导航:首页 > 网络数据 > 银行大数据客户画像

银行大数据客户画像

发布时间:2023-10-19 08:19:14

大数据能为银行做什么

随着移动互联网、云计算、物联网和社交网络的广泛应用,人类社会已经迈入一个全新的“大数据”信息化时代。而银行信贷的未来,也离不开大数据。
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。从发展趋势来看,银行大数据应用总的可以分为四大方面:
第一方面:客户画像应用。
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于自身拥有的数据有时难以得出理想的结果甚至可能得出错误的结论。
比如,如果某位信用卡客户月均刷卡8次,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控
包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
第四方面:运营优化。
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
银行是经营信用的企业,数据的力量尤为关键和重要。在“大数据”时代,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。
大数据海量化、多样化、传输快速化和价值化等特征,将给商业银行市场竞争带来全新的挑战和机遇。数据时代,智者生存,未来的银行信贷,是从数据中赢得未来,是从风控中获得安稳。

② 什么是大数据画像

大数据画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。

用户画像的建立能够帮助企业更好地为用户提供针对性的服务。与之相应,越来越多的第三方大数据公司,也开始依托自身的数据积累,为客户提供用户画像的服务。

比如个推旗下的用户画像产品,能够对用户线上和线下行为进行大数据分析,帮助APP开发者和运营者构建全面、精准、多维的用户画像体系。用户画像的形成需要经历四个过程,数据积累、数据清洗、数据建模分析、数据产出。

其中,数据清洗和数据建模统称数据处理。在经过数据处理之后,个推产出独特的冷、热、温数据维度,并分析用户的线上兴趣偏好和线下行为场景,形成用户画像。

为什么需要用户画像

用户画像的核心工作是为用户打标签,打标签的重要目的之一是为了让人能够理解并且方便计算机处理,如,可以做分类统计:喜欢红酒的用户有多少?喜欢红酒的人群中,男、女比例是多少?

也可以做数据挖掘工作:利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌?利用聚类算法分析,喜欢红酒的人年龄段分布情况?

大数据处理,离不开计算机的运算,标签提供了一种便捷的方式,使得计算机能够程序化处理与人相关的信息,甚至通过算法、模型能够“理解” 人。

③ 金融行业如何用大数据构建精准用户画像

用户画像的焦点工作就是为用户打“标签”,而一个标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、用户偏好等,最后将用户的所有标签综合来看,就可以勾勒出该用户的立体“画像”了。

为了精准地描述用户特征,可以参考下面的思路,从用户微观画像的建立→用户画像的标签建模→用户画像的数据架构,我们由微观到宏观,逐层分析。

首先我们从微观来看,如何给用户的微观画像进行分级呢?如下图所示

总原则:基于一级分类上述分类逐级进行细分。

第一分类:人口属性、资产特征、营销特性、兴趣爱好、购物爱好、需求特征

市场上用户画像的方法很多,许多企业也提供用户画像服务,将用户画像提升到很有逼格一件事。金融企业是最早开始用户画像的行业,由于拥有丰富的数据,金融企业在进行用户画像时,对众多纬度的数据无从下手,总是认为用户画像数据纬度越多越好,画像数据越丰富越好,某些输入的数据还设定了权重甚至建立了模型,搞的用户画像是一个巨大而复杂的工程。但是费力很大力气进行了画像之后,却发现只剩下了用户画像,和业务相聚甚远,没有办法直接支持业务运营,投入精力巨大但是回报微小,可以说是得不偿失,无法向领导交代。

    事实上, 用户画像涉及数据的纬度需要业务场景结合 ,既要简单干练又要和业务强相关,既要筛选便捷又要方便进一步操作。用户画像需要坚持三个原则,分别是人口属性和信用信息为主,强相关信息为主,定性数据为主。下面就分别展开进行解释和分析。

描述一个用户的信息很多,信用信息是用户画像中重要的信息,信用信息是描述一个人在社会中的消费能力信息。任何企业进行用户画像的目的是寻找目标客户,其必须是具有潜在消费能力的用户。 信用信息可以直接证明客户的消费能力,是用户画像中最重要和基础的信息 。一句戏言,所有的信息都是信用信息就是这个道理。其包含消费者工作、收入、学历、财产等信息。

