① 中国大数据中心在哪里
中心基地-北京、北方基地-乌兰察布、南方基地-贵州。
2015年1月16日,由蓝汛与北京市供销总社共同投资的蓝讯首鸣国际数据中心项目启动仪式在北京天竺综合保税区举行。据了解,该数据中心是北京首个国家级、超大规模云数据中心,产业园占地面积8万平方米,包含9栋数据中心机房和1栋感知体验中心。
2015年以来,200余个大数据信息产业项目签约落户贵州,富士康、阿里巴巴、腾讯、华为等大型企业抢滩贵州发展。中国电信云计算贵州信息园1.1期、中国移蚂旦动(贵州)大数据中心、中国联通贵安云数据中心一期建成运营。中电乐触、高新翼云、翔明科技等第三方数据中心已建成并投运,目前数据中心服务器达到2.2万台;北京供销社数据中心、惠普数据中心等一批项目已经启动,预计2016年将达5万台服务器规模。乌兰察布国家大数据灾备中心启动大会于2016年07月08日早上八点正式启动,内蒙古自治区主席布小林出席会议。乌兰察布市委市政府依据自身地理位置优越,地质板块稳敏物陵定,电力资源丰桥戚富,气候冷凉适宜,临近京津冀经济圈核心市场等优势,将信息产业作为战略性新兴产业来发展,致力于将乌兰察布市打造成面向华北、服务京津的国家级云计算产业基地,为承接高科技产业、加快产业转型升级提供强有力的支撑。市委市政府将为该建设国家大数据灾备中心项目提供充足的土地与极具竞争力的投资政策吸引广大企业参与建设。
② 大数据中心是做啥的接收一般什么层次的毕业生呢
以国家电网大数据中心为例,大数据中心是国家电网数据管理的专业机构和数据共享、数据服务、数字创新平台,主要负责公司数据管理、运营、服务等方面工作,致力实现数据资产统一运营,推进数据资源高效使用,为公司建设“三型两网”世界一流能源互联网企业提供数字化支撑。
国家电网总经理、党组副书记辛保安在此次揭牌仪式中表示,大数据中心挂牌成立,标志着公司数字化建设进入新发展阶段。
大数据中心要紧紧围绕“三型两网、世界一流”战略部署,以打造能源领域国际一流大数据中心为目标,统筹做好机构建设、技术创新、人才培养等各方面工作,加强与上下游、客户、政府和社会各界的合作,构建共建共享共治共赢的能源大数据生态体系,以数字化推动公司高质量发展。
(2)大数据实战中心扩展阅读
从大数据的价值链条来分析,存在三种模式:
1、手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2、没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3、既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
未来在大数据领域最具有价值的是两种事物:拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
③ 华为大数据中心是干什么的
华为大数据中心是用来搜集整理大数据,提供解决方案的数据中心。华为大数据解决方案是华为公司推出的一种综合性云解决方案,主要针对广告营销、电商、车联网等大数据应用场景的云计算大数据方案,帮助企业用户构建大数据平台,解决企业的海量数据存储和分析需求。
华为技术有限公司成立于1987年,总部位于中国广东省深圳市龙岗区。华为是全球领先的信息与通信技竖段术(ICT)解决方案供应商,专注于ICT领域,坚持稳健经营、持续创新、开放合作,在电信运营商、企业、终端和云计算等领域构筑了端到端的解决方案优势,为运营商客户、企业客户和消费者提供有竞争力的ICT解悔纤碧决方案、产品和服务,并致力于实现未来信息社会、构建更美好的全联接世界。
2013年,华为首超全球第一大电信设备商爱立信,排名《财富》世界500强第315位。截至2016年底,华为有17多万名员工,华为的产品和解决方案已经应用于全球170多个国家,服务全碧举球运营商50强中的45家及全球1/3的人口。
④ 大数据中心是什么
