导航:首页 > 网络数据 > 大数据规避风险

大数据规避风险

发布时间:2023-10-16 08:02:37

Ⅰ 保护大数据安全的10个要点

一项对2021年数据泄露的分析显示,总共有50亿份数据被泄露,这对所有参与大数据管道工作的人来说,从开发人员到DevOps工程师,安全性与基础业务需求同等重要。

大数据安全是指在存储、处理和分析过于庞大和复杂的数据集时,采用任何措施来保护数据免受恶意活动的侵害,传统数据库应用程序无法处理这些数据集。大数据可以混合结构化格式(组织成包含数字、日期等的行和列)或非结构化格式(社交媒体数据、PDF 文件、电子邮件、图像等)。不过,估计显示高达90%的大数据是非结构化的。

大数据的魅力在于,它通常包含一些隐藏的洞察力,可以改善业务流程,推动创新,或揭示未知的市场趋势。由于分析这些信息的工作负载通常会将敏感的客户数据或专有数据与第三方数据源结合起来,因此数据安全性至关重要。声誉受损和巨额经济损失是大数据泄露和数据被破坏的两大主要后果。

在确保大数据安全时,需要考虑三个关键阶段:

当数据从源位置移动到存储或实时摄取(通常在云中)时,确保数据的传输

保护大数据管道的存储层中的数据(例如Hadoop分布式文件系统)

确保输出数据的机密性,例如报告和仪表板,这些数据包含通过Apache Spark等分析引擎运行数据收集的情报

这些环境中的安全威胁类型包括不适当的访问控制、分布式拒绝服务(DDoS)攻击、产生虚假或恶意数据的端点,或在大数据工作期间使用的库、框架和应用程序的漏洞。

由于所涉及的架构和环境复杂性,大数据安全面临着许多挑战。在大数据环境中,不同的硬件和技术在分布式计算环境中相互作用。比如:

像Hadoop这样的开源框架在设计之初并没有考虑到安全性

依赖分布式计算来处理这些大型数据集意味着有更多的系统可能出错

确保从端点收集的日志或事件数据的有效性和真实性

控制内部人员对数据挖掘工具的访问,监控可疑行为

运行标准安全审计的困难

保护非关系NoSQL数据库

这些挑战是对保护任何类型数据的常见挑战的补充。

静态数据和传输中数据的可扩展加密对于跨大数据管道实施至关重要。可扩展性是这里的关键点,因为除了NoSQL等存储格式之外,需要跨分析工具集及其输出加密数据。加密的作用在于,即使威胁者设法拦截数据包或访问敏感文件,实施良好的加密过程也会使数据不可读。

获得访问控制权可针对一系列大数据安全问题提供强大的保护,例如内部威胁和特权过剩。基于角色的访问可以帮助控制对大数据管道多层的访问。例如,数据分析师可以访问分析工具,但他们可能不应该访问大数据开发人员使用的工具,如ETL软件。最小权限原则是访问控制的一个很好的参考点,它限制了对执行用户任务所必需的工具和数据的访问。

大数据工作负载所需要的固有的大存储容量和处理能力使得大多数企业可以为大数据使用云计算基础设施和服务。但是,尽管云计算很有吸引力,暴露的API密钥、令牌和错误配置都是云中值得认真对待的风险。如果有人让S3中的AWS数据湖完全开放,并且对互联网上的任何人都可以访问,那会怎么样?有了自动扫描工具,可以快速扫描公共云资产以寻找安全盲点,从而更容易降低这些风险。

在复杂的大数据生态系统中,加密的安全性需要一种集中的密钥管理方法,以确保对加密密钥进行有效的策略驱动处理。集中式密钥管理还可以控制从创建到密钥轮换的密钥治理。对于在云中运行大数据工作负载的企业,自带密钥 (BYOK) 可能是允许集中密钥管理而不将加密密钥创建和管理的控制权交给第三方云提供商的最佳选择。

在大数据管道中,由于数据来自许多不同的来源,包括来自社交媒体平台的流数据和来自用户终端的数据,因此会有持续的流量。网络流量分析提供了对网络流量和任何潜在异常的可见性,例如来自物联网设备的恶意数据或正在使用的未加密通信协议。

2021年的一份报告发现,98%的组织感到容易受到内部攻击。在大数据的背景下,内部威胁对敏感公司信息的机密性构成严重风险。有权访问分析报告和仪表板的恶意内部人员可能会向竞争对手透露见解,甚至提供他们的登录凭据进行销售。从内部威胁检测开始的一个好地方是检查常见业务应用程序的日志,例如 RDP、VPN、Active Directory 和端点。这些日志可以揭示值得调查的异常情况,例如意外的数据下载或异常的登录时间。