我们需要介绍一下强相关信息和弱相关信息。 强相关信息就是同场景需求直接相关的信息,其可以是因果信息 ,也可以是相关程度很高的信息。

如果定义采用0到1作为相关系数取值范围的化,0.6以上的相关系数就应该定义为强相关信息。例如在其他条件相同的前提下,35岁左右人的平均工资高于平均年龄为30岁的人,计算机专业毕业的学生平均工资高于哲学专业学生,从事金融行业工作的平均工资高于从事纺织行业的平均工资,上海的平均工资超过海南省平均工资。从这些信息可以看出来人的年龄、学历、职业、地点对收入的影响较大,同收入高低是强相关关系。简单的将,对信用信息影响较大的信息就是强相关信息,反之则是弱相关信息。

用户其他的信息,例如用户的身高、体重、姓名、星座等信息,很难从概率上分析出其对消费能力的影响,这些弱相关信息,这些信息就不应该放到用户画像中进行分析,对用户的信用消费能力影响很小,不具有较大的商业价值。

用户画像和用户分析时,需要考虑强相关信息,不要考虑弱相关信息,这是用户画像的一个原则。

例如可以将年龄段对客户进行划分,18岁-25岁定义为年轻人,25岁-35岁定义为中青年,36-45定义为中年人等。可以参考个人收入信息,将人群定义为高收入人群,中等收入人群,低收入人群。参考资产信息也可以将客户定义为高、中、低级别。定性信息的类别和方式方法,金融可以从自身业务出发,没有固定的模式。

将金融企业各类定量信息,集中在一起,对定性信息进行分类,并进行定性化,有利与对用户进行筛选,快速定位目标客户,是用户画像的另外一个原则。

下面内容将详细介绍,如何根据用户行为,构建模型产出标签、权重。一个事件模型包括:时间、地点、人物三个要素。每一次用户行为本质上是一次随机事件,可以详细描述为:什么用户,在什么时间,什么地点,做了什么事。

什么用户 :关键在于对用户的标识,用户标识的目的是为了区分用户、单点定位。

以上列举了互联网主要的用户标识方法,获取方式由易到难。视企业的用户粘性,可以获取的标识信息有所差异。

什么时间 :时间包括两个重要信息,时间戳+时间长度。时间戳,为了标识用户行为的时间点,如,1395121950(精度到秒),1395121950.083612(精度到微秒),通常采用精度到秒的时间戳即可。因为微秒的时间戳精度并不可靠。浏览器时间精度,准确度最多也只能到毫秒。时间长度,为了标识用户在某一页面的停留时间。

什么地点 :用户接触点,Touch Point。对于每个用户接触点。潜在包含了两层信息:网址 + 内容。网址:每一个url链接(页面/屏幕),即定位了一个互联网页面地址,或者某个产品的特定页面。可以是PC上某电商网站的页面url,也可以是手机上的微博,微信等应用某个功能页面,某款产品应用的特定画面。如,长城红酒单品页,微信订阅号页面,某游戏的过关页。

内容 :每个url网址(页面/屏幕)中的内容。可以是单品的相关信息:类别、品牌、描述、属性、网站信息等等。如,红酒,长城,干红,对于每个互联网接触点,其中网址决定了权重;内容决定了标签。

注:接触点可以是网址,也可以是某个产品的特定功能界面。如,同样一瓶矿泉水,超市卖1元,火车上卖3元,景区卖5元。 商品的售卖价值,不在于成本,更在于售卖地点。 标签均是矿泉水,但接触点的不同体现出了权重差异。这里的权重可以理解为用户对于矿泉水的需求程度不同。即愿意支付的价值不同。

标签 权重

矿泉水 1 // 超市

矿泉水 3 // 火车

矿泉水 5 // 景区

类似的,用户在京东商城浏览红酒信息,与在品尚红酒网浏览红酒信息,表现出对红酒喜好度也是有差异的。这里的关注点是不同的网址,存在权重差异,权重模型的构建,需要根据各自的业务需求构建。

所以,网址本身表征了用户的标签偏好权重。网址对应的内容体现了标签信息。

什么事 :用户行为类型,对于电商有如下典型行为:浏览、添加购物车、搜索、评论、购买、点击赞、收藏 等等。

不同的行为类型,对于接触点的内容产生的标签信息,具有不同的权重。如,购买权重计为5,浏览计为1

红酒 1 // 浏览红酒

红酒 5 // 购买红酒

综合上述分析,用户画像的数据模型,可以概括为下面的公式: 用户标识 + 时间 + 行为类型 + 接触点(网址+内容) ,某用户因为在什么时间、地点、做了什么事。所以会打上**标签。

