⑴ 供应链大数据的类型
供应链中的大数据主要包括以下四种类型:结构数据、非结构数据、传感器数据、新类型数据。
1、结构数据是指那些在电子表格或是关系型数据库中储存的数据,这一类型的数据只占数据总量的5%左右,主要包括交易数据和时间段数据。
现在的大数据分析大多以这一类数据为主,其中重要的结构数据包括ERP数据,因为ERP系统中存储的数据是企业运转多年的系统积累的大量行业数据,这些数据对于企业的经营决策和预测来说意义非常重大。
2、非结构数据主要包括库存数据、社会化数据、渠道数据以及客户服务数据。尽管现在有大量的研究和报告在探讨数据和分析能力对供应链管理的重要性,但对于非结构数据,例如社会化数据对供应链的影响和作用的研究却相对缺乏。
然而,社会媒体数据对于供应链运营管理的作用是十分重要的,如何利用社交媒体数据来指导企业进行供应链活动的规划(包括新产品的开发、利益相关者的参与、供应链风险管理以及市场探查等)以及社交媒体数据对供应链绩效产生影响的具体机制将需要深入探讨。
而要想从内容丰富的非结构化数据中挖掘出商业智慧,就需要使用不同的研究方法和度量方式,包括描述性分析、内容分析以及网络分析等。
3、传感数据主要包括RFID数据、温度数据、QR码以及位置数据,这类数据增长很快,并能为供应链金融带来巨大商机。
4、新类型数据主要有地图数据、视频数据、影像数据以及声音数据等,这类数据多用于可视化领域,并能够帮助提高数据质量,使数据的实时性更强、提高了数据分析的精准度。
大数据的质量
企业在进行大数据分析时,需要考虑数据的质量问题。低质量的数据不仅会影响企业的决策,甚至还可能导致企业产生损失。事实上,数据的有用性取决于数据质量,随着大数据重要性的跃升,对高质量数据的需求也增加了。
虽然现在对于数据质量评价还没有统一标准,但是大家一致赞同数据质量评价应包含多个维度指标。指出数据质量的评价应包括数据内在(Intrinsic)要求和情境(Contextual)要求。内在要求指数据本身所具有的客观属性,包括数据的准确性、及时性、一致性和完整性。
情境指数据的质量依赖于数据被观察和使用的情境,包括关联性(Relevancy)、价值增值性(Value-added)、总量(Quantity)、可信度(Believability)、可及性(Accessibility)、数据声誉(ReputationoftheData)。
⑵ 什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用
什么和大数据随之在整个供应链中被广泛应用,在数字化时代,数据分析逐步成为从业人员的必备技能之一。所以我们应该注重做好数据分析。那么什么和大数据随之在整个供应链中被广泛应用?
大数据时代对采购和供应链带来的挑战和机遇
1、大数据时代及其特征
大数据(Big Data)是指所涉及的规模巨大的数据。随着时代的不断进步以及科技的飞速发展,互联网、物联网、移动通讯、管理信息化、电子商务等技术不断相互渗透,并作用到国家、企业和民生的方方面面,今天,人们用大数据来描述和定义信息爆炸时代产生的海量数据,以及在合理时间内达到撷取、管理、处理、并整理成为帮助人们处理事务和决策等更积极目的的资讯与知识。
美国互联网数据中心指出,互联网上的数据每年将增长50%,每两年便将翻一番,而目前世界上90%以上的数据都是最近几年才产生的。2020年,全世界所产生的数据规模将达到今天的44倍。从这些数据每天增加的数量来看,世界目前已进入大数据时代。
大数据时代凸显了数据资源的重要意义。2012年奥巴马政府宣布投资2亿美元拉动大数据相关产业的发展,将“大数据战略”上升为国家战略,将大数据定义为“未来的新石油”,把对数据的占有和控制视为陆权、海权、空权之外的另一种国家核心资产。2013年,法国政府发布了其《数字化路线图》,列出了将会大力支持的5项战略性高新技术,“大数据”就是其中一项。