威胁搜寻主动搜索潜伏在您的网络中未被发现的威胁。这个过程需要经验丰富的网络安全分析师的技能组合,利用来自现实世界的攻击、威胁活动的情报或来自不同安全工具的相关发现来制定关于潜在威胁的假设。具有讽刺意味的是,大数据实际上可以通过发现大量安全数据中隐藏的洞察力来帮助改进威胁追踪工作。但作为提高大数据安全性的一种方式,威胁搜寻会监控数据集和基础设施,以寻找表明大数据环境受到威胁的工件。

出于安全目的监视大数据日志和工具会产生大量信息,这些信息通常最终形成安全信息和事件管理(SIEM)解决方案。

用户行为分析比内部威胁检测更进一步,它提供了专门的工具集来监控用户在与其交互的系统上的行为。通常情况下,行为分析使用一个评分系统来创建正常用户、应用程序和设备行为的基线,然后在这些基线出现偏差时进行提醒。通过用户行为分析,可以更好地检测威胁大数据环境中资产的保密性、完整性或可用性的内部威胁和受损的用户帐户。

未经授权的数据传输的前景让安全领导者彻夜难眠,特别是如果数据泄露发生在可以复制大量潜在敏感资产的大数据管道中。检测数据泄露需要对出站流量、IP地址和流量进行深入监控。防止数据泄露首先来自于在代码和错误配置中发现有害安全错误的工具,以及数据丢失预防和下一代防火墙。另一个重要方面是在企业内进行教育和提高认识。

框架、库、软件实用程序、数据摄取、分析工具和自定义应用程序——大数据安全始于代码级别。 无论是否实施了上述公认的安全实践,代码中的安全缺陷都可能导致数据泄漏。 通过在软件开发生命周期中检测自研代码及开源组件成分的安全性,加强软件安全性来防止数据丢失。

Ⅱ 大数据安全层面的风险主要包括

大数据在应用和存储中存在着一系列安全风险,包括以下几个层面:
数据泄露风险:大数据的存储和传输,容易面临数据泄露的风险。这些数据可能是敏感性数据,如个人身份信息、财务信息、医疗记录等。
数据完整性风险:大数据存储和传输中,数据可能会遭受损坏、篡改或丢失,因此需要采取保护措施,保证大数据的完整性。
权限管理风险:“大数据时代”涉及众多数据源,管理人员要对各类数据源的权限进行仔细的分析和考虑,设置合适的权限,避免数据泄漏、篡改等风险。
命令注入风险:黑客利用安全漏洞,通过构造特殊的输入进行攻击,从而在系统内执行恶意命令,造成系统瘫痪、用户数据丢失等风险。
恶意软件攻击:恶意软件是指那些被创建来入侵计算机、网络或移动设备的软件,通过恶意指令来获取敏感数据,窃取隐私信息,或者破坏系统的完整性。
供应链风险:大数据往往依赖于云服务、第三方应用等,这些供应商存在安全问题时,会直接影响大数据的安全。
数据处理风险:大数据可能存在各种数据处理问题,如特征选择错误、处没烂理数据集不准确、应用算法核闭缺陷等,从而导致大数据的隐私和安全问题。
这些安全风险需要引起我们的注意,企业或个人在使用、处理与存储大数据时,应制定安全策略和措施,加强数据管理与安枯氏漏全运维,从而有效地缓解数据的安全风险。

Ⅲ 大数据时代个人隐私是否更容易泄漏该如何避免

随着全球互联网高速发展,现在大家已经正式进入大数据时代。信息渗透到各行各业,智能设备与个人生活联系得越来越紧密,这带来了很多便利。要让整个世界变得多姿多彩。不过凡事都有利有弊,就像一把双刃剑。大数据虽然能够造福人类,但也因为过度侵入私人生活造成了很多隐患。目前人们最关心也是最深受其害的一个问题,就是“隐私泄露 ”。其实在互联网时代到来以前,大家也没有像现在这么关心个人隐私,主要是那个时候个人与世界之间的“信道 ”是相互封闭的,传播途径受限,在某种程度上保护了隐私。现在大数据时代来临,网络渗透到了生活中的方方面面,在各种电子设备上,大家都有可能留下痕迹,这就加剧了隐私泄露的风险。对这种情况到底该如何避免呢?