如:用户A,昨天在品尚红酒网浏览一瓶价值238元的长城干红葡萄酒信息。

标签: 红酒,长城

时间: 因为是昨天的行为,假设衰减因子为:r=0.95

行为类型: 浏览行为记为权重1

地点: 品尚红酒单品页的网址子权重记为 0.9(相比京东红酒单品页的0.7)

假设用户对红酒出于真的喜欢,才会去专业的红酒网选购,而不再综合商城选购。

则用户偏好标签是:红酒,权重是0.95*0.7 * 1=0.665,即,用户A:红酒 0.665、长城 0.665。

上述模型权重值的选取只是举例参考,具体的权重值需要根据业务需求二次建模,这里强调的是如何从整体思考,去构建用户画像模型,进而能够逐步细化模型。

本文并未涉及具体算法,更多的是阐述了一种分析思想,在计划构建用户画像时,能够给您提供一个系统性、框架性的思维指导。

核心在于对用户接触点的理解,接触点内容直接决定了标签信息。内容地址、行为类型、时间衰减,决定了权重模型是关键,权重值本身的二次建模则是水到渠成的进阶。模型举例偏重电商,但其实,可以根据产品的不同,重新定义接触点。

比如影视产品,我看了一部电影《英雄本色》,可能产生的标签是:周润发 0.6、枪战 0.5、港台 0.3。最后,接触点本身并不一定有内容,也可以泛化理解为某种阈值,某个行为超过多少次,达到多长时间等。

比如游戏产品,典型接触点可能会是,关键任务,关键指数(分数)等等。如,积分超过1万分,则标记为钻石级用户。钻石用户 1.0。

百分点现已全面应用用户画像技术于推荐引擎中 ,在对某电商客户,针对活动页新访客的应用中,依靠用户画像产生的个性化效果,对比热销榜,推荐效果有显著提升:推荐栏点击率提升27%, 订单转化率提升34%。

金融企业内部的信息分布在不同的系统中,一般情况下, 人口属性信息主要集中在客户关系管理系统 , 信用信息主要集中在交易系统和产品系统之中 ,也集中在客户关系管理系统中, 消费特征主要集中在渠道和产品系统中 。

兴趣爱好和社交信息需要从外部引入 ,例如客户的行为轨迹可以代表其兴趣爱好和品牌爱好,移动设备到位置信息可以提供较为准确的兴趣爱好信息。社交信息,可以借助于金融行业自身的文本挖掘能力进行采集和分析,也是可以借助于厂商的技术能力在社交网站上直接获得。社交信息往往是实时信息,商业价值较高,转化率也较高,是大数据预测方面的主要信息来源。例如用户在社交网站上提出罗马哪里好玩的问题,就代表用户未来可能有出国旅游的需求;如果客户在对比两款汽车的优良,客户购买汽车的可能性就较大。金融企业可以及时介入,为客户提供金融服务。

客户画像数据主要分为五类, 人口属性、信用信息、消费特征、兴趣爱好、社交信息。 这些数据都分布在不同的信息系统,金融企业都上线了数据仓库(DW),所有画像相关的强相关信息都可以从数据仓库里面整理和集中,并且依据画像商业需求,利用跑批作业,加工数据,生成用户画像的原始数据。

数据仓库成为用户画像数据的主要处理工具,依据业务场景和画像需求将原始数据进行分类、筛选、归纳、加工等,生成用户画像需要的原始数据。

用户画像的纬度信息不是越多越好,只需要找到这五大类画像信息强相关信息,同业务场景强相关信息,同产品和目标客户强相关信息即可。根本不存在360度的用户画像信息,也不存在丰富的信息可以完全了解客户,另外数据的实效性也要重点考虑。

