导航:首页 > 网络数据 > 大数据与科技新挑战

大数据与科技新挑战

发布时间:2023-11-14 21:53:33

大数据的挑战和局限

大数据的挑战和局限
每个人都知道互联网改变了企业经营、政府运作以及人们生活的方式。但是一种新的、不那么明显的技术趋势却有着同样巨大的变革能力,那就是“大数据”。大数据的趋势发端于下面这个事实:如今到处传播的信息比以往任何时候都多出了许多,而且这一趋势正在应用于非同寻常的新用途。大数据与互联网截然不同,虽然互联网使数据的收集和共享方便了很多。大数据的意义并不仅仅是通信:其本质是我们可以从大量的信息中学习到从较少量的信息中无法获取的东西。
将改变人类思考方式
早在公元前3世纪,亚历山大图书馆被认为收藏了全部的人类知识。而如果把当今全世界的信息平分给每一个活着的人,那么每个人拥有的信息量将足足超过当年亚历山大图书馆全部藏书的320倍。如果把所有这些信息刻到光盘上并且分五摞叠起来的话,那么这些光盘可以一直堆到月球。
这种数据爆炸是相对新鲜的现象。仅仅在2000年的时候,全世界全部的存储信息中还只有四分之一是数字化的,其余的都保存在纸张、胶片和其他模拟介质上。但是由于数字数据数量的增长十分迅速——几乎每三年就翻一番,这种情形很快发生了逆转。如今,在所有存储信息中只有不到2%是非数字化的。
鉴于如此悬殊的比例,人们免不了在理解大数据的时候仅仅从数量上进行考虑。然而这将会产生误导。大数据的另一个特征是它能够用数据来表现世界的众多层面,而这些层面以往从来都没有被量化过——这种特征可以被称为“数据化”。例如,位置信息的数据化最早是由于经纬度的发明,而最近又有了GPS。当计算机对几个世纪内的书籍进行取样时,文字便成了被处理的数据。甚至连友谊和爱好也被数据化了——例如通过Facebook。
借助于廉价的电脑内存、高性能处理器、智能算法、聪明软件以及从基本统计学中借鉴来的数学知识,这样的一类数据正在被应用于难以置信的新用途中。这种新方法并不是试图“教会”计算机去从事驾驶或翻译这样的事情,而是要向计算机输入足够多的信息,从而使它们能够推断概率,例如交通指示绿灯亮、红灯不亮的概率,或者是在特定语境下“light”一词意为“光”而不是“轻”的概率。
以这种方式对大量数据加以利用,要求人们在三个方面彻底改变对数据的态度。第一是收集和使用大量数据,而不是像统计学家们在过去100多年里所做的那样,只满足于少量的数据或样本。第二是抛弃人们对有条理和纯净的数据的偏爱,转而接受杂乱无章——在越来越多的情形下,少许的不精确是可以容忍的。第三,在许多场合,人们需要放弃对事情原委的追究,而代之以对相关性的接纳。利用大数据,而不是试图弄懂发动机抛锚或药物副作用消失的确切原因,研究人员可以收集和分析大量有关此类事件的信息及一切相关素材,找出可能有助于预测未来事件发生的规律。大数据有助于回答是什么、而不是为什么的问题——通常有这样的回答就足够了。
互联网重塑了人类交流的方式。大数据则不同:它标志着社会处理信息方式的变化。随着时间的推移,大数据可能会改变人们思考世界的方式。随着人们利用越来越多的数据来理解事情和作出决定,人们很可能会发现生活的许多层面是随机的、而不是确定的。
从因果关系到相关性
人们看待数据的方式的两个变化——从局部变为全部以及从纯净变为凌乱——催生了第三个变化:从因果关系到相关性。这代表着告别总是试图了解世界运转方式背后深层原因的态度,而走向仅仅需要弄清现象之间的联系以及利用这些信息来解决问题。
加拿大的研究人员正在开发一种大数据手段,以便能在明显症状出现之前发现早产婴儿体内的感染。通过把包括心率、血压、呼吸和血氧水平等16种生命体征转化成每秒1000多个数据点的信息流,他们已经能够找到极其轻微的变化与较为严重的问题之间的相关性。最终,这项技术将使医生能够提前采取行动,从而拯救生命。
