导航:首页 > 网络数据 > 大数据时代与统计

大数据时代与统计

发布时间:2023-11-09 15:09:13

㈠ 统计与大数据的关系

“社会统计学与数理统计学的统一"理论与大数据
统计学与大数据的关系

已上提问是统计学基本概念不清楚:有的学者认为大数据时代统计学过时了;实际上:这是一种错误学说,就是一个大呼悠。所为的大数据就是数据流大一点而已,从数据扩展到信息,并没有超出统计学描述的范围;

也就是互联网、计算机、苹果手机,小朋友手机摇啊摇,小姑娘们聊啊聊,帅哥键盘敲啊敲,这些数据、信息、资料、图片向白云一样飘啊飘,飘到空间瞬间形成庞大的几十万亿的数据云。最后这些数据流我们用计算机通过统计学专家学者加已整理、分析;

这就对统计学家提出了新的挑战。大数据和信息是通过互联网传播的,社会统计学与数理统计学的统一理论是、互联网的理论基础。

统计学是通过搜索、整理、分析、描述数据、信息等手段,以达到推断所测对象的本质,甚至预测对象未来的一门综合性科学。其中用到了大量的数学及其它学科的专业知识,它的使用范围几乎覆盖了社会科学和自然科学的各个领域。

㈡ 大数据与统计学的关系

大数据与统计学的关系:统计学是大数据的三大基础学科之一,所以统计学与大数据之间的关系还是非常密切的,但是这也导致一部分人产生了一定的误解,认为大数据就是统计学,统计学就是大数据。

实际上,虽然在大数据时代背景下,统计学的知识体系产生了一定程度的调整,但是统计学本身的理念与大数据还是具有一定区别的,统计学注重的是方式方法,而大数据则更关注于整个数据价值化的过程,大数据不仅需要统计学知识,还需要具备数学知识和计算机知识。从另一个角度来说,统计学为大数据进行数据价值化奠定了一定的基础。

其实对于很多职场人来说,平时大部分的数据分析任务都是基于统计学理论进行的,包括采用的数据分析工具也都属于统计学领域的范畴。

从未来的发展趋势来看,一方面统计学会进一步向大数据倾斜,包括目前不少统计学专业的研究生课题,都逐渐开始向大数据方向拓展,另一方面大数据会在发展的初期大量采用统计学相关理论和技术,这也能够提升大数据相关技术的落地应用能力。

㈢ 统计学专业与大数据有哪些不同统计学就业前景怎么样

统计学专业与大数据专业会有一些不同,但总体上是有相同之处都跟网络有关系统计信息数据的。同济学就业前景比较广阔,从事的岗位也比较多,可以从事计算工作,也可以从事销售工作,也可以去银行工作,这些岗位都是能够提供的。

因为市场的发展在不断完善,而且中国传统贸易化的发展越来越快,统计学工作的相关人员需求量越来越多,需要提供准确的消息,现在是大数据时代,如果统计学学的非常扎实。可以从事的工作也有很多,可以当数据分析师也可以从事银行金融类证券公司的工作人员。所以这个专业的毕业生需要有很强的技术能力才能有更好的发展,在校学习的知识也会增多。

㈣ 大数据来了 给政府统计带来了机遇与挑战

大数据来了 给政府统计带来了机遇与挑战

对于政府统计机构来说,没有什么比数据更重要的了。我们研究统计分类标准、统计调查方法、统计数据采集方式、统计数据加工处理方法、统计数据评估技术,都是为了获取真实准确、完整及时、代表性强、分类科学、经济适用的统计数据。

大数据时代的到来,既给政府统计带来重大发展机遇,也带来严峻挑战。

一、大数据在政府统计中的应用

国家统计局高度重视大数据在政府统计中的应用。到目前为止,已经与17家大数据企业签订了战略合作协议。当然,目前大数据在中国政府统计中的应用仍处于起步阶段,主要表现在两个方面:一是大数据成为政府统计数据的部分资料来源;二是大数据成为政府统计数据质量的部分评估依据。

(一)大数据成为政府统计数据的部分资料来源

目前,大数据已经成为中国政府统计数据的部分资料来源,以下是几个有代表性的方面:

1.利用重点网上零售交易平台数据测算网上零售额

为了掌握网上零售交易平台的交易规模和结构,综合测算网上零售数据,从今年1月份开始,国家统计局实施了月度网上零售交易平台调查,调查范围为42家重点网上零售交易平台,包括京东商城、亚马逊、当当网、淘宝网、天猫商城、酒仙网、美团网、中粮我买网、国美在线、大众点评网等。据对上述42家重点网上零售交易平台数据测算,今年1~8月份,全国网上零售额22400.9亿元,同比增长36.5%。其中,实物商品网上零售额18653.4亿元,增长35.6%,占全部网上零售额的83.3%;非实物商品网上零售额3747.5亿元,增长41.1%,占全部网上零售额的16.7%。这对于宏观管理部门和社会公众了解网上零售情况具有重要的参考作用。

2.利用房屋交易网签数据计算全国70个大中城市的新建住宅价格指数

房屋交易网签数据是指买卖双方签订购房合同后,房地产开发企业在房管部门进行备案,并在房产信息网上公布的相关信息,包含地址、楼层、价格、面积和金额等详细信息,基本涵盖了当月新建住宅的全部交易情况。从2011年1月份开始,国家统计局开始采用房屋交易网签数据计算全国70个大中城市的新建住宅价格指数。这对于提高70个大中城市新建住宅价格指数的数据质量起到了重要作用。

3.利用卓创资讯公司提供的价格信息,开展流通领域重要生产资料市场价格监测

国家统计局与卓创资讯公司开展合作,利用该企业提供的价格信息,开展流通领域重要生产资料市场价格监测。从2014年1月开始,按旬共同向社会发布流通领域9大类50种重要生产资料市场价格的检测结果。行业涵盖黑色金属、有色金属、化工产品、煤炭、石油天然气、非金属建材、农产品、农业生产资料、林产品等领域。地区监测范围覆盖北京、天津、河北、山西、内蒙古、辽宁、吉林、上海等24个省区市。这对于宏观管理部门和社会公众了解流通领域重要生产资料市场价格信息起到了重要作用。

(二)大数据成为政府统计数据质量的部分评估依据

国家统计局除了把大数据作为政府统计数据的部分资料来源外,也高度重视利用大数据评估政府统计数据质量。以下是目前比较有代表性的两个方面:一是利用中国银联跨行银行卡消费数据评估社会消费品零售总额数据质量;二是利用大型机械装备企业物联网数据评估固定资产投资数据质量。

二、大数据给政府统计带来的机遇与挑战

对于政府统计来说,大数据既带来了重大发展机遇,也带来严峻挑战。

(一)大数据给政府统计带来重大发展机遇

首先,大数据将不断提高政府统计服务宏观管理和社会公众的能力。随着大数据的不断发展和完善,随着政府统计机构开发应用大数据能力的不断提升,政府统计产品的种类将会不断丰富,政府统计数据的质量和时效性将会不断提升,从而政府统计服务宏观管理和社会公众的能力会不断提高。

其次,大数据将会推动政府统计发生革命性的变化。随着大数据的发展和完善,随着政府统计机构开发应用大数据技术的逐步成熟,政府统计将会发生革命性变化。一是现有的以周期性普查为基础,以抽样调查为主体,综合运用全面调查、重点调查等方法,并充分利用行政记录等资料的统计调查方法体系可能会发生重大变化。长期以来,抽样调查方法,即在总体中抽选样本、利用样本推算总体的方法;普查和全面调查方法,即对总体中所有单位逐一进行调查的方法,在我国政府统计中发挥了重要作用。今后,在较长的时期内这些方法仍然会被政府统计所广泛采用。但在大数据不断发展和完善的情况下,某些领域、某些方面的大数据可能会取代抽样调查、普查和全面调查方法,成为获取统计数据的重要方法,而且这种获取统计数据的方法将会变得越来越重要。二是政府统计中的数据采集方式可能会发生重大变化。长期以来,政府统计机构主要以企业填报、住户记账、调查员入户等方式采集原始数据。在大数据不断发展和完善的情况下,一部分原始数据将通过挖掘大数据的方式获取,而且这种新的数据采集方式将会变得越来越重要。三是政府统计的数据处理模式可能会发生重大变化。在大数据不断发展和完善的情况下,现行的对普查和全面调查数据进行直接审核、汇总、加工处理和对抽样调查数据进行推算放大的数据处理模式可能会发生重大变化。

(二)大数据给政府统计带来严峻挑战

首先,大数据对政府统计能力带来挑战。从大数据本身的产生到发展完善,从政府统计对大数据的初步运用到成熟运用,需要一个较长的时期。在这个过程中,一方面,政府统计中传统的统计调查方法、数据采集方式和数据处理模式将继续运行,否则满足不了宏观管理和社会公众的需求。另一方面,政府统计系统必须投入大量的人力和物力对大数据进行挖掘、加工处理和运用,否则也适应不了大数据时代宏观管理和社会公众的需求。这种双轨运行的模式,对政府统计能力将是一个巨大的挑战。

