方)是指针对数据流执行操作以产生其他数据流的功能
· Source(源)是指数据流进入系统的入口点
· Sink(槽)是指数据流离开Flink系统后进入到的位置,槽可以是数据库或到其他系统的连接器
为了在计算过程中遇到问题后能够恢复,流处理任务会在预定时间点创建快照。为了实现状态存储,Flink可配合多种状态后端系统使用,具体取决于所需实现的复杂度和持久性级别。
此外Flink的流处理能力还可以理解“事件时间”这一概念,这是指事件实际发生的时间,此外该功能还可以处理会话。这意味着可以通过某种有趣的方式确保执行顺序和分组。
批处理模型
Flink的批处理模型在很大程度上仅仅是对流处理模型的扩展。此时模型不再从持续流中读取数据,而是从持久存储中以流的形式读取有边界的数据集。Flink会对这些处理模型使用完全相同的运行时。
Flink可以对批处理工作负载实现一定的优化。例如由于批处理操作可通过持久存储加以支持,Flink可以不对批处理工作负载创建快照。数据依然可以恢复,但常规处理操作可以执行得更快。
另一个优化是对批处理任务进行分解,这样即可在需要的时候调用不同阶段和组件。借此Flink可以与集群的其他用户更好地共存。对任务提前进行分析使得Flink可以查看需要执行的所有操作、数据集的大小,以及下游需要执行的操作步骤,借此实现进一步的优化。
优势和局限
Flink目前是处理框架领域一个独特的技术。虽然Spark也可以执行批处理和流处理,但Spark的流处理采取的微批架构使其无法适用于很多用例。Flink流处理为先的方法可提供低延迟,高吞吐率,近乎逐项处理的能力。
Flink的很多组件是自行管理的。虽然这种做法较为罕见,但出于性能方面的原因,该技术可自行管理内存,无需依赖原生的Java垃圾回收机制。与Spark不同,待处理数据的特征发生变化后Flink无需手工优化和调整,并且该技术也可以自行处理数据分区和自动缓存等操作。
Flink会通过多种方式对工作进行分许进而优化任务。这种分析在部分程度上类似于SQL查询规划器对关系型数据库所做的优化,可针对特定任务确定最高效的实现方法。该技术还支持多阶段并行执行,同时可将受阻任务的数据集合在一起。对于迭代式任务,出于性能方面的考虑,Flink会尝试在存储数据的节点上执行相应的计算任务。此外还可进行“增量迭代”,或仅对数据中有改动的部分进行迭代。
在用户工具方面,Flink提供了基于Web的调度视图,借此可轻松管理任务并查看系统状态。用户也可以查看已提交任务的优化方案,借此了解任务最终是如何在集群中实现的。对于分析类任务,Flink提供了类似SQL的查询,图形化处理,以及机器学习库,此外还支持内存计算。
Flink能很好地与其他组件配合使用。如果配合Hadoop 堆栈使用,该技术可以很好地融入整个环境,在任何时候都只占用必要的资源。该技术可轻松地与YARN、HDFS和Kafka 集成。在兼容包的帮助下,Flink还可以运行为其他处理框架,例如Hadoop和Storm编写的任务。
目前Flink最大的局限之一在于这依然是一个非常“年幼”的项目。现实环境中该项目的大规模部署尚不如其他处理框架那么常见,对于Flink在缩放能力方面的局限目前也没有较为深入的研究。随着快速开发周期的推进和兼容包等功能的完善,当越来越多的组织开始尝试时,可能会出现越来越多的Flink部署
总结
Flink提供了低延迟流处理,同时可支持传统的批处理任务。Flink也许最适合有极高流处理需求,并有少量批处理任务的组织。该技术可兼容原生Storm和Hadoop程序,可在YARN管理的集群上运行,因此可以很方便地进行评估。快速进展的开发工作使其值得被大家关注。
结论
大数据系统可使用多种处理技术。
对于仅需要批处理的工作负载,如果对时间不敏感,比其他解决方案实现成本更低的Hadoop将会是一个好选择。
对于仅需要流处理的工作负载,Storm可支持更广泛的语言并实现极低延迟的处理,但默认配置可能产生重复结果并且无法保证顺序。Samza与YARN和Kafka紧密集成可提供更大灵活性,更易用的多团队使用,以及更简单的复制和状态管理。
对于混合型工作负载,Spark可提供高速批处理和微批处理模式的流处理。该技术的支持更完善,具备各种集成库和工具,可实现灵活的集成。Flink提供了真正的流处理并具备批处理能力,通过深度优化可运行针对其他平台编写的任务,提供低延迟的处理,但实际应用方面还为时过早。
最适合的解决方案主要取决于待处理数据的状态,对处理所需时间的需求,以及希望得到的结果。具体是使用全功能解决方案或主要侧重于某种项目的解决方案,这个问题需要慎重权衡。随着逐渐成熟并被广泛接受,在评估任何新出现的创新型解决方案时都需要考虑类似的问题。