问题一:大数据中心是什么?中国最大的大数据中心在哪里? 你好!大数据中心,是指服务于大数据存储、挖掘、分析和应用的数据中心。大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
目前,国内新建了许多大数据中心,规模不一。其中,网络和阿里巴巴的大数据中心名气较大,此外,罗克佳华在鄂尔多斯和太原建设的大数据中心凭借北部省份的能源优势,建成5万平方米的全国单体面积最大的大数据中心,是目前亚洲最大的云计算中心。
问题二:大数据是什么意思?目前具体有些什么应用? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。
问题三:什么是大数据和大数据平台 大数据技术是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据平台是为了计算,现今社会所产生的越来越大的数据量。以存储、运算、展现作为目的的平台。
问题四:中国的大数据中心有哪些 没什么不同,只能说应用的领域和接触的长短不同吧。如果还想知道更多的大数据问题,ITjob网有大数据的相关介绍,博客和论坛也有大数据的讨论和观点,你可以去看看。下面给你粘贴下大数据在中国和美国的应用时间和领域。希望能帮到你。
大数据在中国的发展相对比较年轻。2012年,中国 *** 在美国提出《大数据研究和发展计划》并且批复了“十二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。我国的开放、共享和智能的大数据的时代才真正大面积的开始。
而美国 *** 将大数据视为强化美国竞争力的关键因素之一,把大数据研究和生产计划提高到国家战略层面。2012年3月,美国奥巴马 *** 宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。美国 *** 认为大数据是“未来的新石油与矿产”,将“大数据研究”上升为国家意志,对未来的科技与经济发展必将带来深远影响。
Marketsand Markets公布的最新报告显示,2013年至2018年,全球大数据市场的年复合增长率将为26%,从2013年的148.7亿美元增长至463.4亿美元。
问题五:什么是大数据服务中心? 我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
大数据帮助 *** 实现市场经济调控、公共卫生安全防范、灾难预警、社会舆论监督;
大数据帮助城市预防犯罪,实现智慧交通,提升紧急应急能力;
大数据帮助医疗机构建立患者的疾病风险跟踪机制,帮助医药企业提升药品的临床使用效果,帮助艾滋病研究机构为患者提供定制的药物;
大数据帮助航空公司节省运营成本,帮助电信企业实现售后服务质量提升,帮助保险企业识别欺诈骗保行为,帮助快递公司监测分析运输车辆的故障险情以提前预警维修,帮助电力公司有效识别预警即将发生故障的设备;
大数据帮助电商公司向用户推荐商品和服务,帮助旅游网站为旅游者提供心仪的旅游路线,帮助二手市场的买卖双方找到最合适的交易目标,帮助用户找到最合适的商品购买时期、商家和最优惠价格;
大数据帮助企业提升营销的针对性,降低物流和库存的成本,减少投资的风险,以及帮助企业提升广告投放精准度;
大数据帮助娱乐行业预测歌手,歌曲,电影,电视剧的受欢迎程度,并为投资者分析评估拍一部电影需要投入多少钱才最合适,否则就有可能收不回成本;
大数据帮助社交网站提供更准确的好友推荐,为用户提供更精准的企业招聘信息,向用户推荐可能喜欢的游戏以及适合购买的商品。
其实,这些还远远不够,未来大数据的身影应该无处不在,就算无法准确预测大数据终会将人类社会带往到哪种最终形态,但我相信只要发展脚步在继续,因大数据而产生的变革浪潮将很快淹没地球的每一个角落。
未来的大数据除了将更好的解决社会问题,商业营销问题,科学技术问题,还有一个可预见的趋势是以人为本的大数据方针。人才是地球的主宰,大部分的数据都与人类有关,要通过大数据解决人的问题。