其次,大数据对传统政府统计理念带来挑战。传统的政府统计有一个约定俗成的理念:抽样调查方法可降低调查成本,提高效率和数据质量。因为抽样调查只对总体中部分抽中的样本进行调查,并非对总体中的每一个单位都进行调查,所以调查单位明显减少,可降低成本,节约时间,提高效率。同时,由于调查单位较少,政府统计机构有能力对基层统计调查人员进行较为扎实的培训和指导,有精力对统计调查数据进行较为严格的检查和审核,从而能够提高统计调查数据质量。随着大数据不断发展完善,政府统计机构将会越来越多地通过大数据企业间接地获取统计数据,不需要对总体中的具体单位进行直接调查,不需要调查员,从而也不需要对调查员进行培训,抽样调查所具有的调查成本低、能够提高统计调查数据质量的优点就不复存在了。

以上是小编为大家分享的关于大数据来了 给政府统计带来了机遇与挑战的相关内容,更多信息可以关注环球青藤分享更多干货

㈤ 大数据时代 统计学依然是数据分析灵魂

大数据时代 统计学依然是数据分析灵魂
什么是数据?数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。笼统地说,凡是用某种载体记录下来的、能反映自然界和人类社会某种信息的,就可称之为数据。古人“结绳记事”,打了结的绳子就是数据。步入现代社会,信息的种类和数量越来越丰富,载体也越来越多。数字是数据,文字是数据,图像、音频、视频等都是数据。
什么是大数据呢?量的增多,是人们对大数据的第一个认识。随着科技发展,各个领域的数据量都在迅猛增长。有研究发现,近年来,数字数据的数量每3年多就会翻一番。
大数据区别于数据,还在于数据的多样性。正如高德纳咨询公司研究报告指出的,数据的爆炸是三维的、立体的。所谓的三维,除了指数据量快速增大外,还指数据增长速度的加快,以及数据的多样性,即数据的来源、种类不断增加。
从数据到大数据,不仅是量的积累,更是质的飞跃。海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值。
通过数据来研究规律、发现规律,贯穿了人类社会发展的始终。人类科学发展史上的不少进步都和数据采集分析直接相关,例如现代医学流行病学的开端。伦敦1854年发生了大规模的霍乱,很长时间没有办法控制。一位医师用标点地图的方法研究了当地水井分布和霍乱患者分布之间的关系,发现有一口水井周围,霍乱患病率明显较高,借此找到了霍乱暴发的原因:一口被污染的水井。关闭这口水井之后,霍乱的发病率明显下降。这种方法,充分展示了数据的力量。
本质上说,许多科学活动都是数据挖掘,不是从预先设定好的理论或者原理出发,通过演绎来研究问题,而是从数据本身出发通过归纳来总结规律。近现代以来,随着我们面临的问题变得越来越复杂,通过演绎的方式来研究问题常常变得很困难。这就使得数据归纳的方法变得越来越重要,数据的重要性也越发凸显出来。
大数据是非竞争性资源,有助于政府科学决策、商家精准营销
大数据时代,数据的重要作用更加凸显,许多国家都把大数据提升到国家战略的高度。
政府合理利用大数据,引导决策的将是基于实证的事实,政府会更有预见性、更加负责、更加开放。中国古代治国就已经有重数据的思想,如商鞅提出,“强国知十三数……欲强国,不知国十三数,地虽利,民虽众,国愈弱至削”。大数据时代,循“数”治国将更加有效。小数据时代,政府做决策更多依凭经验和局部数据,难免头痛医头、脚痛医脚。比如,交通堵塞就多修路。大数据时代,政府做决策能够从粗放型转向集约型。路堵了,利用大数据分析,可以得知哪一时间、哪一地段最容易堵,或在这一地段附近多修路,或提前预警引导居民合理安排出行,实现对交通流的最佳配置和控制,改善交通。