大数据所产生的影响将远远超出医学和消费品的范畴:它将深远地改变政府的运作方式和政治的性质。在推动经济增长、提供公共服务或进行战争等方面,那些能够有效利用大数据的人将拥有胜过别人的巨大优势。迄今为止,最令人兴奋的成果出现在市级,在这个级别上获取数据和利用这些信息进行实验要容易一些。纽约市长迈克尔·布隆伯格(他本人就是靠着数据行业发家的)率先进行了一项努力:该市正在利用大数据改善公共服务和降低成本。其中一个例子就是新的火灾预防策略。
非法在屋内打隔断的建筑物着火的可能性比其他建筑物高很多。纽约市每年接到2.5万宗有关房屋住得过于拥挤的投诉,但市里只有200名处理投诉的巡视员。市长办公室一个分析专家小组觉得大数据可以帮助解决这一需求与资源的落差。该小组建立了一个市内全部90万座建筑物的数据库,并在其中加入市里19个部门所收集到的数据:欠税扣押记录、水电使用异常、缴费拖欠、服务切断、救护车使用、当地犯罪率、鼠患投诉,诸如此类。接下来,他们将这一数据库与过去5年中按严重程度排列的建筑物着火记录进行比较,希望找出相关性。果然,建筑物类型和建造年份是与火灾相关的因素。不过,一个没怎么预料到的结果是,获得外砖墙施工许可的建筑物与较低的严重火灾发生率之间存在相关性。
利用所有这些数据,该小组建立了一个可以帮助他们确定哪些住房拥挤投诉需要紧急处理的系统。他们所记录的建筑物的各种特征数据都不是导致火灾的原因,但这些数据与火灾隐患的增加或降低存在相关性。这种知识被证明是极具价值的:过去房屋巡视员出现场时签发房屋腾空令的比例只有13%,在采用新办法之后,这个比例上升到了70%——效率大大提高了。
大数据的挑战和局限
大数据也正在帮助提高民主政府的透明度。一个建立在“开放数据”概念上的运动已经形成,其诉求超出了目前在发达民主国家已经十分常见的信息自由法。这一运动的支持者呼吁政府把手上浩如烟海的普通数据向公众开放。
与此同时,在政府推动使用大数据的同时,它们还需要保护公众免受不正当市场垄断的侵害。管理大数据的法规甚至可能成为国家间的角斗场。出于对反托拉斯和保护隐私的关切,欧洲各国政府已经在严查谷歌公司。脸谱网可能会成为世界各地类似行动的打击目标,因为它持有太多的个人数据。外交官们应该准备好围绕是否像对待自由贸易那样对待信息流动展开交锋。
大数据势必将改变人们生活、工作和思考的方式。建立在强调因果关系基础上的世界观正在受到推崇相关性的挑战。知识的占有曾经意味着对历史的了解,而现在却意味着预言未来的能力。解决大数据所带来的挑战将不是易事。
在决策越来越多地受到数据支配的世界里,人、直觉或是不顾事实的蛮干还有什么用武之地呢?如果每个人都求助于数据,都利用大数据工具的话,那么不可预测性——例如人类的本能、冒险、意外甚至失误——也许将会成为差异的关键。如果真是这样的话,那么需要专门为人为因素辟出一席之地——即为直觉、常识、运气留出空间,以确保它们不会被数据和机器生成的答案挤走。
这将对社会进步的观念产生重要影响。大数据使我们可以更快地进行实验,对更多的线索展开探索。这些优势应该会导致更多创新的产生。但在有些时候,发明的火花迸发是数据所无法表现的。倘若亨利·福特当初求助于大数据算法系统来研究顾客希望得到的东西,算法系统得到的答案会是“更快的马匹”,也就不会有福特著名的汽车生产线了。在大数据的世界里,需要培养的恰恰是与人类关系最密切的特性——创造力、直觉和上进心,因为人的聪明才智才是进步的源泉。
大数据是一种资源和一种工具。它的目的是告知,而不是解释;它意在促进理解,但仍然会导致误解——关键在于人们对它的掌握程度。人们必须以一种不仅欣赏其力量,而且承认其局限的态度来接纳这种技术。