比如,建立个人的数据中心,将每个人的日常生活习惯,身体体征,社会网络,知识能力,爱好性情,疾病嗜好,情绪波动……换言之就是记录人从出生那一刻起的每一分每一秒,将除了思维外的一切都储存下来,这些数据可以被充分的利用:
医疗机构将实时的监测用户的身体健康状况;
教育机构更有针对的制定用户喜欢的教育培训计划;
服务行业为用户提供即时健康的符合用户生活习惯的食物和其它服务;
社交网络能为你提供合适的交友对象,并为志同道合的人群组织各种聚会活动;
*** 能在用户的心理健康出现问题时有效的干预,防范自杀,刑事案件的发生;
金融机构能帮助用户进行有效的理财管理,为用户的资金提供更有效的使用建议和规划;
道路交通、汽车租赁及运输行业可以为用户提供更合适的出行线路和路途服务安排;
……
目前做大数据分析的产品有多瑞科舆情数据分析站系统,主要是侧重对数据搜集和分析整理出报告。
问题六:数据中心,云计算,大数据这三个词之间有什么区别和联系 数据中心,简称机房,就是防止服务器用的,其中云计算的母服务器(物理服务器)也需要放置到机房。
云计算,就是虚拟服务器,也就是在物理服务器上通过技术手段虚拟出若干台服务器。
大数据,是指手上拥有的海量的数据信息,比如用户购买记录,用户注册记录等等。
问题七:现在说的大数据是什么意思 大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。可以被现代先进媒体记录、采集和开发利用的数据集、数据流和数据体。
数联网是大数据时代信息技术发展的重要产物,数联网依托大数据,是大数据的应用模型,通过数联网,用户可以通过数联网获得全网数据融合的数据价值。
问题八:中国大数据中心在哪个城市 你好,中国数据中心有八大节点:北京、武汉、成都、广州、上海、沈阳、西安、南京。
这几个都是大数据中心,其中成都数据中心是中国电信全国8大节点之一,可支配带宽资源丰富,与Chinanet骨干网节点带宽60G,CN2节点带宽10G。机房内部网络全部采用千兆连接核心层与汇聚层,双百兆冗余到接入层的无瓶颈交换式结构,局域网采用千兆与百兆混合交换式可监控网络,中心网络设备确保高可靠性架构,做到无单点故障,分支网络提供冗余设备及线路,可针对客户数据传输,维护的需求提供XDSL,DDN,ISDN等多种接入手段,并能提供与国内Chinanet主要节点城市连接的长途专线。
听说西普网络有这几个节点的一手资源,希望能够帮到你
问题九:大数据中心配几个交换机 一般情况下有两个核心交换机,然后看你数据中心的规模再添加多台接入交换机 ,接入交换机的数量不确定,对于接入交换机就不需要做主备了。我们一般一排机柜有一个列头,里面放接入交换机。
问题十:国内大数据公司有哪些? 大数据包涵很广泛,涉及到很多方方面面,技术难度也很大,国内能做的公司不太多,我知道的有网络、华为、联想、浪潮、电科华云、腾讯、阿里巴巴、中科曙光等。
⑤ 企业大数据实战案例
企业大数据实战案例
一、家电行业
以某家电公司为例,它除了做大家熟知的空调、冰箱、电饭煲外,还做智能家居,产品有成百上千种。在其集团架构中,IT部门与HR、财务等部门并列以事业部形式运作。
目前家电及消费电子行业正值“内忧外患”,产能过剩,价格战和同质化现象严重;互联网企业涉足,颠覆竞争模式,小米的“粉丝经济”,乐视的“平台+内容+终端+应用”,核心都是经营“用户”而不是生产。该公司希望打造极致产品和个性化的服务,将合适的产品通过合适的渠道推荐给合适的客户,但在CPC模型中当前只具备CP匹配(产品渠道),缺乏用户全景视图支持,无法打通“CP(客户产品)”以及“CC(客户渠道)”的匹配。
基于上述内外环境及业务驱动,该公司希望将大数据做成所有业务解决方案的枢纽。以大数据DMP作为企业数据核心,充分利用内部数据源、外部数据源,按照不同域组织企业数据,形成一个完整的企业数据资产。然后,利用此系统服务整个企业价值链中的各种应用。
