导航:首页 > 网络数据 > 大数据入门学习视频

大数据入门学习视频

发布时间:2023-10-21 22:03:36

㈠ 目前hadoop大数据的视频教程谁讲的比较好

在学习大数据,教材比较容易找hadoop权威指南就可以,大家一件比较统一。但是视频教程比较多,也没看到有公认比较突出的。所以我决定一点点看并把感想分享在这里。
1,马士兵老师的Hadoop教程以及相关大数据教程
我刚看完,实在斗鱼直播上进行的,所以含有大量冗余。但是作为入门教程是十分合适的。首先因为马士兵老师是个明白人,说话都准确干练,入门的思路也很简单。
看完这个教程可以搭建一个集群环境,并且进行文件上传管理,一个maprece的例子。学完应该对HDFS,MapRece,Yarn三个主要模块有个比较清晰的认识。
2,尚学堂肖斌的hadoop100课,正在看
目前感觉比较啰嗦,也不是没用,只是不太适合我。重点不够精炼,看完之后在做评价。

㈡ 怎样进行大数据的入门级学习

一、整体了解数据分析——5小时
新人们被”大数据“、”人工智能“、”21世纪是数据分析师的时代“等等信息吸引过来,立志成为一名数据分析师,于是问题来了,数据分析到底是干什么的?数据分析都包含什么内容?
市面上有很多讲数据分析内容的书籍,在此我推荐《深入浅出数据分析》,此书对有基础人士可称消遣读物, 但对新人们还是有一定的作用。阅读时可不求甚解,重点了解数据分析的流程、应用场景、以及书中提到的若干数据分析工具,无需纠结分析模型的实现。5个小时,足够你对数据分析工作建立初步的印象,消除陌生感。
二、了解统计学知识——10小时
15个小时只够你了解一下统计学知识,作为入门足够,但你要知道,今后随着工作内容的深入,需要学习更多的统计知识。
本阶段推荐书籍有二:《深入浅出统计学》《统计学:从数据到结论》,要了解常用数理统计模型(描述统计指标、聚类、决策树、贝叶斯分类、回归等),重点放在学习模型的工作原理、输入内容和输出内容,至于具体的数学推导,学不会可暂放一边,需要用的时候再回来看。
三、学习初级工具——20小时
对于非技术类数据分析人员,初级工具只推荐一个:EXCEL。推荐书籍为《谁说菜鸟不会数据分析》,基础篇必须学习,提高篇不一定学(可用其他EXCEL进阶书籍),也可以学习网上的各种公开课。
本阶段重点要学习的是EXCEL中级功能使用(数据透视表,函数,各类图表适用场景及如何制作),如有余力可学习VBA。
四、提升PPT能力——10小时
作为数据分析人员,PPT制作能力是极其重要的一项能力,因此需要花一点时间来了解如何做重点突出,信息明确的PPT,以及如何把各类图表插入到PPT中而又便于更新数据。10个小时并不算多,但已经足够(你从来没做过PPT的话,需要再增加一些时间)。具体书籍和课程就不推荐了,网上一抓一大把,请自行搜索。
五、了解数据库和编程语言——10小时
这个阶段有两个目标:学习基础的数据库和编程知识以提升你将来的工作效率,以及测试一下你适合学习哪一种高级数据分析工具。对于前者,数据库建议学MySQL(虽然Hadoop很有用但你不是技术职位,初期用不到),编程语言建议学Python(继续安利《深入浅出Python》,我真没收他们钱……)。数据库学到联合查询就好,性能优化、备份那些内容用不到;Python则是能学多少学多少。
六、学习高级工具——10小时
虽然EXCEL可以解决70%以上的问题,但剩下30%还是需要高级工具来做(不信用EXCEL做个聚类)。高级分析工具有两个选择:SPSS和R。虽然R有各种各样的好处,但我给的建议是根据你在上一步中的学习感觉来定学哪一个工具,要是学编程语言学的很痛苦,就学SPSS,要是学的很快乐,就学R。不管用哪一种工具,都要把你学统计学时候学会的重点模型跑一遍,学会建立模型和小幅优化模型即可。
七、了解你想去的行业和职位——10+小时
这里我在时间上写了个”+“号,因为这一步并不一定要用整块时间来学习,它是贯穿在你整个学习过程中的。数据分析师最需要不断提升的能力就是行业和业务知识,没有之一。你将来想投入哪个行业和哪个职位的方向,就要去学习相关的知识(比如你想做网站运营,那就要了解互联网背景知识、网站运营指标体系、用户运营知识等内容)。
八、做个报告——25小时
你学习了那么多内容,但现在出去的话你还是找不到好工作。所有的招聘人员都会问你一句话:你做过哪些实际项目?(即使你是应届生也一样) 如果你有相关的项目经验或者实习经验,当然可以拿出来,但是如果没有,怎么办?答案很简单,做个报告给他们看,告诉招聘者:我已经有了数据分析入门级(甚至进阶级)职位的能力。同时,做报告也会是你将来工作的主要内容,因此也有可能出现另外一种情况:你费尽心血做了一个报告,然后发现这不是你想要的生活,决定去干别的工作了……这也是件好事,有数据分析能力的人做其他工作也算有一项优势。