Ⅱ 浅谈基于大数据时代的机遇与挑战论文

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

3.1 布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

3.2 提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

3.3 加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

3.4 优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

;

Ⅲ 大数据时代创新创业的三个方向和四大挑战

大数据时代创新创业的三个方向和四大挑战

大数据时代创新创业的三个方向和四大挑战【导语】从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性。如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意。基于大数据的创新创业面临的挑战,主要有四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发。二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动。第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养。
第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据时代创新创业的三个方向和四大挑战
——ADEC联手浙大、五叶草大数空间举办“大数据时代的创新创业实践与思考”研讨会
在大众创新、万众创业的热潮中,基于大数据的创业创新备受关注。12月17日,阿里数据经济研究中心(ADEC)、浙江大学管理学院、五叶草大数空间三者携手合作,邀请20余位浙大学者走入云栖小镇,在杭州这个创新创业的基地,聆听大数据创业创新实践者的感受,共同开展“大数据时代创业创新的实践和思考”的相关话题研讨。
三家大数据创新创业领域的企业数能科技、华院数据和洛可可公司的负责人给大家分享了他们的实践方向、面临挑战以及心得体会。在分享结束后,就大家关注的话题分组讨论的环节受到参会企业以及研究者们的欢迎。
三个方向和四大挑战
浙江大学管理学院教授刘渊老师在分享中提到,从传统互联网的人机互联,人人互联,到工业互联网的物物互联,人机物三种端各自互联,才带来大数据的产生,利用云进行大数据的存储和计算,实现数据的融合和服务,数据从哪里来,到哪里去,数据如何关联,如何找到市场需求实现价值是关键。