依据用户画像的原则,所有画像信息应该是五大分类的强相关信息。强相关信息是指同业务场景强相关信息,可以帮助金融行业定位目标客户,了解客户潜在需求,开发需求产品。

只有强相关信息才能帮助金融企业有效结合业务需求,创造商业价值 。例如姓名、手机号、家庭地址就是能够触达客户的强人口属性信息,收入、学历、职业、资产就是客户信用信息的强相关信息。差旅人群、境外游人群、汽车用户、旅游人群、母婴人群就是消费特征的强相关信息。摄影爱好者、游戏爱好者、健身爱好者、电影人群、户外爱好者就是客户兴趣爱好的强相关信息。社交媒体上发表的旅游需求,旅游攻略,理财咨询,汽车需求,房产需求等信息代表了用户的内心需求,是社交信息场景应用的强相关信息。

金融企业内部信息较多,在用户画像阶段不需要对所有信息都采用,只需要采用同业务场景和目标客户强相关的信息即可,这样有助于提高产品转化率,降低投资回报率(ROI),有利于简单找到业务应用场景,在数据变现过程中也容易实现。

千万不要将用户画像工作搞的过于复杂,同业务场景关系不大, 这样就让很多金融企业特别是领导失去用户画像的兴趣,看不到用户画像的商业,不愿意在大数据领域投资。为企业带来商业价值才是用户画像工作的主要动力和主要目的。

金融企业集中了所有信息之后,依据业务需求,对信息进行加工整理,需要对定量的信息进行定性,方便信息分类和筛选。这部分工作建议在数据仓库进行,不建议在大数据管理平台(DMP)里进行加工。

定性信息进行定量分类是用户画像的一个重要工作环节,具有较高的业务场景要求,考验用户画像商业需求的转化。其主要目的是帮助企业将复杂数据简单化,将交易数据定性进行归类,并且融入商业分析的要求,对数据进行商业加工。例如可以将客户按照年龄区间分为学生,青年,中青年,中年,中老年,老年等人生阶段。源于各人生阶段的金融服务需求不同,在寻找目标客户时,可以通过人生阶段进行目标客户定位。企业可以利用客户的收入、学历、资产等情况将客户分为低、中、高端客户,并依据其金融服务需求,提供不同的金融服务。可以参考其金融消费记录和资产信息,以及交易产品,购买的产品,将客户消费特征进行定性描述,区分出电商客户,理财客户,保险客户,稳健投资客户,激进投资客户,餐饮客户,旅游客户,高端客户,公务员客户等。利用外部的数据可以将定性客户的兴趣爱好,例如户外爱好者,奢侈品爱好者,科技产品发烧友,摄影爱好者,高端汽车需求者等信息。

将定量信息归纳为定性信息,并依据业务需求进行标签化 ,有助于金融企业找到目标客户,并且了解客户的潜在需求,为金融行业的产品找到目标客户,进行精准营销,降低营销成本,提高产品转化率。另外金融企业还可以依据客户的消费特征、兴趣爱好、社交信息及时为客户推荐产品,设计产品,优化产品流程。提高产品销售的活跃率,帮助金融企业更好地为客户设计产品。

利用数据进行画像目的主要是为业务场景提供数据支持,包括寻找到产品的目标客户和触达客户。金融企业自身的数据不足以了解客户的消费特征、兴趣爱好、社交信息。

金融企业可以引入外部信息来丰富客户画像信息,例如引入银联和电商的信息来丰富消费特征信息,引入移动大数据的位置信息来丰富客户的兴趣爱好信息,引入外部厂商的数据来丰富社交信息等。

外部信息的纬度较多,内容也很丰富,但是如何引入外部信息是一项具有挑战的工作。外部信息在引入时需要考虑几个问题,分别是外部数据的覆盖率,如何和内部数据打通,和内部信息的匹配率,以及信息的相关程度,还有数据的鲜活度,这些都是引入外部信息的主要考虑纬度。外部数据鱼龙混杂,数据的合规性也是金融企业在引入外部数据时的一个重要考虑, 敏感的信息例如手机号、家庭住址、身份证号在引入或匹配时都应该注意隐私问题 , 基本的原则是不进行数据交换,可以进行数据匹配和验证。

外部数据不会集中在某一家,需要金融企业花费大量时间进行寻找。外部数据和内部数据的打通是个很复杂的问题, 手机号/设备号/身份证号的MD5数值匹配是一种好的方法 ,不涉及隐私数据的交换,可以进行唯一匹配。依据行业内部的经验,没有一家企业外部数据可以满足企业要求,外部数据的引入需要多方面数据。一般情况下,数据覆盖率达到70%以上,就是一个非常高的覆盖率。覆盖率达到20%以上就可以进行商业应用了。