那么问题来了,该公司的数据分散在不同的系统中,更多的互联网电商数据分散在各大电商平台,无法有效利用,怎么解决?该公司的应对策略是:1)先从外部互联网数据入手,引入大数据处理技术,一方面解决外部互联网电商数据利用短板,另一方面可以试水大数据技术,由于互联网数据不存在大量需要内部协调的问题,更容易快速出效果;2)建设DMP作为企业统一数据管理平台,整合内外部数据,进行用户画像构建用户全景视图。
一期建设内容:技术实现上通过定制Spark爬虫每天抓取互联网数据(主要是天猫、京东、国美、苏宁、淘宝上的用户评论等数据),利用Hadoop平台进行存储和语义分析处理,最后实现“行业分析”、“竞品分析”、“单品分析” 三大模块。
该家电公司大数据系统一期建设效果,迅速在市场洞察、品牌诊断、产品分析、用户反馈等方面得到体现。
二期建设目标:建设统一数据管理平台,整合公司内部系统数据、外部互联网数据(如电商数据)、第三方数据(如外部合作、塔布提供的第三方消费者数据等)。
该公司大数据项目对企业的最大价值是将沉淀的数据资产转化成生产力。IT部门,通过建设企业统一的数据管理平台,融合企业内外部数据,对于新应用快速支持,起到敏捷IT的作用;业务部门,通过产品、品牌、行业的洞察,辅助企业在产品设计、广告营销、服务优化等方面进行优化改进,帮助企业进行精细化运营,基于用户画像的精准营销和个性化推荐,帮助企业给用户打造极致服务体验,提升客户粘性和满意度;战略部门,通过市场和行业分析,帮助企业进行产品布局和战略部署。
二、快消行业
以宝洁为例,在与宝洁中国市场部的合作中发现,并不是一定要先整合内外部数据才能做用户画像和客户洞察。宝洁抓取了主流网站上所有与宝洁评价相关的数据,利用语义分析和建模,掌握不同消费群体的购物喜好和习惯,仅仅利用外部公开数据,快速实现了客户洞察。
此外,宝洁还在渠道管理上进行创新。利用互联网用户评论数据进行社群聆听,监控与宝洁合作的50个零售商店相关的用户评论,通过线上数据进行渠道/购物者研究并指导渠道管理优化。
实现过程:
1、锁定微博、大众点评等互联网数据源,采集百万级别消费者谈及的与宝洁购物相关内容;
2、利用自然语言处理技术,对用户评论进行多维建模,包括购物环境、服务、价值等10多个一级维度和50个二级维度,实现对用户评论的量化;
3、对沃尔玛、屈臣氏、京东等50个零售渠道进行持续监控,结果通过DashBoard和周期性分析报告呈现。
因此,宝洁能够关联企业内部数据,更有效掌握KA渠道整体情况,甚至进一步掌握KA渠道的关键细节、优势与劣势,指导渠道评级体系调整,帮助制定产品促销规划。
三、金融行业
对于消费金融来说,家电、快消的案例也是适用的,尤其是精准营销、产品推荐等方面。这里主要分享征信风控方面的应用。显然,互联网金融如果对小额贷款都像银行一样做实地考察,并投入大量人力进行分析评判的话,成本是很高的,所以就有了基于大数据的批量的信用评分模型。最终目的也是实现企业画像和企业中的关键人物画像,再利用数据挖掘、数据建模的方法建立授信模型。宜信的宜人贷、芝麻信用等本质上就是这个架构。
在与金融客户的接触中发现,不论银行还是金融公司,对外部数据的需求都越发迫切,尤其是外部强特征数据,比如失信记录、第三方授权后的记录、网络行为等。
以上是小编为大家分享的关于企业大数据实战案例的相关内容,更多信息可以关注环球青藤分享更多干货
⑥ 大数据如何与零售业结合 在实战中应用
大数据如何与零售业结合 在实战中应用
一、“大数据”的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。 对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。
二、“大数据”与零售业的结合运用
对于数据的使用,许多实体零售商同样表示非常重视,他们对企业积累的数据进行了各种预测和分析。然而,对具体的销售业务来说,往往存在理想与现实的纠结,前不久市场中一家知名的服装零售企业一方面在宣传盈利上市的同时,一方面曝出有近10亿元的库存。国内很多零售企业都知道“大数据”应用的好处,但他们一旦将“大数据”的应用结合到自己的企业经营中时,便会出现与目前经营有非常大的不适应问题,如此导致许多企业对此都持非常谨慎的态度。