图为浙江大学管理学院教授刘渊
以浙江大学郭斌老师为组长的小组认为大数据创新创业的商业模式有三个方向(Analytics , Data, Services ,ADS)值得关注,其中A相当于为企业提供数据的计算分析能力;第二类D是提供数据为主,要做有效的决策背后所使用的数据可能来源于多个数据源,可以集聚数据成为运营的资源;第三类S相当于提供基于数据的服务,这种服务要嵌入到企业运营的业务流程。
以郑刚老师为代表的小组总结了基于大数据的创新创业面临的挑战,主要有以下四个方面:一是拿到可以利用的数据比较难,目前不少创业公司都是基于互联网上公开的数据在进行应用开发,二是大数据应用可能威胁到企业中传统的角色地位甚至生存,这就涉及到与传统利益的冲突,因此大数据应用推广需要一把手牵头推动;第三个瓶颈是人力资源,不管美国还是中国大数据人才非常紧缺,包括数据科学家和数据分析师,这些人才需要高校和企业一起合作来进行培养;第四关于投资的难度加大,需要有更多大数据商业应用成功的项目和例子来引领投资的方向。
大数据创新创业的三个实践
数能科技:数据分析老兵的创业之路
数能科技的总经理张晓明先生在国外有20多年的数据分析的经验,他在分享中谈到,美国的大数据指的是用常规方法无法处理的数据,比如音频、视频等数据,而中国的大数据实际上是大数据+小数据,以电影行业为例,通常都是数据采集后转化为小数据来进行统计分析和数据挖掘。

图为数能科技的总经理张晓明
张总认为,中国发展大数据面临三大挑战:一是数据孤岛现象严重,二是行业知识缺乏,在业务、技术和行政人员三方面沟通比较困难,跨学科的沟通以前比较缺乏,使得整个行业发展在应用层面的发展不快,三是过去中国的发展是粗旷式的,哪有机会往哪跑,现在是精细化管理,进行资源的优化配置,而政府官员对这种需求的优先级不高。
在大数据的商业模式方面,张总认为,数据采集加工的跑马圈地已入中盘,数据分析与应用的商业模式才刚刚开盘,而这需要模式具备可持续性和可扩展性,其中人才也是发展的一个瓶颈,尤其欠缺具备硬实力和软实力的数据分析师,尤其是软实力方面对于理工科学生来说更难,软实力主要指的是沟通、好奇心和业务理解力。
数能科技开发的“电影票房预测”应用和“电影排片宝”应用都是典型的基于数据的新应用,电影票房预测每天早晨9点半会发布当天的票房预测结果,希望成为全国以及各个城市电影票房的预测风向标,为发行人进行精准营销提供依据,“电影排片宝”应用通过收集来自媒体、影院的历史数据、网上售票的预售数据等信息为各大影院排片提供建议。这种应用场景还可以衍生到客流预测与资源优化管理,比如在旅游景点、大型超市等。
华院数据:数据分析人才基地的孵化新模式
国内专业的数据分析挖掘人才有很多都来自于华院数据,来自华院数据的执行总裁麦星在分享“华院数据——产业大数据生态的深度孵化器”的主题时谈到,华院数据目前聚焦是以大数据行业解决方案为核心,基于自己多年的技术积累,提供数据互联、人工智能引擎等核心能力和产品,融入于垂直行业,在各行业孵化出独立、专注、聚焦的大数据子公司。

图为华院数据的执行总裁麦星
目前已经孵化了数云、数创、数尊、华院分析等多家大数据+电商、零售、O2O、运营商的创业公司,这些创业公司形成产业大数据的生态,比如数云科技是电商数据应用的创业公司,为阿里巴巴平台上的商家提供CRM解决方案,连续三年都是金牌淘拍档。
洛可可:传统工业设计公司的大数据创新转向消费者为中心
洛可可作为一家工业设计公司,它所推出的一款55度杯子一上市就备受欢迎,杭州分公司负责人夏治朋在分享时提到,如今时代变了,以前以企业为核心的理念转向以消费者、以用户为核心的理念,以前的设计在进行创意时以往主要靠拍脑袋决策,如今需要数据的支持和支撑来指导创意,而且数据不仅是B端的需求,更重要的需要最终消费者的需求,让创意和设计更加精准。