金融行业外部数据源较好合作方有 银联、芝麻信用、运营商、中航信、腾云天下、腾讯、微博、前海征信,各大电商平台等 。市场上数据提供商已经很多,并且数据质量都不错,需要金融行业一家一家去挖掘,或者委托一个厂商代理引入也可以。独立第三方帮助金融行业引入外部数据可以降低数据交易成本,同时也可以降低数据合规风险,是一个不错的尝试。另外各大城市和区域的大数据交易平台,也是一个较好的外部数据引入方式。

用户画像主要目的是让金融企业挖掘已有的数据价值,利用数据画像技术寻找到目标客户和客户的潜在需求,进行产品推销和设计改良产品。

用户画像从业务场景出发,实现数据商业变现重要方式。 用户画像是数据思维运营过程中的一个重要闭环,帮助金融企业利用数据进行精细化运营和市场营销,以及产品设计。用户画像就是一切以数据商业化运营为中心,以商业场景为主,帮助金融企业深度分析客户,找到目标客户。

DMP(大数据管理平台)在整个用户画像过程中起到了一个数据变现的作用。从技术角度来讲,DMP将画像数据进行标签化,利用机器学习算法来找到相似人群,同业务场景深度结合,筛选出具有价值的数据和客户,定位目标客户,触达客户,对营销效果进行记录和反馈。大数据管理平台DMP过去主要应用在广告行业,在金融行业应用不多,未来会成为数据商业应用的主要平台。

DMP可以帮助信用卡公司筛选出未来一个月可能进行分期付款的客户,电子产品重度购买客户,筛选出金融理财客户,筛选出高端客户(在本行资产很少,但是在他行资产很多),筛选出保障险种,寿险,教育险,车险等客户,筛选出稳健投资人,激进投资人,财富管理等方面等客户,并且可以触达这些客户,提高产品转化率,利用数据进行价值变现。DMP还可以了解客户的消费习惯、兴趣爱好、以及近期需求,为客户定制金融产品和服务,进行跨界营销。利用客户的消费偏好,提高产品转化率,提高用户黏度。

DMP还作为引入外部数据的平台,将外部具有价值的数据引入到金融企业内部,补充用户画像数据,创建不同业务应用场景和商业需求,特别是移动大数据、电商数据、社交数据的应用,可以帮助金融企业来进行数据价值变现,让用户画像离商业应用更加近一些,体现用户画像的商业价值。

用户画像的关键不是360度分析客户,而是为企业带来商业价值 ,离开了商业价值谈用户画像就是耍流氓。金融企业用户画像项目出发点一定要从业务需求出发,从强相关数据出发,从业务场景应用出发。用户画像的本质就是深度分析客户,掌握具有价值数据,找到目标客户,按照客户需求来定制产品,利用数据实现价值变现。

银行具有丰富的交易数据、个人属性数据、消费数据、信用数据和客户数据,用户画像的需求较大。但是缺少社交信息和兴趣爱好信息。

到银行网点来办业务的人年纪偏大,未来消费者主要在网上进行业务办理。银行接触不到客户,无法了解客户需求,缺少触达客户的手段。分析客户、了解客户、找到目标客户、为客户设计其需要的产品,成了银行进行用户画像的主要目的。银行的主要业务需求集中在消费金融、财富管理、融资服务,用户画像要从这几个角度出发,寻找目标客户。

银行的客户数据很丰富,数据类型和总量较多,系统也很多。可以严格遵循用户画像的五大步骤。先利用数据仓库进行数据集中,筛选出强相关信息,对定量信息定性化,生成DMP需要的数据。利用DMP进行基础标签和应用定制,结合业务场景需求,进行目标客户筛选或对用户进行深度分析。同时利用DMP引入外部数据,完善数据场景设计,提高目标客户精准度。找到触达客户的方式,对客户进行营销,并对营销效果进行反馈,衡量数据产品的商业价值。利用反馈数据来修正营销活动和提高ROI。形成市场营销的闭环,实现数据商业价值变现的闭环。另外DMP还可以深度分析客户,依据客户的消费特征、兴趣爱好、社交需求、信用信息来开发设计产品,为金融企业的产品开发提供数据支撑,并为产品销售方式提供场景数据。