对于商家来说,大数据使精准营销成为可能。一个有趣的故事,是沃尔玛超市的“啤酒、尿布”现象。沃尔玛超市分析销售数据时发现,顾客消费单上和尿布一起出现次数最多的商品,竟然是啤酒。跟踪调查后发现,有不少年轻爸爸会在买尿布时,顺便买些啤酒喝。沃尔玛发现这一规律后,搭配促销啤酒、尿布,销量大幅增加。大数据时代,每个人都会“自发地”提供数据。我们的各种行为,如点击网页、使用手机、刷卡消费、观看电视、坐地铁出行、驾驶汽车,都会生成数据并被记录下来,我们的性别、职业、喜好、消费能力等信息,都会被商家从中挖掘出来,以分析商机。
大数据也将使个人受益。从生物学、医学上讲,以前生物学家只是通过对单个或几个基因的操控来观察其对生物体的影响,很难发现整体的关联。现在由于技术的发展,可以分析很多,如遗传信息、全体基因的表达量信息、蛋白质族谱信息、全基因组甲基化信息、表观遗传信息等。同时还有个人健康指标、病历、药物反应等数据。如果真能达成生物学上多维多向数据的有机融合,就能够把个人完整地描述出来,从而实现精准医疗的目的。
大数据时代,审核数据的真实性也有了更有效的手段。大数据的特征之一是多样性,不同来源、不同维度的数据之间存在一定的关联度,可以交叉验证。例如,某地的工业产值虚报了一倍,但用电量和能耗却没有达到相应的规模。这就是数据异常,很容易被系统识别出来。发现异常后,相关部门再进行复核,就能更有针对性地防止、打击数据造假。
数据是一种资源,但数据又跟煤、石油等物质性资源不一样。物质性资源不可再生,你用多了,别人就用少了,因而很难共享。数据可以重复使用、不断产生新的价值。大数据资源的使用是非恶性竞争的,共享的前提下,更能够制造双赢。从另一个角度来说,数据如果不被融合、联系在一起,也不能称之为大数据。
大数据不能被直接拿来使用,统计学依然是数据分析的灵魂
现在社会上有一种流行的说法,认为在大数据时代,“样本=全体”,人们得到的不是抽样数据而是全数据,因而只需要简单地数一数就可以下结论了,复杂的统计学方法可以不再需要了。
在我看来,这种观点非常错误。首先,大数据告知信息但不解释信息。打个比方说,大数据是“原油”而不是“汽油”,不能被直接拿来使用。就像股票市场,即使把所有的数据都公布出来,不懂的人依然不知道数据代表的信息。大数据时代,统计学依然是数据分析的灵魂。正如加州大学伯克利分校迈克尔·乔丹教授指出的,“没有系统的数据科学作为指导的大数据研究,就如同不利用工程科学的知识来建造桥梁,很多桥梁可能会坍塌,并带来严重的后果。”
其次,全数据的概念本身很难经得起推敲。全数据,顾名思义就是全部数据。这在某些特定的场合对于某些特定的问题确实可能实现。比如,要比较清华、北大两校同学数学能力整体上哪个更强,可以收集到两校同学高考时的数学成绩作为研究的数据对象。从某种意义上说,这是全数据。但是,并不是说我们有了这个全数据就能很好地回答问题。
一方面,这个数据虽然是全数据,但仍然具有不确定性。入校时的数学成绩并不一定完全代表学生的数学能力。假如让所有同学重新参加一次高考,几乎每个同学都会有一个新的成绩。分别用这两组全数据去做分析,结论就可能发生变化。另一方面,事物在不断地发展和变化,同学入校时的成绩并不能够代表现在的能力。全体同学的高考成绩数据,仅对于那次考试而言是全数据。“全”是有边界的,超出了边界就不再是全知全能了。事物的发展充满了不确定性,而统计学,既研究如何从数据中把信息和规律提取出来,找出最优化的方案;也研究如何把数据当中的不确定性量化出来。
所以说,在大数据时代,数据分析的很多根本性问题和小数据时代并没有本质区别。当然,大数据的特点,确实对数据分析提出了全新挑战。例如,许多传统统计方法应用到大数据上,巨大计算量和存储量往往使其难以承受;对结构复杂、来源多样的数据,如何建立有效的统计学模型也需要新的探索和尝试。对于新时代的数据科学而言,这些挑战也同时意味着巨大的机遇,有可能会产生新的思想、方法和技术。