C. 如何为大数据处理构建高性能Hadoop集群

越来越多的企业开始使用Hadoop来对大数据进行处理分析,但Hadoop集群的整体性能却取决于CPU、内存、网络以及存储之间的性能平衡。而在这篇文章中,我们将探讨如何为Hadoop集群构建高性能网络,这是对大数据进行处理分析的关键所在。
关于Hadoop
“大数据”是松散的数据集合,海量数据的不断增长迫使企业需要通过一种新的方式去管理。大数据是结构化或非结构化的多种数据类型的大集合。而 Hadoop则是Apache发布的软件架构,用以分析PB级的非结构化数据,并将其转换成其他应用程序可管理处理的形式。Hadoop使得对大数据处理成为可能,并能够帮助企业可从客户数据之中发掘新的商机。如果能够进行实时处理或者接近实时处理,那么其将为许多行业的用户提供强大的优势。
Hadoop是基于谷歌的MapRece和分布式文件系统原理而专门设计的,其可在通用的网络和服务器硬件上进行部署,并使之成为计算集群。
Hadoop模型
Hadoop的工作原理是将一个非常大的数据集切割成一个较小的单元,以能够被查询处理。同一个节点的计算资源用于并行查询处理。当任务处理结束后,其处理结果将被汇总并向用户报告,或者通过业务分析应用程序处理以进行进一步分析或仪表盘显示。
为了最大限度地减少处理时间,在此并行架构中,Hadoop“moves jobs to data”,而非像传统模式那样“moving data to jobs”。这就意味着,一旦数据存储在分布式系统之中,在实时搜索、查询或数据挖掘等操作时,如访问本地数据,在数据处理过程中,各节点之间将只有一个本地查询结果,这样可降低运营开支。
Hadoop的最大特点在于其内置的并行处理和线性扩展能力,提供对大型数据集查询并生成结果。在结构上,Hadoop主要有两个部分:
Hadoop分布式文件系统(HDFS)将数据文件切割成数据块,并将其存储在多个节点之内,以提供容错性和高性能。除了大量的多个节点的聚合I/O,性能通常取决于数据块的大小——如128MB。而传统的Linux系统下的较为典型的数据块大小可能是4KB。
MapRece引擎通过JobTracker节点接受来自客户端的分析工作,采用“分而治之”的方式来将一个较大的任务分解成多个较小的任务,然后分配给各个TaskTrack节点,并采用主站/从站的分布方式(具体如下图所示):
Hadoop系统有三个主要的功烂瞎能节点:客户机、主机和从机。客户机将数据文件注入到系统之中,从系统中检索结果,以及通过系统的主机节点提交分析工作等。主机节点有两个基本作用:管理分布式文件系统中各节点以及从机节点的数据存储,以及管理Map/Rece从机节点的任务跟踪分配和任务处理。数据存饥尘空储和分析处理的实际性能取决于运行数据节点和任务跟踪器的从机节点性能,而这些从机节点则由各自的主机节点负责沟通和控制。从节点通常有多个数据块,并在作业期间被分配处理多个任务。
部署实施Hadoop
各个节点硬件的主要要求是市县计算、内存、网络以及存储等四个资源的平衡。目前常用的并被誉为“最佳”的解决方案是采用相对较低成本的旧有硬件,部署足够多的服务器以应对任何可能的故障,并部署一个完整机架的系统。
Hadoop模式要求服务器与SAN或者NAS进行直接连接存储(DAS)。采用DAS主要有三个原因,在标准化配置的集群中,节点的缩放数以千计,随着存储系统的成本、低延迟性以及存储容量需求不断提高,简单配置和部署个主要的考虑因素。随着极具成本效益的1TB磁盘的普及,可使大型集群的TB级数据存储在DAS之上。这解决了传统方法利用SAN进行部署极其昂贵的困境,如此多的存储将使得Hadoop和数据存储出现一个令人望而却步的起始成本。有相当大一部分用户的Hadoop部署构建都是采用大容量的DAS服务器,其中数据节点大约1-2TB,名称控制节点大约在1-5TB之间,具体如下图所示:

对于大多数的Hadoop部署来说,基础设施的其他影响因素可能还取决于配件,如服务器内置的千兆以太网卡或千兆以太网交换机。上一代的CPU和内存等硬件的选择,可根据符合成本模型的需求,采用匹配数据传输速率要求的千兆以太网接口来构建低成本的解决方案。采用万兆以太网来部署Hadoop也是相当不错的选择。
万兆以太网对Hadoop集群的作用
千兆以太网的性能是制约Hadoop系统整体性能的一兄模个主要因素。使用较大的数据块大小,例如,如果一个节点发生故障(甚至更糟,整个机架宕机),那么整个集群就需要对TB级的数据进行恢复,这就有可能会超过千兆以太网所能提供的网络带宽,进而使得整个集群性能下降。在拥有成千上万个节点的大型集群中,当运行某些需要数据节点之间需要进行中间结果再分配的工作负载时,在系统正常运行过程中,某个千兆以太网设备可能会遭遇网络拥堵。
每一个Hadoop数据节点的目标都必须实现CPU、内存、存储和网络资源的平衡。如果四者之中的任意一个性能相对较差的话,那么系统的潜在处理能力都有可能遭遇瓶颈。添加更多的CPU和内存组建,将影响存储和网络的平衡,如何使Hadoop集群节点在处理数据时更有效率,减少结果,并在Hadoop集群内添加更多的HDFS存储节点。
幸运的是,影响CPU和内存发展的摩尔定律,同样也正影响着存储技术(TB级容量的磁盘)和以太网技术(从千兆向万兆甚至更高)的发展。预先升级系统组件(如多核处理器、每节点5-20TB容量的磁盘,64-128GB内存),万兆以太网卡和交换机等网络组件是重新平衡资源最合理的选择。万兆以太网将在Hadoop集群证明其价值,高水平的网络利用率将带来效益更高的带宽。下图展示了Hadoop集群与万兆以太网的连接:
许多企业级数据中心已经迁移到10GbE网络,以实现服务器整合和服务器虚拟化。随着越来越多企业开始部署Hadoop,他们发现他们完全不必要大批量部署1U的机架服务器,而是部署更少,但性能更高的服务器,以方便扩展每个数据节点所能运行的任务数量。很多企业选择部署2U或4U的服务器(如戴尔 PowerEdge C2100),每个节点大约12-16个核心以及24TB存储容量。在这种环境下的合理选择是充分利用已经部署的10GbE设备和Hadoop集群中的 10GbE网卡。
在日常的IT环境中构建一个简单的Hadoop集群。可以肯定的是,尽管有很多细节需要微调,但其基础是非常简单的。构建一个计算、存储和网络资源平衡的系统,对项目的成功至关重要。对于拥有密集节点的Hadoop集群而言,万兆以太网能够为计算和存储资源扩展提供与之相匹配的能力,且不会导致系统整体性能下降。

D. 如何架构大数据系统 hadoop

大数据数量庞大,格式多样化。大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

一、大数据建设思路

1)数据的获得

四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

E. 运营商如何运用大数据转型升级

据研究显示,大数据在全球的收入快速增长,预期在2012-2017年的复合增长率将达到60%。根据最近一段时间发布的各类大数据投资研究报告进行了初步估算,预期未来超过40%的GDP增量。大数据已经成为与自然资源同等重要的宝贵财富,发展潜力空间巨大。

