❶ 大数据在金融领域的应用
大数据在金融领域的应用如下:
1. 概述
近年来,随着大数据、云计算、区块链、人工智能等新技术的快速发展,这些新技术与金融业务深度融合,释放出了金融创新活力和应用潜能,这大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。
在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。
从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。
2. 大数据技术在金融行业中的典型应用
大数据技术在金融行业中有着广泛的应用, 下面将介绍大数据技术在银行、证券、保险等金融细分领域中的应用。
3. 金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
❷ 金融论文用哪个数据库比较好 知乎
可以看看你们学校有什么数据库可以免费下载数据。
推荐万德数据库,比较适合找微观数据,还有中经网数据库、国泰安数据库都是很好的经济、金融类数据库。
如果论文内容涉及宏观方面,可以去IMF数据库里下载,这个数据库是免费的,基本上全球宏观数据都有。
望采纳,谢谢!
❸ 大数据金融是什么
大数据金融是指集合海量非结构化数据,通过对其进行实时分析,可以为互联网金融机构提供客户全方位信息,通过分析和挖掘客户的交易和消费信息掌握客户的消费习惯,并准确预测客户行为,使金融机构和金融服务平台在营销和风控方面有的放矢。
大数据金融的内容:基于大数据的金融服务平台主要指拥有海量数据的电子商务企业开展的金融服务。大数据的关键是从大量数据中快速获取有用信息的能力,或者是从大数据资产中快速变现的能力,因此,大数据的信息处理往往以云计算为基础。
(3)大数据金融知乎扩展阅读:
大数据金融的弊端:
1、大数据对个人信息的大量获取导致了隐私和安全问题。
随着个人所在或行经位置、购买偏好、健康和财务情况的海量数据被收集,再加上金融交易习惯、持有资产分布、以及信用状况以更细致的方式被储存和分析,机构投资者和金融消费者能获得更低的价格、更符合需要的金融服务,从而提高市场配置金融资源的能力。
但同时,金融市场乃至整个社会管理的信息基础设施将变得越来越一体化和外向型,对隐私、数据安全和知识产权构成更大风险。就个人隐私而言,大数据的隐私问题远远超出了常规的身份确认风险的范畴。
2、大数据技术不能代替人类价值判断和逻辑思考。
大数据是人类设计的产物,大数据的工具(如Hadoop软件)并不能使人们摆脱曲解、隔阂和成见,数据之间相关性也不等同于因果关系,大数据还存在选择性覆盖问题。
例如,社交媒体是大数据分析的重要信息源,但其中年轻人和城市人的比例偏多,还存在大量由程序控制的“机器人”账号或“半机器人”账号。波
士顿的 StreetBump应用程序为统计城市路面坑洼情况,从驾驶员的智能手机上收集数据,可能少计年老和贫困市民较多区域的情况;“谷歌流感趋势”曾高估了 2012年流感发病率。这说明依赖有缺陷的大数据可能给政府决策造成负面影响,还可能加剧社会不公。
3、基于大数据开发的金融产品和交易工具对金融监管提出挑战。
大数据的使用正在改变金融市场,也需要改变监管市场的方式,以保证市场参与者负责地使用大数据。
例如,2010年5月的“闪电暴跌”(flashcrash)令道琼斯工业平均指数 突然大跌,美国监管部门认为是高频交易造成了快速抛售引发的更多抛售。大数据中的一个数据点出错就能导致“无厘头暴跌”。
监管机构限制大数据技术的使用,或是对其使用进行直接干预,其潜在风险是巨大的,应鼓励业界对更复杂的技术乃至更大数据的利用。
❹ 什么是大数据金融
大数据金融是通过大数据技术搜集客户交易信息、网络社区交流行为、资金流走向等数据,大数据金融了解客户的消费习惯,从而针对不同的客户投放不同的营销和广告或分析客户的信用状况。由于大数据金融数据是根据客户自身行为而搜集,大数据金融客观真实,因此,大数据金融针对客户制定的营销方案和偏好推荐也能做到精准化。