㈢ 大数据入门需学习哪些基础知识

前言,学大数据要先换电脑:

保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求

java刚入门的时候要求javase。

scala是学习spark要用的基本使用即可。

后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。

crontab的使用,最多。

cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。

scp,ssh,hosts的配置使用。

telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。

sql统计,排序,join,group等,然后就是sql语句调优,表设计等。

4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。

5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。

hbase看浪尖hbase系列文章。hive后期更新。

7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。

8,实时处理系统
storm和spark Streaming

9,spark core和sparksql
spark用于离线分析的两个重要功能。

10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)

b),数据分析。(算法精通)

c),平台开发。(源码精通)

自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。

㈣ 入门大数据需要学习什么内容

作为一名零基础学习者,请不要将大数据开发看做一门与Java、python等相似的IT语言,大数据更像是一门技术,其所包含的内容相对比较多。在正式开始学习之前,可以买一些大数据相关书籍或者找一些网上的学习资料,先建立对行业以及对大数据相关职位的了解。

比如,大数据分为哪些发展方向,不同的发展方向对应哪些发展职位,各个职位的发展所要求的核心技能点是什么,企业对于大数据人才的需求是什么样的,了解清楚了这些,才能真正考虑清楚,学什么怎么学。

以大数据开发来说,其中涉及到的主要是大数据应用开发,要求一定的编程能力,在学习阶段,主要需要学习掌握大数据技术框架,包括hadoop、hive、oozie、flume、hbase、kafka、scala、spark等等……

以大数据分析来说,有主攻业务运营方面的数据分析师,也有主攻机器学习、深度学习等的数据挖掘师,具体到其中的各个职位,更是有着更加具体的技能要求,那么在学习阶段就要先做好相关的准备了。

关于入门大数据需要学习什么内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

㈤ 求黑马程序员大数据视频教程,入门的就行!

大数据课程是有些难度的,建议还是实践和理论课一起进行,可以多了解几家综合比较一下,利用空闲时间专门学习。我目前看的是黑马程序员大数据的视频,感觉入门很不错的。

㈥ 大数据怎么学习

兴趣是第一老师。选择学习一门课程和技能时,个人兴趣是至关重要,对于学习像大专数据这样抽象的技能更是如属此。

学习Java语言和Linux操作系统,这两个是学习大数据的基础。

最关键的是学习Hadoop+spark,掌握大数据的收集、生成、调用工具。

树立大数据思维,创造性开发、使用大数据。

深度了解大数据的意义、价值、市场、开发及运用前景。

到大数据管理中心、运用企业实习实践,掌握开发、运用技能。

㈦ 0基础自学大数据哪里找视频教材

零基础想要学习大数据,讲真,真的还是一件困难的事,不过人生就是这样,只有你越过更大的困难,才知道自己会有更大的收获。就像现在的大数据行业,人人都说大数据行业好,薪资高,但是你看到过每一个学习大数据的学生为此付出的惨痛经历吗?你看到过大数据工程师曾经日夜苦读、钻研书籍和教程吗?付出不一定有回报,但不付出一定不会有回报,想要更大的收获,先来收下这波大数据书籍和视频教程吧!
一、大数据书籍推荐:

1、《为数据而生》

书中分别阐述在大数据1.0、大数据2.0和大数据3.0时代下,相对应的数据分析需要做到分析、外化、集成。

2、《智能时代》

这本书作者分七章从不同角度对大数据进行介绍,分别以技术和思维方式的改变为主线,从工业革命这个角度嵌入,顺理成章的延伸出大数据与智能化,但是没有将过多笔墨放在技术的深究上,而是选择从应用层面体现大数据的理念。大数据应用则会渗透到各行各业,这正是作者的用心之处。

3、《R语言预测实战》

R语言横跨了金融、生物、医学、互联网等多个领域,主要用于统计、建模及可视化。由于上手快、效率高,备受技术人员青睐。预测是大数据挖掘的主要作用之一,借助R语言来做大数据预测,可以兼具效率与价值于一身。

3、《数据之巅》

这本书中,从小数据时代到大数据的崛起,作者以宏大的历史观、文化观、大数据观,给我们描绘了一幅数据科学、智慧文化的全景图。

4、《Hadoop权威指南》

《Hadoop权威指南(中文版)》从Hadoop的缘起开始,由浅入深,结合理论和实践,全方位地介绍Hadoop这一高性能处理海量数据集的理想工具。

5、《Hive编程指南》

《Hive编程指南》是一本Apache Hive的编程指南,旨在介绍如何使用Hive的SQL方法HiveQL来汇总、查询和分析存储在Hadoop分布式文件系统上的大数据集合。

大数据视频教程

对于零基础想学大数据的同学,小编不建议你一上来就接触大数据,你和大数据的近距离接触还有一个门槛,那就是编程语言的学习,学习大数据的首要纲领,就是熟练掌握一门编程语言。小编咨询了千锋大数据讲师,当前大数据所运用的编程语言基本都是java,也会涉及到Python、Scala编程语言,所以先从掌握一门编程语言学起吧!
java全套视频教程总目录

python最新基础视频教程

进行完大数据编程语言的学习,这时候你就可以真正的接触大数据技术知识了,我们知道大数据以Hadoop、spark、storm等核心技术组成,自然也会以此为重点突破。

大数据教程:Spark基础及源码分析

大数据课程:hadoop生态圈视频

㈧ 求大数据视频教程,小白入门的

大数据hadoop入门精讲

资料链接:https://pan..com/s/1smCTwRj 密码:vp5v

目录

阅读全文

与大数据入门学习视频相关的资料

热点内容
win10如何解压pkg文件 浏览:228
revit2016默认文件路径 浏览:917
电信网络资源管理系统 浏览:33
c编程默认图标怎么改 浏览:853
win10直接访问samba 浏览:52
在基金app买基金哪些费用便宜 浏览:463
有哪些中古app 浏览:196
美图m4s升级meios3 浏览:172
ug编程怎么选择不了部件 浏览:850
建行信用卡applepay 浏览:475
如何查看win10激活时间 浏览:551
iphone6锁屏后自己亮 浏览:195
jsp工程界面 浏览:167
考cpa有什么免费app 浏览:514
什么软件可以制作红头文件 浏览:268
vb如何判定一个文件被改动 浏览:929
win10文件名不显示文件格式 浏览:738
并行编程技术是什么意思 浏览:477
延安学电脑编程在哪里 浏览:302
应用程序关联dll 浏览:201

友情链接