㈥ 浅谈大数据时代统计工作方法

浅谈大数据时代统计工作方法
大数据时代带来了数据信息的大爆炸,为社会生活各个领域带来巨大变革,也给统计调查工作带来了挑战。大数据时代数据呈现出总量更大、种类更繁多、操作更复杂等新特点,这对新时代做好统计调查工作提出了新的更高要求,统计调查工作方式方法面临优化和革新。当然,变革不代表取代和拒绝,而是寻求包容和提升的最佳状态,使统计调查工作在新时代可以更加科学规范。
——加大信息技术驱动力,推动统计调查各环节技术改革。信息技术革命和互联网时代催生了大数据,因此大数据时代统计调查必须以现代信息技术为工具和驱动力。一是拓宽数据收集渠道。统计调查数据的收集可以通过互联网技术利用网络搜索或者从网络公司收集行业信息。二是减少中间环节。传统统计调查层层统计上报的做法工作量较大,也容易造成数据失真。大数据时代统计调查可以利用网络传输数据平台建设等使统计数据第一时间直接从源头传输到需求者,减少中间环节的人为干扰因素,既保证数据的及时性,也能保证数据的真实性和完整性。三是严控数据质量。数据的大爆发带来的数据复杂性势必会增加数据质量控制和统计执法的难度,因此,应适应时代的特点,建立动态的、在线的数据质量把控和统计执法制度。如在数据统计调查平台建立质量控制模板,实现实时监控,并且建立统计执法与数据质量监测的便捷通道,一旦数据质量报警可以立即在统计执法上得到响应。
——提升统计调查方法的科学性、规范性。以抽样调查为例,要想快速树立抽样调查的权威性和主体地位,就必须在抽样调查的各个环节建立科学完备的方法论,包括抽样框构建、抽样方案设计、抽样估计和数据调整等各个环节。比如,要建立科学、统一、简约的抽样调查指标体系,取消过时的、利用率低的指标,改进不易取得和无法与大数据衔接的指标,增加政府及社会各界普遍关注的、与社会经济发展相适应的指标。
——加快数据共享,打破部门“数据孤岛”。目前,我国政府统计面临数据来源单一、重复调查等诸多问题,部门“数据孤岛”现象存在,阻碍了大数据时代统计调查工作的开展。从国外先进经验来看,大数据时代需要逐步采用以信息化为媒介的、基于行政记录和多种信息来源的开放式、共享式数据采集制度,即将不同政府职能部门行政管理信息资料共享化,如人口登记、房产登记、企业信息登记等,不同目的的统计调查仅是在此基础上增加或修改特定指标即可。在我国,初步的部门数据共享已经实现,如经济普查利用工商数据库和基本单位名录库等作为清查库,人口普查以公安部门户籍资料和社保信息等作为核查依据等,但是仍存在部门统计数据协调难度大、利用效率低等问题。因此,在大数据时代需要快速搭建较为完备的数据交换和共享服务平台,除去部门保密数据资料外,绝大多数的统计数据信息应该逐步实现在政府部门间、甚至面向社会公布和共享,使各种目的的统计调查能够各取所需、完善补充,有效发挥数据价值,减少社会资源浪费。
——培养新型统计调查人员,加强调查队伍建设。为应对大数据时代给统计调查工作带来的复杂性和不确定性,需要打造一支懂技术、守纪律的高素质统计调查队伍。一是人员专业化。大数据调查需要全新的现代统计方法和统计工具,特别是现代信息技术和云计算技术,因此必须组建专业程度高、针对性强的业务能手,并且定期组织培训,培养专业化统计调查人才。二是队伍稳定化。现代统计方法和统计流程大多大同小异,稳定的统计调查队伍有利于不同调查方法的融通,减少人员的适应时间,最大限度降低调查成本。近年来,不少地区探索的统计调查外包模式,在一定程度上促进了人员专业化、队伍稳定化,值得深入研究和推广。三是组织纪律制度化。2017年4月,国家统计局成立了国家统计局统计执法监督局,标志着全面依法统计依法治统工作开启了新的征程。统计数据真实性、统计调查科学性、统计执法严肃性等问题,一直是伴随着各项统计调查工作的永恒话题,只有严格遵守统计纪律,将组织建设制度化,才能从根本上杜绝统计造假等统计违法行为,才能确保统计调查科学性,维护统计数据权威性。