2012年,日本总务省发布2013年行动计划,明确提出“通过大数据和开放数据开创新市场”。联合国在2012年发布的大数据政务白皮书中指出,大数据对于联合国和各国政府来说是一个历史性的机遇。我国也将大数据产业看作为战略性产业,成立了“大数据专家委员会”。
在“大数据”2014年十大趋势预测中,包括了数据商品化与数据共享联盟化,大数据生态环境逐步发展等内容。同时,大数据专家委员会预测,2014年大数据在互联网和电子商务、金融(股市预测、金融分析)、健康医疗(流行病监控和预测等)、生物信息、制药等方面将会有令人瞩目的应用。
大数据时代是大数据价值充分发挥的时代。据赛门铁克公司的调研报告,全球企业的信息存储总量已达2.2ZB(1ZB=1024EB,1EB=1024PB),年增67%。世界上每分钟产生1700TB 的数据,但是吸引我们的不仅仅是这个庞大的数字本身,而是我们如何利用这些数据做些什么。
大数据可以运用到各行各业,在宏观经济方面,IBM日本公司建立经济指标预测系统,从互联网新闻中搜索影响制造业的480项经济数据,计算采购经理人指数的预测值;印第安纳大学利用谷歌公司提供的心情分析工具,从近千万条网民留言中归纳出六种心情,进而对道琼斯工业指数的变化进行预测,准确率达到87%;
在制造业方面,华尔街对冲基金依据购物网站的顾客评论,分析企业产品销售状况;一些企业利用大数据分析实现对采购和合理库存量的管理,通过分析网上数据了解客户需求、掌握市场动向,等等。
据麦肯锡公司测算:大数据将给美国医疗服务业带来3000亿美元的价值,使美国零售业净利润增长达到60%,使制造业产品开发、组装成本下降50%,而大数据所带来的新需求,将推动整个信息产业的创新发展;根据经济与商业研究中心的最新研究,大数据将为英国经济增加2160亿英镑(约合3467亿美元)以上的潜在收益。
2、大数据时代对采购和供应链带来的挑战和机遇
首先,商务环境和商务模式变得越来越复杂,且更加动荡、多样和个性化。其二,电子商务业务模式的飞速发展打破了国家疆界,使得跨境业务速增、商业活动频繁,同时伴随着数据量的剧增。。其三,大数据应用处理成为企业和社会竞争发展的重要焦点。其四,有效挖掘大数据成为时代面临的重要课题。最后,许多企业对大数据的重要性认识不足,没有充分了解其价值。
供应链管理中,及时和准确的数据,为什么如此重要?
1 、供应链中数据的类型
数据有许多类型,其中有一种分类方法是把它分为静态和动态数据,前者包括了公司基本信息、产品型号、采购价格、BOM等等相对固定的信息。
后者主要是一些交易性的信息,比如生产线每日的产量、客户订单数量、仓库实际收货数量、运输所在位置等等变动的信息。
静态数据做到准确即可,没有实时性的要求,比如公司的名称一般不会发生变动,只需要确保公司地址、法人和开户银行等信息是正确的。
动态数据的要求就很高了,不仅要准确,还要能反映出每时每刻的实际情况。
大家都有网购的经验,在商品出库以后,快递公司会每隔一段时间刷新包裹所在位置,这是通过车载GPS定位实现的,然后根据卡车配送计划,大致上能给出派送的时间。通过一台卡车上的GPS,可以跟踪整车的货物,这是1对N的关系,因此实现动态数据的成本并不高。
离散型制造业的情况就复杂多了,一件商品需要从原材料供应商开始追溯,进入工厂以后,需要经过若干个不同生产加工中心,然后完成组装、检验,最终才能入库,配送给下游的经销商或零售商。
我们很少会在原材料上放置追踪】定位装置,除非这批货物价值很高,或是有这方面的强制监管要求,比如药品。
如果想要跟踪生产进度,就需要使用工业4、0的技术,在每台设备上装传感器,完成加工后,系统自动上传数据。如果要在每台生产和内部搬运设备上都安装传感器,对于一家工厂来说负担太大,性价比不高,除了少数的行业标杆企业以外,对于大多数工厂来说,想要做实时数据的想法并不强烈。
2、 为什么供应链需要及时和准确的数据?