图为洛可可杭州分公司总经理夏治朋
以前的产品只有功能,现在的产品还要有服务、有情感,产品具备智能的基础需要有大数据,现在的产品大都是软硬件结合的,同时还有app,从而了解用户的行为和习惯,通过App端数据的抓取来获知用户的行为和习惯,从而改变创意和设计,使得用户感知到产品是为之定制的。
大数据的创新创业刚刚开始
在信息经济发展迅猛的今天,随着数据扮演生产要素的角色,云计算发挥公共计算基础设施的作用,数据的开放、共享与流动成为可能,数据的融合激发新的生产力。与以往任何一个时代相比,大数据时代的创业创新将拥有更多的机会、更大的空间。虽然现阶段我国数据相关的法规政策尚不完善,基于数据的创业创新实践尚在探索阶段,业务和服务模式还不成熟,不确定性正意味着更多机会,因此我国不断涌现出企业进行基于大数据的新模式的尝试和探索。阿里数据经济研究中心(ADEC)期待与更多学界研究者进行深入合作,共同推动中国数据经济的良性快速发展。

Ⅳ 互联网大数据对我们职业生涯有什么机遇和挑战吗

这个大数据对我们的职业生涯机遇大于挑战,是非常有指导意义的

Ⅳ 我国大数据战略实施面临的五大挑战

我国大数据战略实施面临的五大挑战
一、我国实施国家大数据战略的新成效
近几年,在国家政策支持下,我国大数据战略取得多方面成效:
一是产业集聚效应初步显现。国家八个大数据综合实验区建设促进了具有地方特色产业集聚。京津冀和珠三角跨区综合试验区,注重数据要素流通;上海、重庆、河南和沈阳试验区,注重数据资源统筹和产业集聚;内蒙的基础设施统筹发展,充分发挥能源、气候等条件,加快实现大数据跨越发展。
二是新业态新模式不断涌现。我国在大数据应用方面位于世界前列,特别是在服务业领域,如基于大数据的互联网金融及精准营销迅速普及;在智慧物流交通领域,通过为货主、乘客与司机提供实时数据匹配,提升了物流交通效率。