而电信运营商作为数据的生产者,多年来积累的数据蕴藏着丰富的业务信息和商业信息,价值挖掘的潜力巨大,拥有如此优质的数据基础,使得运营商在企业、行业、社会等多个层面,都会大有作为。

在8月19日召开的中国国际大数据大会上,中国移动副总裁李正茂表示,中国移动已经意识到,大数据将与运营商的通信网络和客户资源具有同等重要的地位。

从企业层面来看,大数据将助力运营商全面提升运营商的精细化运营水平。一是改善用户体验,通过对用户感知的分析,并运用智能交互技术,进一步提升用户体验;二是实现科学决策,通过大数据刻画当前企业发展的状况,预测未来趋势,对企业成本、收入风险等进行精细化管控。

从行业层面来看,目前各行业纷纷加快大数据应用,重构未来的核心竞争力,运营商可利用数据与网络资源优势,聚焦行政管理、医疗、交通、教育等多个行业,在行政管理领域可以辅助提升政策制定、信息发布、事务办理、管理监控等多个领域的效率和设备,在医疗领域患者可通过可穿戴设备向医生发布数据,从而得到更为便捷的医疗服务。医药研发机构可以利用收集到的医学大数据提高研发能力和医疗水平。在交通、物流领域,可实现智能化的运输网络与运力规划,实施交通管理、车队管理等等。

从社会层面来看,运营商依靠多年的数据和平台经验积累,一定会成为提供社会化大数据生态平台服务的有力参与者。在未来,社会化大数据生态平台,将以数据银行的形式存在,平台使用者不但可以享用运营商的各类数据分析服务,使用者数据也可以在这里得到充分共享和流通,不同的商业模式将在这个平台上衍生和繁荣。

李正茂认为,大数据对于运营商转型升级具有重大的战略意义。而中国移动在大数据的具体研发、产业合作与对外应用方面,也进行了一些积极探索和实践。在自主研发方面,中国移动在2007年启动了大云的研发计划,构建了海量存储处理和数据分析和挖掘等核心能力。到目前为止,大云的大数据相关产品已经在17个省市进行了超过100项应用试点和商用,部署规模超过了3000台服务器,在快速响应市场需求的同时也降低了企业运营成本。

李正茂还透露,中国移动在今年成立了苏州研发中心,计划构建3000-4000人的研发团队和运营团队,宗旨就是要进一步完善云计算和大数据产品体系,尽快形成国际一流的云计算和大数据服务能力。

在产业合作方面,中国移动一直秉承开放共赢理念,推动云计算和大数据技术的成熟和产业健康发展。我们构建了大云产业联盟,与技术提供商、集成商、高等院校、政府机构等超过50家单位,在核心模块合作、授权技术服务、应用开发技术攻关等产业不同层面开展了合作。我们还积极参与了国内、国际标准化和开源组织工作,在TMF完成了大数据报告并完成发布,牵头完成了弹性应用计算接口等国家标准的制定。

另外,在大数据对内的研究探索方面,中国移动率先提出了大数据超细分微营销精服务的理念,在客户服务、市场营销等方面,也有不少成功案例。现阶段的工作,更多集中在应对数据规模增长和促进企业不同专业领域数据融合上面,以及不同程度的发挥数据价值。

阅读全文

与大数据网络部署图相关的资料

热点内容
苹果电脑查询wifi密码 浏览:844
哪里看云顶之弈大数据 浏览:686
福建医大附一app 浏览:552
javaweb增量发布 浏览:744
安卓怎么打开多点触控 浏览:962
苹果6一解屏就是passbook 浏览:721
怎么去掉word文字底纹 浏览:855
哪些是大数据的范围 浏览:296
下载路径文件管理找不到 浏览:469
文件系统锁定怎样解除 浏览:191
applepay绑定设备 浏览:396
d盘的压缩文件如何解压 浏览:750
哪个编程软件适合新手 浏览:952
在桌面建造一个文件夹 浏览:683
java中文简繁体转换工具 浏览:157
c好看的登陆界面代码 浏览:622
系统自带信息非默认程序 浏览:668
网站有专利两个字被罚要多少钱 浏览:84
手机储存文件的路径 浏览:771
三作标需要什么文件格式 浏览:585

友情链接