话虽如此,供应链对于数据及时和准确性是有很强的需求的,因为我们要在所有的生产、分销、采购和售后服务之间建立数据的无缝链接。除此之外,还有两个关键因素使得我们必须获得及时和准确性。
2、1增强供应链可视性
对于供应链上的玩家来说,关键的可视性问题包括了货物的预计生产出货时间,比如供应商承诺了30天交货,但是实际上他需要45天,因为一些原材料涨价了,供应商需要更多的时间在市场上找到货源,他不愿意买更贵的原料,因为这会增加成本,除非客户愿意接受供应商的调价请求。
原料和零部件库存的所处位置也属于可视性,客户需要根据这些信息,来安排后续的生产和销售计划,并且非常依赖于信息的准确性。当供应商承诺货物将会在某日送到客户工厂后,供应链就把这个信息输入系统,并以此为依据来制定生产计划,销售根据生产完成日期来通知客户,环环相扣。
一旦供应商的信息有误,货物晚于承诺时间到达,就会影响到供应链下游的安排,所谓的“计划赶不上变化”就发生了。
追踪交货期和库存位置仅是可视性的初阶水平,更深层次的要求是可以预警供应链中断风险。根据现有的信息,我们需要判断何时何地会出现缺货,以及对生产和销售的影响是什么。
比如,生产线缺少某种零部件,所以会停线4个小时。如果每小时产量是100套产品,每套售价是200元,那么造成的损失就等于4*100*200=80000元。
当然在现实世界中计算的方式更加复杂,某种原料的短缺会牵涉到N多产品和N多客户。如果我们能增强可视性,就能够预见到未来的潜在供应短缺,并能够在第一时间里作出反应。
要实现这点,就必须让数据及时和准确地在供应链上下游之间自动传输,尽量减少人为的干预的环节。
2、2提高计划的'有效性
预测计划的重要输入是历史销售记录,以数据为基础,结合预测模型,制定出中长期的预测。
对于制造企业来说,财务需要供应链提供的输入,来制定未来的商业计划和各类预算,比如库存、采购金额、运费等等。
底层数据的准确性非常重要,所有的计划都是在这些数据的基础上,配以数据模型,然后“加工”出来的。供应链会花费一定的时间在数据维护上,就是要确保基础数据的准确性。
我们知道预测有一个定律,近期的准确性高于远期的,就像是预测天气一样,天气预报上关于明天的天气是最准的,越往后准确性越低。
供应链为了增强预测准确性,就需要拿到最新的数据,这样做出来的计划准确性就越高。现在的需求波动越来越频繁,可能一天一个样,想要做出最准确的判断,必须用最新的数据。
3、 获取及时和准确的数据的关键事项
考虑到以上的两点动因,供应链一直在努力获得最及时和准确的数据。这里有几个需要特别留意的点值得大家关注。
3、1自动化数据采集
如有可能的话,应该尽量在实时情况下收集、传输数据。数据存储在供应链内部和外部的各个节点上,为了提升数据可靠性和及时性,最好的办法就是自动化采集。
在内部实施这点相对容易,只需要投资数字化工具,实施IT项目就可以实现。
在外部伙伴实施起来难度就高了,其中的最大阻力是害怕共享数据后的商业机密泄露。
供应商担心客户知道了他的上游供应商的信息,可能会跳过中间商,不让他继续赚差价。因此在做系统对接的时候,要确保只分享可以分享的数据,比如包装规格之类的。
3、2控制对相关数据的访问
根据使用者在公司中的职能,给予特定的数据访问权限,比如采购订单只能由采购计划员进行创建和修改,公司里的其他人只有查看的权限。
对于外部伙伴也是一样,客户可以查看供应商的库存商品数量信息,但他绝对不能访问商品的成本分析等商业机密。
3、3努力提升、维护数据的准确性
我们需要不断提升数据的准确性,其中关键在于数据采集和输入。我们要定期维护数据,比如系统中库存或是倒冲过账出现了负数,说明某些地方的数据存在问题,流程可能有漏洞,需要我们找到问题点并且尽快处理掉。
数据是供应链的根基,为我们制定各类计划提供了基础。实现准确和及时的数据虽然有点小贵,但是在供应链大中断时期(the Great Supply Chain Disruption),投资必然能带来相应的回报。
大数据成为供应链利器