三是与传统产业融合步伐加快。铁路、电力和制造业等加快了运用信息技术和大数据的步伐。高铁推出“高铁线上订餐”等服务,提升了乘客体验。电力企业推广智能电表,提高了企业利润。三一重工、航天科工、海尔等一批企业将自身积累的智能制造能力,向广大中小企业输出解决方案,着手建设工业互联网平台。
四是技术创新取得显著进展。互联网龙头企业服务器单集群规模达到上万台,具备了建设和运维超大规模大数据平台的技术实力,并以云服务向外界开放自身技术服务能力和资源。在深度学习、人工智能、语音识别等前沿领域,我国企业积极布局,抢占技术制高点。
五是产业规模快速增长。2016年我国包括大数据核心软硬件产品和大数据服务在内的市场规模达到3100亿元。预计2017年有望达到4185亿元。未来2-3年市场规模的增长率将保持在35%左右。未来5年,年均增长率将超过50%。
六是一批企业快速成长。主要分为三类:一类是已经有获取大数据能力、具有一定国际影响力的公司,如网络、腾讯、阿里巴巴等互联网巨头;二是以华为、浪潮、中兴、曙光、用友等为代表的电子信息通信厂商;三是以亿赞普、拓尔思、九次方等为代表的大数据服务新兴企业。
七是法治法规建设全面推进。先后制定和出台《全国人大常委会关于加强网络信息保护的决定》《全国人大常委会关于加强网络信息保护的决定》《电信和互联网用户个人信息保护规定》《电话用户真实身份信息登记规定(部令第25号)》《中华人民共和国网络安全法》等文件,保障用户隐私和合法权益。
二、我国实施国家大数据战略面临的挑战
一是数据权属不清晰,数据流通和利用混乱。大数据带来了复杂的权责关系,产生数据的个人、企业、非政府组织和政府机构,拥有数据存取实际管理权的云服务提供商和拥有数据法律和行政管辖权的政府机构,在大数据问题上的法律权责不明确,数据产权承认和保护存在盲点,阻碍了数据有效流通。
二是数据爆炸式增长与数据有效利用矛盾突出。当前面临的问题不是数据缺乏,而是数据快速增长与数据有效存储和利用之间矛盾日益突出。数据呈爆炸式增长,每两年数据量翻10倍,而摩尔定律已接近极限,硬件性能提升难以应对海量数据增长。
三是企业与政府数据双向共享机制缺乏。目前,我国政府、少数互联网企业和行业龙头企业掌握了大部分数据资源,但数据归属处于模糊状态,法律规定不明确,政府与企业数据资源双向共享不够。
四是发展一哄而上,存在过度竞争倾向。截止2017年1月,全国37个省、市出台大数据发展规划,90%提出要统筹建设政府和行业数据中心,有12个省市提出建设面向全国的大数据产业中心,有14省(市)合计产值目标过2.8万亿元,远远超过工信部提出到2020年1万亿元大数据产值发展目标。
五是安全问题日益凸显。截至2017年7月,全国共侦破侵犯公民个人信息案件和黑客攻击破坏案件1800余起,抓获犯罪嫌疑人4800余名,查获窃取的各类公民个人信息500多亿条。乌克兰电力系统和伊朗核设施遭遇网络攻击,也给我国电力、石油、化工、铁路等重要信息系统安全敲响了警钟。
三、 更好实施我国国家大数据战略政策建议
按照十九大精神,要着力推动大数据与实体经济深度融合,建设数字中国和智慧社会,实现网络强国的目标,需要从政府、企业、社会组织和个人等统筹推动国家大数据战略落实。
(一)完善机制与制度,更好发挥政府作用。在体制机制方面,建议设立由国务院领导担任组长的国家大数据战略领导小组,负责组织领导、统筹协调全国大数据发展。领导小组下设办公室和大数据专家咨询委员会。
在法规建设方面,加快制定《大数据管理条例》,鼓励行业组织制定和发布《大数据挖掘公约》和《大数据职业操守公约》,在条件成熟时启动《数据法》立法,明确数据权属,培育大数据市场,加快数据作为生产要素规范流通。
在产业政策方面,出台数字经济优惠政策,创新数字经济监管模式,加强重点人群大数据应用能力培训,创造更多就业。
在试点示范方面,在环境治理、食品安全、市场监管、健康医疗、社保就业、教育文化、交通旅游、工业制造等领域开展大数据试点应用,以点带面提升大数据应用能力。
在资源共享方面,按照“逻辑统一、物理分散”原则,通过建设国家一体化大数据中心和国家互联网大数据平台,探索政府与企业数据资源双向共享机制。
在发展环境方面,着力部署下一代新基础设施,加快我国信息基础设施优化升级,制定政府大数据开发与利用的“负面清单”“权力清单”和“责任清单”,建立统计和评估指标体系,营造良好的舆论环境,防止炒作大数据概念,引导全国大数据健康有序发展。
在数据安全方面,加快落实《中华人民共和国网络安全法》,建立国家关键基础设施信息安全保护制度,明确监管机构的关键基础设施行业主管部门的信息安全监督管理职责,加快推动国产软硬件的应用推广,提升安全可控水平。
(二)对企业分类施策,发挥市场资源配置决定性作用。一是发挥互联网龙头企业引领和带动作用。网络、腾讯、阿里、京东为代表的龙头企业技术和人才储备雄厚,具有强大的数据资源收集、存储、计算和分析能力,成为我国大数据技术进步的主要推动力。应像使用电、水、交通等传统基础设施一样,互联网龙头企业向各行业提供高性能和低成本的大数据服务,帮助传统企业提升效率,提升核心竞争力。
二是发挥重要行业龙头企业数据和用户优势。我国电力、交通、金融等诸多行业龙头集聚了海量用户和数据,是未来我国大数据战略实施的主战场和大数据价值真正“钻石矿”。应发挥铁路、电力、金融等重要行业龙头企业优势,通过与互联网龙头企业深度合作,利用其技术优势,深度挖掘数据资源,提升自身核心竞争力,并帮助中小企业发展。
三是发挥通信运营商生力军作用,为大数据发展提供基础性战略性资源。我国移动、电信、联通等拥有全球最多的电话用户,积累了海量数据,是我国信息社会的战略性资源。应充分发挥自身在网络方面的优势,推动移动互联网、云计算、大数据、物联网等与行业结合,助力智慧城市、交通、能源、教育、医疗、制造、旅游等行业的创新和发展。
(三)激发社会组织活力,构建新型协作关系。构建政府和社会组织互动的信息采集、共享和应用协作机制,提高社会组织大数据应用意识和能力,与具有大数据技术的企业合作,提高社会事业精准化水平和资金使用效率。针对发展需要、重视科技引领,整合广大科研机构和事业单位力量,加强大数据基础理论、方法和技术研究,推动关键技术突破。
(四)提升公民数据意识和能力,推动“数字公民”建设。通过给每位公民一个数字身份,方便公民获取个性化、智慧化精准服务,提高政府公共服务的精准度与实效性,推动社会治理向精细化、智慧化转变。要提高公民数据素养,增强公民数据权利意识,提高大数据应用能力。