大数据金融的特点如下:
1、影响大。由于互联网加快了数据的传播,而金融大数据又属于个人核心隐私材料。在我国互联网金融发展现状下,信用体系尚不完善,互联网金融的相关法律还有待配套。互联网金融单位的违约成本较低,容易引发多种金融风险问题,造成群体性事件;
2、数量多。互联网金融大数据是获取的个人的金融行为数据,而这是属于个人数据中非常高频使用的部分。国内互联网金融服务企业获取的互金大数据已经达到数百PB,而且还在不断高速增长中;
3、速度快。互联网金融业务主要信息由系统处理,操作流程完全标准化,业务处理速度更快。在用户画像和信用数据库等金融大数据的支持下,经过数据挖掘和分析,引入风险分析和资信调查模型,一笔业务从申请到完成只需要几秒钟。
法律依据:《中华人民共和国数据安全法》第五条
中央国家安全领导机构负责国家数据安全工作的决策和议事协调,研究制定、指导实施国家数据安全战略和有关重大方针政策,统筹协调国家数据安全的重大事项和重要工作,建立国家数据安全工作协调机制。
❺ 什么是大数据金融不要文字游戏,通俗的说明
所谓大数据金融,就是用超级电脑收集海量的信息,通过各种算法来对金融产品进行精确营销的一种方法。
通俗来讲就是银行强势收集用户的信息,从身份证,到生物信息列如指纹,虹膜纹,人脸识别,资金使用情况,购物习惯,工作情况,家庭收入,个人收入,健康状态,家庭情况,人际关系。性格趋向等等等等。都被统一上传到电脑云端。经过计算和鉴别,来对客户进行推介和评估。
❻ 大数据金融前景
一、大数据金融的含义
大数据金融指的是将巨量非结构化数据通过互联网和云计算等方式进行挖掘和处理后与传统金融服务相结合的一种新的金融模式,它是一种相比于传统金融更加透明、参与度更加广泛、体验更好、效率更高的新兴金融模式。
广义的大数据金融包括整个互联网金融在内的所有需要依靠发掘和处理海量信息的线上金融服务。也就是说,我们所提到的不管是P2P还是众筹等互联网金融行为,其核心都是大数据金融,因为互联网金融如果没有大数据的支撑,就成了一个单纯意义上的平台。而互联网金融得以在互联网诞生之日起,到今天人类社会进入“PB(1024TB)”时代,历年来数据信息的记录与积累,以及云计算技术的不断成熟,使得大数据金融在互联网诞生数十年后终于可以一展风采。持续高增长的电子交易数量和网络零售服务,使得依赖于商务需求的金融体系能够在线上寻求到数据支撑。
狭义上的大数据金融指的是依靠对商家和企业在网络上历史数据的分析,对其进行线上资金融通和信用评估的行为。我们可以很直观地看到,最初在互联网平台上寻求到金融服务的商家和企业,一类是在互联网平台上留下了一定数量的历史信用信息的商家或企业,另一类是在相关产业之内积累了相当程度的历史信用的商家或企业。而从未在线上或实际交易中产生过信息的全新商家和企业在没有建立足够的交易基础之前是不太容易通过单纯的信用方式进行这种融资的。无论是广义还是狭义的定义,大数据金融的核心内容都是对商家和客户的海量数据进行收集、储存、发掘和整理归纳,使得互联网金融机构能够得到客户的全方位信息,掌握客户的消费习惯并准确预测客户行为。这样的做法不管是作为评级认定标准,还是作为目标客户进行营销宣传的理由,都能够使互联网金融机构对自己的风险进行控制,对自己的发展策略进行更详尽的规划。作为大数据的使用者,互联网金融机构必须为数据的采集和使用付出成本,如果不是同时作为数据的收集方,进行原始数据的采集和整理,那就要向数据来源的第三方支付使用费用。
二、大数据金融的发展机遇
1.互联网企业自身转型需要。随着电商竞争愈演愈烈,最初的零售领域与支付领域的竞争已逐渐延伸到了整个供应链的其他环节,包括物流、仓储,自然也包含了最重要的金融服务。尽快发展自身原有业务引申出来的大数据金融服务,有利于建立用户黏性。积极地进行专业化、个性化定制金融服务对未来电商领域的全方位竞争有着十分重要的意义。