1、将零售策略与“大数据”技术进行结合
零售企业谈的“大数据”的最大价值,是在零售策略上与“大数据”技术进行结合,最大程度地编制前置性的零售策略,确保销售计划的实现。“大数据”讲究四个“V”:一是数据体量大(Volume);二是数据类型复杂(Variety),多涉及到各种结构性与非结构性的;三是价值密度低(Value),这和体量大是相对应的;四是数据更新与处理速度快(Velocity)。
根据这些特性主动地在业务数据产生的同时做出相应的策略应对,会为企业赢得更多的时间和市场策略调整空间。这类似于大江大河的洪峰预警,上游的洪峰出现什么状况,下游要做什么样的应对。数据用到这一层面上,才具有直接的业务价值,这不是那种销量同期比、环比、销售计划比数据能指导业务的价值能相比的。例如一家涉足线上业务的实体零售商,在一组货品的15分钟促销时间内,往往准备着3套应变策略,以确保货品能够按计划卖出。
在实体商业领域,有许多关于数据与营销的案例。一个较早的版本就是美国沃尔玛啤酒和尿布的数据关系。原来,美国的妇女在家照顾孩子,所以她们会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。
当分析师了解到啤酒和尿布销量存在正相关关系、并进一步分析的时候,发现了这样的购买情境,于是将这两种属于不同门类的商品摆在一起。这个发现为商家带来了新的销售组合。当然,即使再多的零售连锁企业知道这个故事,也极少从平时销售中能发现这样的组合,哪怕是牵强附会的。
所以,零售策略设计是零售业“大数据”价值最大的地方,也是“大数据”可以直接为其提供支持的业务。
2、零售企业对“大数据”应保持正确态度
企业的领导者首先要重视“大数据”的发展、重视企业的数据中心,把收集顾客数据作为企业营销运营的第一目标;第二,对企业内部人员进行培训及建立收集数据的软硬件机制;第三,以业务需求为准则,确定哪些数据是需要收集的;第四,确认在企业已有的数据基础上或者未来方向前提下,如何达成前三项目标的基础建设方案。
在这些IT基础工作需要企业有实实在在的投入和建设规范的信息化团队,作为中国商业最大的一分子——中小微型零售企业似乎是不可能也没有足够的能力来面对这样一场变化的。
大中型零售商因为本身业务及利润的积淀,已经能够承担这样一场需求趋势的需要成本。中小微型企业还处于快速发展过程中,如果也如同大中型企业进行全方面的投入,将很快会被新型的IT工具拖垮或者遭受重创。
但这并不意味着中小零售企业没有机会,实际上IT的发展为所有的企业都提供了平等的选择,云计算的广泛应用即是对这样一场变革带来的临时礼物。
作为中小微型零售企业,完全不必考虑自己建设一套“大数据”的IT系统,他们从精力、成本、能力上来说都不适合,因此此类企业可以将企业的IT建设外包给适合的服务商,企业本身的所有精力可以投入到对商圈的开发上。
目前,一些IT软件开发运营商也已经针对传统零售企业推出了云服务的基础平台,为中小微型商业企业提供了大型企业和超大型企业同样的基础环境及系统架构,小企业只需清晰地规划出自己的目标和适合的步骤,使用云平台按需付费即可,大可不必进行巨大的初始投入和不可预测的运行成本。
三、“大数据”在零售企业实战中的应用
1、Target
最早关于“大数据”的故事发生在美国第二大的超市塔吉特百货(Target)。孕妇对于零售商来说是个含金量很高的顾客群体。但是他们一般会去专门的孕妇商店而不是在Target购买孕期用品。人们一提起Target,往往想到的都是清洁用品、袜子和手纸之类的日常生活用品,却忽视了Target有孕妇需要的一切。为此,Target的市场营销人员求助于Target的顾客数据分析部要求建立一个模型,在孕妇第2个妊娠期就把她们给确认出来。在美国出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,因此必须赶在孕妇第2个妊娠期行动起来。如果Target能够赶在所有零售商之前知道哪位顾客怀孕了,市场营销部门就可以早早的给他们发出量身定制的孕妇优惠广告,早早圈定宝贵的顾客资源。