简单介绍一些DMP可以做到的数据场景变现。

A 寻找分期客户

利用发卡机构数据+自身数据+信用卡数据,发现信用卡消费超过其月收入的用户,推荐其进行消费分期。

B 寻找高端资产客户

利用发卡机构数据+移动位置数据(别墅/高档小区)+物业费代扣数据+银行自身数据+汽车型号数据,发现在银行资产较少,在其他行资产较多的用户,为其提供高端资产管理服务。

C 寻找理财客户

利用自身数据(交易+工资)+移动端理财客户端/电商活跃数据。发现客户将工资/资产转到外部,但是电商消费不活跃客户,其互联网理财可能性较大,可以为其提供理财服务,将资金留在本行。

D 寻找境外游客户

利用自身卡消费数据+移动设备位置信息+社交好境外强相关数据(攻略,航线,景点,费用),寻找境外游客户为其提供金融服务。

E 寻找贷款客户

利用自身数据(人口属性+信用信息)+移动设备位置信息+社交购房/消费强相关信息,寻找即将购车/购房的目标客户,为其提供金融服务(抵押贷款/消费贷款)。

来源: 钱塘大数据二次整理,TalkingData的鲍忠铁原文出处,

④ 【案例分享】某银行用这20件事,实现数字化转型

【案例分享】某银行用这20件事,实现数字化转型

1.项目背景

随着银行各业务的精细化运营,经营活动从批量式逐步向互动式、个性化、场景化方式转变,越来越多的银行都在运用数据来构建自己的精准营销渠道和场景,某银行零售事业部在此潮流之下希望能够尽快突破现状,建立数字化的解决方案来应对竞争和客户流失。

2.痛点分析

某银行零售事业部现在面临的两大问题,一方面是来自客户的,另一方面是来自竞争者的。

客户对银行的期望发生了变化,他们希望银行能够实现定制化的服务,提高服务的协作性、便利性、一致性以及控制性。

与此同时,竞争者正积极利用数字创新重新定义价值创造,以便更好地满足被忽略或未获满足的客户需求。这就出现了同一区域的不同银行利用数字化技术来抢占本地客户的现象。

另外,该银行零售事业部的高管存在对数智化理解不多的情况,对如何实现银行的数智化转型缺乏认知,甚至束手无措,即使花费了大量的钱也没有获得想要的效果。

3.解决方案

面对这些问题和挑战,该银行牵手国云数据一起为该银行零售部定制应对自身发展的解决方案。

第一步:国云数据通过对该银行全面的调研,帮助其打造战略、业务、需求、应用、算法、数据等六大地图,从而帮助其找到问题症结。

图片

第二步:在确定完战略地图后,把战略转化成能执行的20件事情,做好这个20件事情意味着转型基本成功,让事业部有明确的目标感。

(1)建设新零售数字化中台。打通个金、互金、CRM、数据仓库及外部购买三方数据、政府数据、互联网数据;

(2) 建立新零售用户,建立产品、网点等数据资产池,建立新零售数据组织,实现数据自助分析和提升,大大提高运营效率,让数据看得见、用的到,

(3) 建立数据驱动运营体系;

精细化运营:用户分群;重点客群画像:中老、商贷、亲子等不同客户的不同运营策略和方法;

存量运营:代发工资用户贡献提升。对代发工资用户做用户画像,智能交叉销售

(4) 产品推荐:建立客腊正户分层差异化营销服务体系,定位和聚焦重点战略客群

(5) 提升客户经营服务能力,深度经营实现价值提升,提升流失客户挽回能力,并利用大数据技术建立高效的客户流失预警体系,实现流失预警、提示、催促提前挽回、自动挽回

(6) 建立客户画像。建立网易贷获客模型和风险模型,自动智能筛贺饥选个贷客户白名单

(7) 建立客户裂变系统。通过客户推荐客户的方式实现客户高质量裂变,画出主推客户的画像以及主推客户的关系链,实现一键推荐,推荐有奖;

(8) 建立竞争情报系统。实时监控竞争对手及竞品的动态,帮助更合理更实时的定价调价、制定营销策略、爆品调整、产品组禅局返合推荐策略等;

(9) 理财用户。做大理财用户规模、精准获客模型,做强财富管理,加速扩张信用卡,丰富财富管理产品线。利用技术模型实现精准获客模型,给一线员工精准推荐财务管理潜在白名单,通过给财富管理客户建立实时动态画像,让一线员工提供定制、贴身、以咨询为导向的营销服务模式;