2.实体产业需要大数据金融的支持。大数据金融通过各种方式给市场带来了活性,整个产业链的效率提升、资源配置优化是有目共睹的,虚拟经济与实体产业的下一步发展,必定都离不开大数据金融的支持。打通上下游环节,使资金更有效率,无论是对电商的未来发展还是对传统金融的突破都大有益处。
三、大数据金融面临的挑战
大数据使得互联网金融得到空前的发展,同时也带来了一系列的问题。原来的互联网非金融机构从事类金融服务,给传统的金融体系带来了一定的冲击,如何协调和处理好这两者之间的关系,成了未来大数据金融发展至关重要的环节。未来,大数据金融的发展必将基于传统金融行业与互联网大数据技术的进一步融入和整合,这就要求金融服务与互联网及大数据的关联程度必须不断加强。
1.必须推进金融服务与社交网络的进一步融合。使金融业的数据来源能够脱离早期呆板滞后的提交、审批、尽职调查等来源方式。要使金融信息的获取渠道能够直接深入金融服务本身,就要利用互联网、社交媒体等新的数据来源,从多渠道获取实时客户信息和市场信息,充分了解自标客户的需求和资质情况,建立更高效的客户关系与更完整的客户视图,并利用社交网络对忠实客户和潜在客户进行精准营销和定制化金融服务的方案。
2.传统金融机构要进行互联网、大数据金融的转型,必须要处理好与数据服务商的竞争、合作关系。目(下转80页)(上接76页)前,线上互联网企业由于占据极大的平台优势,垄断从交易发生到交易结算的各个环节以及这其中产生的各项数据信息,使传统金融企业想要介入十分困难。要想在实际过程中重新组建自己的数据平台,从时间方面来看,已经处于劣势。因此,传统金融机构与数据服务商开展战略合作是比较现实的选择。
四、大数据金融的发展趋势
大数据技术还远未成熟,而大数据金融带给我们的变化已足以让人惊讶,大数据金融的未来也是一片光明。未来,随着大数据技术的不断成熟,大数据金融的发展也必将进一步改变人们的生活生产方式。
1.大数据金融跨界发展。由于互联网技术的开放性,信息不对称将显著减少,金融在日后也许就不是少数传统的金融从业者的专属领域了。从供应链要求的技术来看,互联网企业、软件企业都纷纷加入大数据金融的开发中,大数据进入跨界发展的趋势越来越明显,金融业的竞争也将由于未来力量的冲击变得更加激烈。这也可能导致将来金融业内部混业经营的进一步发展,银行金融与非银行金融的界限、证券公司与非证券公司之间的界限都可能变得非常模糊。
2.大数据金融服务多样化。大数据金融从电商平台发展出来以后,不断地整合发展传统产业,从零售的日用百货发展到电子产品,再到汽车,甚至是大宗商品交易,未来也会发展到房地产、医疗等方面,日常的金融服务也将不断地扩展,综合化、社会化、日常化。
3.大数据金融服务专业化。随着涉足领域越来越广泛,大数据金融必将产生专业化趋势,产生更明确的产业链分工,根据不同的环节或者是不同的行业,其服务内容都将产生一系列的变化。同时随着发展水平的提高,必定会有高要求的定制化服务、个性化服务要求,未来的大数据金融企业必将以客户为中心,高度精准与定位客户需求来制定专业的个性化服务。总而言之,大数据金融凭借高度数据化的管理和运作模式,在互联网发展的今天有着不可替代的地位,将来大数据金融必将是金融业发展的中流砥柱,它将进一步渗透到各行各业的每一个角落,不断地促进金融生态的发展。在不久的将来,每个人都将能够切身体会到大数据金融带来的变化,都能从大数据金融的发展中获得益处。
❼ 大数据分析与金融,有哪些结合点
大数据分析让银行更准确知道谁是自己的用户,大数据分析让证券市场更容易得到想要的信息,大数据分析也会放保险从业者更容易去找到客户。
大数据分析与金融的结合,就是与银行、证券、保险等行业的结合应用,现阶段就是找到最需要有效帮助的人,同样大数据分析能够获得对未来布局的信息,让公司决策准确有效。
❽ 什么是大数据金融
就是建立在大规模数据信息上的金融行为。例如网络推出大数据炒股理财。