如何能够准确地判断哪位顾客怀孕? Target想到公司有一个迎婴聚会(baby shower)的登记表,开始对这些登记表里的顾客的消费数据进行建模分析,不久就发现了许多非常有用的数据模式。比如模型发现,许多孕妇在第2个妊娠期的开始会买许多大包装的无香味护手霜;在怀孕的最初20周大量购买补充钙、镁、锌的善存片之类的保健品。最后Target选出了25种典型商品的消费数据构建了“怀孕预测指数”,通过这个指数,Target能够在很小的误差范围内预测到顾客的怀孕情况,因此Target就能早早地把孕妇优惠广告寄发给顾客。
为了不让顾客觉得商家侵犯了自己的隐私,Target把孕妇用品的优惠广告夹杂在其他一大堆与怀孕不相关的商品优惠广告当中。
根据这个“大数据”模型,Target制订了全新的广告营销方案,结果Target的孕期用品销售呈现了爆炸性的增长。Target的“大数据”分析技术从孕妇这个细分顾客群开始向其他各种细分客户群推广,从Target使用“大数据”的2002年到2010年间,Target的销售额从440亿美元增长到了670亿美元。
2、ZARA
ZARA平均每件服装价格只有LVHM四分之一,但是,回看两家公司的财务年报,ZARA税前毛利率比LVHM集团还高23、6%。
(1)分析顾客的需求
在ZARA的门店里,柜台和店内各角落都装有摄影机,店经理随身带着PDA。目的是记录其顾客的每个意见,如顾客对衣服图案的偏好,扣子的大小,拉链的款式之类的微小举动。店员会向分店经理汇报,经理上传到ZARA内部全球资讯网络中,每天至少两次传递资讯给总部设计人员,由总部作出决策后立即传送到生产线,改变产品样式。
关店后,销售人员结帐、盘点每天货品上下架情况,并对客人购买与退货率做出统计。再结合柜台现金资料,交易系统做出当日成交分析报告,分析当日产品热销排名,然后,数据直达ZARA仓储系统 。
收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,ZARA分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。
(2)结合线上店数据
2010年,ZARA同时在六个欧洲国家成立网络商店,增加了网络巨量资料的串连性。2011年,分别在美国、日本推出网络平台,除了增加营收,线上商店强化了双向搜寻引擎、资料分析的功能。不仅回收意见给生产端,让决策者精准找出目标市场;也对消费者提供更准确的时尚讯息,双方都能享受“大数据”带来的好处。分析师预估,网络商店为ZARA至少提升了10%营收。
此外,线上商店除了交易行为,也是活动产品上市前的营销试金石。ZARA通常先在网络上举办消费者意见调查,再从网络回馈中,撷取顾客意见,以此改善实际出货的产品。
ZARA将网络上的海量资料看作实体店面的前测指标。因为会在网络上搜寻时尚资讯的人,对服饰的喜好、资讯的掌握,催生潮流的能力,比一般大众更前卫。再者,会在网络上抢先得知ZARA资讯的消费者,进实体店面消费的比率也很高。
这些顾客资料,除了应用在生产端,同时被整个ZARA所属的英德斯(Inditex)集团各部门运用:包含客服中心、行销部、设计团队、生产线和通路等。根据这些巨量资料,形成各部门的KPI,完成ZARA内部的垂直整合主轴。
ZARA推行的海量资料整合,后来被ZARA所属英德斯集团底下八个品牌学习应用。可以预见未来的时尚圈,除了台面上的设计能力,台面下的资讯/数据大战,将是更重要的隐形战场。
(3)对数据快速处理、修正、执行
H&M一直想跟上ZARA的脚步,积极利用“大数据”改善产品流程,成效却不彰,两者差距愈拉愈大,这是为什么?