(10) 推动精细化销售管理体系,建立总-分-支常态化检视督导,实现军事化目标管理;

(11) 打造新零售总部数据化运营和指挥系统:以战略目标为导向,梳理业务详细关键指标,全链路闭环运营,实现精细化运营实时动态管控;

(12) 实时预警:调整分行零售总行数字化管理系统、根据总行策略,实时可下发任务系统;

(13) 网点画像:实现网点数字化、经营状况、健康指数分析,基于网点画像指导网点优化,对不同网点进行排名、相互学习、经验分享;

(14) 推动线下渠道优化:建立网点选址系统提供个性精准的选址方案、建立网点周边白名单用户精准推荐系统,根据内外部数据精准获取用户并让网点精准;

(15) 对销售一线人员实现数字化客户管理;

(16) 迭代创新线上渠道:建立手机银行端到端的客户行为追踪系统,从用户登陆到转化每个环境,指导手机银行优化,提供转化率;

(17) 基于数据分析和精准营销推荐:将结果推荐手机银行,客服中心转型为重要的线上渠道,承接营销和客户经营职能,成为半利润中心;

(18) 线上线下一体化经营:线上精准定位高潜客户并向线下推送,线下网点引流客户至线上虚拟店,从单一、各自孤立的渠道向融合渠道转型;

(19) 前线赋能系统:利用数据分析、客户推荐和销售激励实现自动化过程管理,并建设高产能,专业化前线团队实现数字化绩效,让每个员工知道今天的动作,动作换来的收入,以及收入状况;

(20) 数智化用户管理系统:让前线员工清楚的看到自己客户的动态、实现复购提醒、自动定制方案等方案。

第三步:基于这20件事情,快速帮助该行零售事业部构建了该部门数字化平台,包含数据中台、智能营销云平台等,并和该银行的科技部无缝对接,一方面快速满足了零售部的需求,又避免了过去投入大而效果不明显的状况,用20%的预算完成了既定目标。同时针对银行零售部的高管、中层人员等都做了不同程度的数字化转型课程培训,帮助他们迅速理解数字化转型的方法论及相关实现路径和产品。

4.最终效果

通过数据中台构建,解决了该银行因传统方式反复重建,每个烟囱投入大,建设周期长、无法快速响应业务等方面的问题。帮助银行深化客户经营、丰富产品服务、推动综合营销、加速渠道转型。新客获取成本比以往降低了5个百分点,同时挽回了上万个流失客户,实现不同渠道间轻松转化,年度初步统计降低投入及人员成本500万。

5.关于国云数据

国云数据集团是由原阿里数据团队建立的以独创的“数字化转型合伙人”的方式为客户提供数字化转型服务的公司,也是一家能为客户提供“战略+技术+人才”三位一体全方位、高标准数字化转型落地综合服务的供应商。

国云数据独创数字化转型方法论指导客户数字化转型落地,该方法论最近已衍生为《数字化转型方法论:落地路径与数据中台》,由机械工业出版社出版,作者为公司创始人马晓东,该书现在已全面发售。《数字化转型方法论:落地路径与数据中台》是一部从战略、技术、人才和管理4个维度全面阐述企业数字化转型方法论的著作,是国云数据服务7万余家企业的经验总结。

阅读全文

与银行大数据客户画像相关的资料

热点内容
有哪些中古app 浏览:196
美图m4s升级meios3 浏览:172
ug编程怎么选择不了部件 浏览:850
建行信用卡applepay 浏览:475
如何查看win10激活时间 浏览:551
iphone6锁屏后自己亮 浏览:195
jsp工程界面 浏览:167
考cpa有什么免费app 浏览:514
什么软件可以制作红头文件 浏览:268
vb如何判定一个文件被改动 浏览:929
win10文件名不显示文件格式 浏览:738
并行编程技术是什么意思 浏览:477
延安学电脑编程在哪里 浏览:302
应用程序关联dll 浏览:201
网站安全中存在哪些安全威胁 浏览:882
共享单车的网络架构图 浏览:565
作业帮的后台数据储存在哪里 浏览:576
如何显示excel的文件格式 浏览:418
域名为什么是网站类型 浏览:660
编程语言面向对象还有什么 浏览:848

友情链接