Ⅵ 大数据带来的挑战有哪些 会导致数据盲点 危及个人隐私

随着移动互联网、物联网等新技术的迅速发展,人类进入数据时代。大数据带来的信息风暴正深刻改变我们的生活、工作和思维方式,对网络舆情管理也带来深刻影响。 一、大数据时代网络舆情管理面临的新形势大数据意味着人类可以分析和使用的数据大量增加,有效管理和驾驭海量数据的难度不断增长,网络舆情管理面临全新的机遇和挑战。 互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。1.大数据带来网络舆情管理新挑战。一是海量数据的挑战。海量的网上信息难以掌控,大量相关性、偶发性因素使舆情更加复杂多变,传统的舆情监测研判手段和方法难以奏效,新的技术手段和方法要求更高。二是信息选择性传播的挑战。网上数据无限性和网民关注能力有限性之间的矛盾,加剧了社会舆论的“盲人摸象”效应。社会化媒体促进信息的开放和沟通的便捷,分众传播、个性化传播凸显,使偏激的观点更容易找到“同类”,从而相互支持、强化放大,加剧舆论偏激情绪。三是舆论话语权分散的挑战。大数据时代各类数据随手可得,越来越多的机构、个人通过数据挖掘和分析得出的各种结论会不胫而走,有效管理舆情的难度越来越大。2.大数据带来网络舆情治理新机遇。一是拓展网络舆情治理领域。在“一切皆可量化”的大数据浪潮中,网络逐渐成为现实世界的“镜像”,网络社会与现实社会日益融为一体,网络舆情管理不再局限于网上言论领域,而必须全面掌握网络舆情运行规律及其与现实社会的相互影响,实现网上网下充分联动、协调共治。二是丰富网络舆情管理手段。运用大数据技术,可以从更宽领域、更长时段对网上舆论进行比对分析,更加准确地把握网民情绪特点,预判舆情发展趋势,提高舆情管理的效能。三是推动网络舆情理论研究工作。借助大数据分析,舆情研究的视角将更加多元化和精确化,改变目前舆情研究“策为上、术为主、学匮乏”的尴尬学术现实。3.大数据提出网络舆情管理新要求。一是由关注个案向整体掌控转变。传统的网络舆情管理侧重于针对重大舆情事件个案的管理,大数据则能够更好地把握网络舆情发展的整体态势。二是由被动响应向主动预测转变。大数据的核心是预测,在海量的数据中通过分析,发现背后隐藏的微妙的关系,从而预测未来的趋势,提前部署预防应对。三是由定性管理向定量管理转变。将所有相关信息,包括网民评论、情绪变化、社会关系等,以量化的形式转化为可供计算分析的标准数据,通过数据模型进行计算,分析舆情态势和走向。 二、用大数据思维创新网络舆情管理创新大数据时代的网络舆情管理,要将大数据理念和手段贯穿始终,做到“五个结合”。1.将大数据和社会治理紧密结合起来,改进网络舆情源头治理。网络舆情本质上是社情民意的体现,加强网络舆情管理就是加强社会治理。要运用大数据强大的“关联分析”能力,构建网络舆情数据“立方体”,把网上网下各方面数据整合起来,进行分析,挖掘网络舆情和社会动态背后的深层次关系,实现网络舆情管理和社会治理的紧密联动、同步推进。2.将大数据和网上政务信息公开紧密结合起来,提升政府公信力。当前,美国政府已经建立统一的数据开放门户网站,并提供接口供社会各界开发应用程序来使用各部门数据,此举将政务公开从“信息层面”推进到“数据层面”,开辟了政府信息公开的新路径。我们要在保障数据安全的基础上,探索建立我国的大数据政务公开系统,引导社会力量参与对公共数据的挖掘和使用,让数据发挥最大价值。3.将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。美国纽约市警察局开发了著名的ComStat系统,通过分析历史数据绘制“犯罪地图”,预测犯罪高发时间和地点,从而有针对性地加强警力配置,获得巨大成功。这种“数据驱动”方法,对网络舆情管理有一定的借鉴意义。要运用大数据突破传统舆情管理的狭窄视域,建立网络舆情大数据台账系统,实时记录网站、博客、微博、微信、论坛等各个网络平台数据,全面分析舆情传播动态,从瞬息万变的舆情数据中找准管理重点、合理配置资源,提高管理效能。4.将大数据和突发事件应对紧密结合起来,提高网络舆情应急处置能力。大数据时代,社会突发事件与互联网总是紧密相连、如影随形,网络既能成为突发事件的“助燃剂”,也能够成为应对事件的有力工具。要建立“舆情量化指标体系”、“演化分析模型”等数据模型,综合分析事件性质、事态发展、传播平台、浏览人数、网民意见倾向等各方面数据,快速准确地划分舆情级别,确定应对措施,解决传统的舆情分级中存在的随意性、滞后性等问题,做到科学研判、快速处置。5.将大数据和舆论引导紧密结合起来,提高感染力和说服力。大数据时代的舆论引导,一方面要“循数而为”,通过分析网上数据,建立网民意见倾向分析模型,了解网民的喜好和特点,做到“善说话、说对话”。另一方面要“用数据说话”。数据最有说服力,要在充分收集相关数据的基础上,运用图表等数据可视化技术,全面呈现事件的来龙去脉,让网民既了解事件真相,也了解事件背景和历史脉络,消除舆论的“盲人摸象”效应,化解网民偏激情绪,实现客观理性。 三、以切实有力的举措推进大数据舆情管理体系建设要积极适应大数据时代发展要求,从体制机制、技术手段、人才队伍等各个方面加快创新,构建完善的网络舆情管理体系,不断提升网络舆情管理的科学化、现代化、数字化水平。1.健全大数据舆情管理体制。数据资源是国家的重要战略资源。当前,我国在大数据管理方面还存在数据分散、利用率低、安全性不高等问题,要尽快出台国家层面的大数据战略规划,加快数据立法进程,加大资金、技术、人力资源投入。建议建立由网信部门牵头的互联网大数据管理体制,设立政府首席信息官,统筹各方面数据的汇集、管理和利用,制定统一的数据接口标准,打破各行各业的“数据孤岛”,推动我国大数据加快发展。2.建设网络舆情大数据基础平台。数据只有整合利用才能产生价值。当前,亟需建设统一高效的大数据基础平台,实现各行业、各领域数据的统一存储、交流互通。要尽快建设我国网络数据中心,构建国家级的互联网大数据平台,全面汇集各方面数据。加快出台相关法律法规,明确各级各部门包括政府部门、企业、人民团体等向网络数据中心提供和共享数据的权利义务,使网络数据中心成为全国数据存储和交换的中心枢纽,实现数据的快速汇集、规范管理、高效利用。3.强化网络舆情管理大数据技术支撑。大数据既有全面、动态、开放等优势,也有价值密度低、传播速度快等难点,必须加快技术攻关,提高数据“沙里淘金”的能力。一是数据监测技术,实现对媒体、论坛、博客、微博、微信等各个网络平台数据的全面抓取和记录,特别是要提高对图片、音视频等数据的自动识别能力。二是大规模数据存储技术。建设具有海量存储能力的大数据平台,实现对大规模数据的高效读写和交换。三是数据挖掘技术,从海量数据中快速识别有价值数据,并挖掘数据背后隐藏的规律。四是数据分析技术,包括关联分析、聚类分析、语义分析等等,自动分析网上言论蕴含的意见倾向及相互之间的关联性,揭示舆情发展趋势。五是数据安全技术,包括身份验证、入侵检测、网络关防等等,保障数据安全。4.壮大网络舆情大数据人才队伍。要统筹国内各大高校、科研单位、媒体机构、政府部门力量,开设专门的数据科学学科,加强各学科人才的交叉培养,重点培养综合掌握统计学、计算机学、新媒体、传播学等各方面知识的复合型人才,打造一支规模宏大的大数据人才队伍,为网络舆情管理提供坚实的人才智力支撑。