主要的原因是,“大数据”最重要功能是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,却无法支撑“大数据”供应的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与ZARA两周的时间相比。
因为H&M不像ZARA,后者设计生产近半维持在西班牙国内,而H&M产地分散到亚洲、中南美洲各地。跨国沟通的时间,拉长了生产的时间成本。如此一来,“大数据”即使当天反映了各区顾客意见,无法立即改善,资讯和生产分离的结果,让H&M内部的“大数据”系统功效受到限制。
“大数据”运营要成功的关键,是资讯系统要能与决策流程紧密结合,迅速对消费者的需求作出回应、修正,并且立刻执行决策。
3、亚马逊
此前亚马逊并未大张旗鼓推展广告业务,直至2012年年底,有报道指出,亚马逊即将推出实时广告交易平台,从而向Facebook和谷歌发起挑战。这个实时广告交易平台又称“需求方平台”(Demand Side Platform,DSP),可以让广告与目标消费者相遇。广告商可以在“需求方平台”上竞标网站的闲置广告空间,而竞标标的包括广告版位,以及符合特定条件的消费者。
亚马逊开发的“需求方平台”可以“协助广告商接触网路上的众多用户,同时也帮助客户迅速找到想购买产品的相关资讯”,“需求方平台”概念虽非亚马逊首创,但以丰富资料为后盾。
亚马逊与广告商分享的资讯有两类,一是依用户网路行为所做的通用分类,例如热衷时尚、喜爱电子产品、身份为母亲、爱喝咖啡等,二是用户的商品搜寻记录。至于消费者的实际购物资料,亚马逊似乎尚未列入分享。广告商即使无法得知实际消费记录,能了解潜在顾客的商品搜寻记录;亚马逊如果全力进军网路广告市场,仍可能大大改变产业生态。
亚马逊2012年的广告收入约为5亿美元, 2013年的广告收入将达10亿美元。这会成为亚马逊未来几年内营收增长的新动力,更重要的是,它可能是亚马逊各项业务中利润率最高的业务之一。
4、沃尔玛
2011年,沃尔玛电子商务的营收仅是亚马逊的五分之一,且差距年年扩大,让沃尔玛不得不设法奋起直追,找出各种提升数字营收的模式。最终,沃尔玛选择在社交网站的移动商务上放手一搏,让更大量、迅速的资讯,进入沃尔玛内部销售决策。沃尔玛的每张购买建议清单,都是大量资料运算而出的结果。
2011年4月,沃尔玛以3亿美元高价收购了一家专长分类社群网站Kosmix。Kosmix不仅能收集、分析网络上的海量资料(大数据)给企业,还能将这些资讯个人化,提供采购建议给终端消费者(若不是追踪结帐资料,这些细微的消费者习惯,很难从卖场巡逻中发现)。这意味着,沃尔玛使用的“大数据”模式,已经从“挖掘”顾客需求进展到要能够“创造”消费需求。
沃尔玛本身就是一个海量资料系统,适用各种商业上的分析行为,它的综合功能,作为世界最大的零售业(专题阅读)巨人,沃尔玛在全球超过200万名员工,总共有110个超大型配送中心,每天处理的资料量超过10亿笔。由于资料量过于庞大,沃尔玛的“大数据”系统最重要的任务,就是在做出每一笔决定前,将执行成本降到最低,并且创造新的消费机会。
Kosmix为沃尔玛打造的“大数据”系统称做“社交基因组(Social Genome)”,连结到Twitter、Facebook等社交媒体。工程师从每天热门消息中,推出与社会时事呼应的商品,创造消费需求。分类范围包含消费者、新闻事件、产品、地区、组织和新闻议题等。同时,针对社交网络快消息流的性质,沃尔玛内部的“大数据”实验室专门发展出一套追踪系统,结合手机上网,专门管理追踪庞大的社交动态,每天能处理的资讯量超过10亿笔。
“社交基因组”的应用方式五花八门。举例来说,沃尔玛实验室内部软件能从Foursquare平台上的打卡记录,分析出在黑色星期五,不同地区消费者最常购买的品项,然后,针对不同地区送出购买建议。
以上是小编为大家分享的关于大数据如何与零售业结合 在实战中应用的相关内容,更多信息可以关注环球青藤分享更多干货