在中国供应链大数据份额中,零售业、制造业、服务业(非金融)、医疗业占比最多,约占83%市场份额,而能源仅占1%。而据易观智库预测,2016年中国供应链大数据市场将达到60亿左右(不含供应链金融部分)。
该报告把供应链大数据分为结构数据、非结构数据、传感器数据及新类型数据四种,涵盖了交易数据、时间段数据、库存数据、客户服务数据、位置数据等各个方面。报告显示,目前,大数据已经被广泛应用于包括物流、服务和金融等供应链环节。
有效推进物流模式变革
在供应链中,大数据的作用首先体现在物流中。2014年12月26日,中国物流信息中心公布的数据显示,1-11月,全国社会物流总额196.9万亿元,按可比价格计算,增长8.3%,较上年同期回落1.3个百分点。而从近五年的情况来看,物流企业资产规模增速逐步放缓,物流企业经营效益偏弱。
在这种情况下,物流企业需要从价值延伸的角度提供超过客户预期的服务,以高效物流+增值服务的思路发展,而大数据是物流企业提供增值服务的基础要素。另外,随着众多专业化物流模式的兴起,降低供应链成本的核心将是数据资产的运用,大数据能够有效地推进高效率的`物流模式变革,是降低物流成本费用的有效手段。
利用大数据,企业可以与中国气象服务中心合作,收集高速公路信息,提供全国高速公路的天气预报和道路实况服务,可以优化行车路线,并对车辆和货物状态进行实时监控、评估和预警,对产品的运输进行智能追溯。
企业通过大数据,依据物流的时间、成本、服务、物流数据、客户需要等决策因素,可以对风险进行有效预测和评估,制定出合理、准确和科学的决策。利用物流数据,企业可以进行详细的区域和网店预测,帮助电商平台和快递公司迅速做出决策。
例如,亚马逊已经申请专利的“预测性物流”就是个利用大数据洞察用户需求的典范。“预测性物流”会检测用户的鼠标在商品上的停留时间,再综合考虑用户的购买历史、搜索记录、愿望清单等。
从而根据这些海量数据预判用户的购买行为,提前将这些商品运出仓库,放到托运中心寄存,等到用户真的下单了,就可以立即开始运送商品。通过利用大数据,亚马逊大幅缩减了商品的送货时间。
构建预测模式提高协同效应
根据大数据的分析,物流企业可以构建预测模式,实现对产品销量的精准预测,进而实现对未来库存量的精准计算,使工厂、区域市场、本地市场的库存配置更加合理,从而提高协同效应。企业可以通过充分掌握供应链物流过程中的所有基础数据,结合企业自身的资源、能力状况,对整个供应链进行必要的控制和监督。
例如,神州租车的车辆租用率曾经在达到一定程度后出现了瓶颈,一部分车辆出现空置状态。通过使用SAP推出的数据库平台SAPHana,神州租车优化了流程,将车辆使用率再次提高了15%。
提供精准金融服务
通过大数据技术进行行业分析和价格波动分析,能够尽早提出预警,规避信贷风险,可以对目标客户进行资信评估、审批短期小额贷款,以及精准金融和物流服务贷款。
例如,为了实现银行和中小外贸企业之间的对接、打破信息不对等的状态,阿里巴巴旗下一达通公司运用自身的系统处理能力,将监管、申请、投放、还款、放贷等相关融资工作纳入一个统一的信息化网络处理平台,通过全程掌控交易流程。
获取交易环节的详细数据和信息,以第三方服务平台的角色验证企业贸易真实性,实现各方信息交互、业务协同、交易透明,从而为解决中小企业融资难问题找到可行的方案。
在供应链金融中,大数据还可以提供诸多的增值服务。利用大数据,从源头获取用户需求信息,洞察潜在需求,为供应链提供信息咨询;可以对供应链金融上下游客户进行全方位信用管理,形成互动的监管和控制机制,降低交易成本和风险;对供应链绩效进行分析与预测,指导供应链管理,尤其是供应链协同数据的运营。
⑶ 大数据平台金融模式与大数据供应链金融模式是如何运用大数据来提
大数据平台金融模式与大数据供应链金融模式运用瞎谨敬亮大数据体现方法:
1、匹配用户需求,设计个性化金融服务。
2、完善交易征信,降低信息不对称。
3、实现量化授信,精准把控风险。
4、建立授信主体磨稿基数据库,完善数据交互。
5、提炼多维数据源,辅助参考决策。
6、判断预期交易量,精准渠道分配。
7、优化风控技术,实现高效自动化。