Ⅶ 大数据技术的出现给地理信息系统带来哪些机遇和挑战

机遇是,通过结合大数据,gis可以更好地研究区域的时空变化,以及全国乃至全球的时空变化,也可以研究多指标耦合影响下的时空变化。挑战就是,技术可能更难实现。

Ⅷ 大数据时代的挑战、价值与应对策略

大数据时代的挑战、价值与应对策略
随着移动互联网、物联网、云计算等的快速发展,及视频监控、智能终端、应用商店等的快速普及,全球数据量出现爆炸式增长。在此背景下,电信运营商在其网络无休止扩容的同时,却面临“增量不增收”的困境;而一些采用“数据驱动型决策”模式经营的公司,则可将其生产力提高5%~6%。因此,有必要深入研究大数据时代(Big Data Era)的挑战、价值与务实应对策略。
1大数据时代的基本特征
据统计,2010年以互联网为基础所产生的数据比之前所有年份的总和还要多;而且不仅是数据量的激增,数据结构亦在演变。Gartner预计,2012年半结构和非结构化的数据,诸如文档、表格、网页、音频、图像和视频等将占全球网络数据量的85%左右;而且,整个网络体系架构将面临革命性改变。由此,所谓大数据时代已经来临!
对于大数据时代,目前通常认为有下述四大特征,称为“四V”特征:
(1)量大(Volume Big)。数据量级已从TB(1012字节)发展至PB乃至ZB,可称海量、巨量乃至超量。
(2)多样化(Variable Type)。数据类型繁多,愈来愈多为网页、图片、视频、图像与位置信息等半结构化和非结构化数据信息。
(3)快速化(VelocityFast)。数据流往往为高速实时数据流,而且往往需要快速、持续的实时处理;处理工具亦在快速演进,软件工程及人工智能等均可能介入。
(4)价值高和密度低(Value HighandLowDensity)。以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。
2大数据时代面临的挑战
(1)运营商带宽能力与对数据洪流的适应能力面临前所未有的挑战,管道化压力化解及“云-管-端”的有效装备也均面临新挑战。
(2)大数据的“四V”特征在数据存储、传输、分析、处理等方面均带来本质变化。数据量的快速增长,对存储技术提出了挑战;同时,需要高速信息传输能力支持,与低密度有价值数据的快速分析、处理能力。
(3)海量数据洪流中,在线对话与在线交易活动日益增加,其安全威胁更为严峻;而且现今黑客的组织能力、作案工具、作案手法及隐蔽程度更上一层楼,典型的有APT(Advanced Persistent Threat,高级持续性安全威胁)。
(4)大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,乃至企业用户的商业机密,对个人隐私问题必须引起充分重视。
(5)大数据时代的基本特征,决定其在技术与商业模式上有巨大的创新空间,这将对可持续发展起关键作用。
(6)大数据时代的基本特征及安全挑战,对政府制订规则与监管部门发挥作用提出了新的挑战。
3大数据带来的价值
(1)利用大数据特征,借助云计算等有效工具,深度挖掘流量与数据价值,可帮助运营商实施好流量经营,减轻管道化风险,发扬“云-管-端”的智能管道的威力。
(2)多业务环境下掌握用户体验效果尤为重要,可从海量用户数据中深度分析、挖掘出用户的行为习惯和消费爱好,以实施精准营销及网络优化,掌控数据增值的“金钥匙”。
(3)掌握好大数据的存储、分类、挖掘、快速调用和决策支撑,并应用于企业的日常运营、维护及战略转型中,成为企业可持续发展、维持竞争优势的当务之急与重要途径。
(4)充分利用对大数据的分析、挖掘,可帮助找到隐蔽性极强的APT之类的安全威胁,助力信息安全部门找到应对新型安全威胁的有效途径。
(5)通过对公共大数据的分析、挖掘与利用,可减少欺诈行为及错误数据的负面作用、追收逃税漏税及刺激公共机构生产力等,帮助政府节省开支。例如英国政府即通过此途径节省大约330亿英镑/年。
4大数据时代的应对策略
(1)大数据时代应以智慧创新理念融合大数据与云计算,在大数据洪流中提升知识价值洞察力,实施高效实时个性化运作,建立有效增值的商业模式,确保应对APT之类的新型安全威胁。
(2)电信运营商转型中流量经营已成共识,即以智能管道与聚合平台为基础,以扩大流量规模、提升流量层次及丰富流量内涵作为基本经营方向,并以释放流量价值为基本目标,可见大数据和云计算的深度融合与此流量经营目标十分吻合。实际上已经有一些运营商借助大数据Hadoop云工具管理与分析网络中的用户数据,为日常运维及制定市场战略等提供有效支撑。
(3)针对大数据时代的基本特征,加强全方位创新。包括IBM、EMC、HP、Microsoft等在内的IT巨头,纷纷加速收购相关大数据公司进行技术整合,寻找数据洪流大潮中新的立足点。而涉及人工智能、机器学习等新技术的创新应用,已初显效益。
(4)将大数据时代全方位创新工作和智慧城市发展紧密结合。借助移动互联网、大数据与云计算的融合、智能运营管道等,建立智能平台,优化配置城市资源,向真正的智慧城市迈进。
(5)借助大数据创新处理技术应对APT安全攻击。APT安全攻击的最主要特征为单点隐蔽能力强、攻击空间路径不确定、攻击渠道不确定;同时APT攻击一旦入侵成功则长期潜伏,攻击时间上具有持续性。目前,全流量审计方案具备强大的实时检测能力与事后回溯能力,并可将安全工作人员的分析能力、计算机存储与运算能力组合在一起,是一种较完整的解决方案。

Ⅸ 当代大学生应该如何应对“大数据”带来的机遇与挑战

大数据,或称巨量资料,是指所涉及的资料量规模巨大,以致无法通过目前主流软件工具在合理时间内撷取、管理、处理并整理成为帮助企业达致经营决策目的的资讯。大数据技术不仅能够提高人们利用数据的效率,而且能够实现数据的再利用和重复利用,进而大大降低交易成本,提升人们开发自我潜能的空间。人们可以低成本或零成本进行事物信息全息式的纵向历史比对和横向现实比对。大数据技术自身不仅能够迅速衍生为新兴信息产业,还可以同云计算、物联网和智慧工程技术联动,支撑一个信息技术的新时代。

云计算、物联网、大数据、智慧工程都是新一代信息技术。云计算技术是一种按使用量付费的模式,这种模式可以提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算技术可以使人们及时利用各类大数据。物联网技术的实质就是物物相连的互联网,物联网的核心和基础仍然是互联网,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网技术可以溯源大数据和保证信息的真实性。智慧工程就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,并且进行普遍连接,与现有的互联网整合起来,实现人类社会与物理系统的整合。智慧工程可以激活沉寂的大数据。

阅读全文

与大数据与科技新挑战相关的资料

热点内容
编程用苹果 浏览:659
51虚拟机的文件管理在哪里 浏览:13
win10系统有没有便签 浏览:722
java引用传递和值传递 浏览:109
oracle下载安装教程 浏览:854
php筛选数据库 浏览:830
怎么用手机看wlan密码 浏览:745
奥维地图导入的文件在哪里 浏览:364
sdltrados2014教程 浏览:43
培训制度文件在哪里找 浏览:601
勒索病毒防疫工具 浏览:861
win10c不能打开 浏览:375
xfplay影音先锋苹果版 浏览:597
两个文件打开两个word 浏览:921
苹果6s桌面图标轻微抖动 浏览:326
如何删除手机中看不见的临时文件 浏览:469
安卓412原生锁屏apk 浏览:464
书加加缓存文件在哪里 浏览:635
dock是word文件吗 浏览:267
社保公司新办去哪个网站下载资料 浏览:640

友情链接