㈦ 如何认识大数据背景下,统计学面临的挑战与机遇

1.大数据对统计学带来的挑战
传统的统计学一般还停留在用抽样技术在总体中抽取样本收集数据,然后建立模型对数据进行统计分析。但是在数据如此之多的今天传统的统计学在完成这方面时面临巨大的挑战。统计学要想推陈出新,必须要自己作出改革。
2.大数据为统计学带来的机遇
统计学从古至今一直以来就是一门研究数据的学科,统计学和大数据内在具有联系性,大数据让统计学登上了学科霸主的地位,很多教学单位现在都注重统计学人才的培养。统计学能够让人们更好的把握对数据的分析和应用。总结了以下几点大数据时代为统计学带来的发展机遇。
(1)大数据为统计学提供了新的研究方向,对大数据进行分析,为统计学提供了新的实用价值,因为不仅电商,传统商家还有政府都需要对庞杂的数据进行分析,找出其中包含的关于经济发展趋势的宏观信息,微观信息,还有公众的喜好和需求等等,为了获取这些信息,更加严密和系统的科学方法会被引入统计学研究中。
(2)统计学能够充分利用计算机技术的发展,统计理论方法需要在学科交叉中获得新的生命力,统计学应该从数据发展的现在趋势中寻找统计发展的灵感。考虑到现在的信息技术、云计算、互联网的发展,并且以政府统计作为现代化统计的基础,从传统的统计学向现代统计学发展。
(3)对统计人才的培养提出了新的要求,现在需要的不仅仅是对统计学理论知识有清晰认识的统计学人才,而是高层次的数据分析师,要有数学知识、统计建模知识、计算机技能、编程技能、大数据挖掘、还要有管理技能等的复合型人才。

(4)可以进一步深化统计理论模型,现在进行统计分析不像以往,统计指标的获得要经过复杂的演算过程。现在一般都是依靠大型软件程序,但是这些大型的软
件程序的编制却需要特定的统计模型来完成的,如果想要在大数据时代获得发展的优先权,就要研发出相应的数理统计的模型。

㈧ 大数据时代:统计学是数据分析的灵魂

大数据时代:统计学是数据分析的灵魂_数据分析师考试

7月中旬以来,从中央到地方,今年上半年经济社会发展的统计数据陆续进入人们的视野。在观察、使用统计数据时,类似“大数据时代怎样用好数据”这样的话题,再次引起人们的关注。
7月20日出版的《人民日报》,刊发了清华大学统计学研究中心主任刘军做客人民日报、人民网《文化讲坛》时,对相关问题所做的介绍和分析。其内容包括:
什么是数据?
数据(data)在拉丁文里是“已知”的意思,在英文中的一个解释是“一组事实的集合,从中可以分析出结论”。笼统地说,凡是用某种载体记录下来的、能反映自然界和人类社会某种信息的,就可称之为数据。古人“结绳记事”,打了结的绳子就是数据。步入现代社会,信息的种类和数量越来越丰富,载体也越来越多。数字是数据,文字是数据,图像、音频、视频等都是数据。
什么是大数据?
量的增多,是人们对大数据的第一个认识。大数据区别于数据,还在于数据的多样性。从数据到大数据,不仅是量的积累,更是质的飞跃,海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值。
大数据时代,统计学是数据分析的灵魂。
大数据告知信息但不解释信息。打个比方,大数据是“原油”而不是“汽油”,不能被直接拿来使用。大数据时代,统计学依然是数据分析的灵魂。正如美国加州大学伯克利分校迈克尔·乔丹教授指出的,“没有系统的数据科学作为指导的大数据研究,就如同不利用工程科学的知识来建造桥梁,很多桥梁可能会坍塌,并带来严重的后果。”
事物的发展充满了不确定性,而统计学,既研究如何从数据中把信息和规律提取出来,找出最优化的方案;也研究如何把数据当中的不确定性量化出来。
刘军的介绍与分析,帮助我们认识到,从数据到大数据,伴随质的飞跃;通过对海量数据的整合、分析,可以发现新知识、创造新价值;大数据时代,统计学肩负从数据中提取规律、量化数据中的不确定性等使命。

以上是小编为大家分享的关于大数据时代:统计学是数据分析的灵魂的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与大数据时代与统计相关的资料

热点内容
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320
word文件水印怎么取消 浏览:443
rhel6的镜像文件在哪里下载 浏览:571
成功正能量微信头像 浏览:848
wps表格如何恢复数据 浏览:264
linuxc静态库创建 浏览:838
u盘有微信文件但微信恢复不了 浏览:585
苹果的网站数据是什么 浏览:22
ps滚字教程 浏览:237
win7网络邻居如何保存ftp 浏览:186
安卓客户端代理服务器 浏览:572
编程用苹果 浏览:659
51虚拟机的文件管理在哪里 浏览:13
win10系统有没有便签 浏览:722
java引用传递和值传递 浏览:109
oracle下载安装教程 浏览:854
php筛选数据库 浏览:830

友情链接