第三,手机APP要谨慎授权

大家手机里装的APP越来越多,各种APP安装时都要授权,比如存储权限,录音权限,读取通讯录的权限等等。其实有很多权限完全是非必要的,自己可以在后台关闭,不然它会记录你上网的痕迹,过段时间各种推销电话和广告都会纷至沓来。

Ⅳ 大数据安全层面的风险

外部非授权人员对信息系统进行恶意入侵,非法访问隐私数据。
大数据平台中,B域、M域、O域及DPI信令等各类数据集中存储,一旦发生安全事件则可涉及海量客户敏感信息及公司数据资产。
大数据多部署在云环境晌缓中,由于存储、计算的多层面虚拟化,带来了数据管理权与所有权分离,网络边界模糊等新问题。
大数据平台多使用Hadoop、Hive、第三方组件等开源软件,这些软件设计初衷是为了高效数据处理,系统性安全功能相对缺乏宴敬模,安全防护能力远远滞后业务发展,存在安全漏洞。
敏感数据跨部门、跨系统留存,任一单位或系统安全防护措施不当,均可能发生敏感数据泄漏,造成“一点突破、全网皆稿闷失”的严重后果。

Ⅳ 大数据安全面临哪些风险及如何防护

现如今大数据已经逐渐改变了我们的生活方式,成为必不可少的存在,在我们享野首受大数据给我们带来的便利时,安全性无论对于企业还是个人都是必须要解决的重大课题。

总结大数据面临的三大风险问题如下

1.个人隐私问题凸显

例如大数据中的精准营销定位功能,通常是依赖于高度采集个人信息,通过多种关联技术分析来实现信息推广,精准营销。企业会掌握用户大量的数据,不排除隐私部分的敏感数据,一旦服务器遭到不法分子攻击导致数据泄露,很可能危及用户的隐私、财产甚至是人身安全。

2.数据准确与权威性

大数据通过各种渠道获取大量数据进行计算分析,企业通常直接通过分析结果进行支持决策,有时候企业只看结果,却忽略了源头数据的准确性,不准确的数据直接影响大数据分析的结果和企业的利益,错误的指导会对企业带来一定的风险与损失。

3.基础设施维护压力

数据量越大,对基础设施的性能要求就越高,同样对于网络的安全、恢复、防范依赖性就越强,一定程度上对企业设施安全的维护造成了压力,基础设施建设不完善、维护不到位,抱有没出问题就得过且过的态度,时刻面临被攻击的危险可能。

针对上述问题的防护措施如下

1.对用户早脊哗而言

虽然在互联网时代下要完全保护自己的隐私是比较困难的,但也要加强自身信息的防范意识。注册账号时,遵循最少原则,不要随意泄露敏感信息,降陆行低隐私信息被泄露的危险;

2.对企业而言

加强数据安全管理,实现数据的治理与清洗,从源头保证数据的一致性、准确性。首先升级基础服务器环境,建立多重防护、多级互联体系结构,确保大数据处理环境可信度。其次全方位实时监控、审计、防护,防止敏感数据泄露、丢失,确保数据风险可控,并不断通过体系化的大数据安全评估,形成数据安全治理的闭环管理;

3.对政策而言

应该加强对数据信息的保护,对数据的使用进行一定的监管与限制,对非法盗用、滥用数据信息者严惩,之后加强对技术安全研发使用的推广与实施,保证数据安全,加强对数据治理的力度。

大数据时代的到来,可以为我们的生活带来切实的利益,行业的数据规范正在建立并逐步趋于完善,对于我们来说,既不要因为安全风险问题而排斥大数据,也不要疏忽于对个人/企业信息的保护,合理看待和利用大数据,让其发挥真正的价值。

Ⅵ 如何利用大数据防范金融风险

1、征信大数据挖掘: 互联网海量大数据中与风控相关的数据。在数据原料方面,越来越多的互联网在线动态大数据被添加进来。 2、风控运营: 贷前营销:帆没 1、已有客户开发、新客户开发; 2、预审批、申请评分; 3、预审批,客户准入、预授信额度估算。 贷中审批: 1、欺诈甄别、反欺诈液此监测; 2、申请再评分; 3、授信审批; 4、贷款定价。 贷后管理: 1、行为评分模型; 2、额度管理; 3、风险预警、预态埋纳催收; 4、催收评分、催收策略。

阅读全文

与大数据规避风险相关的资料

热点内容
手机vmos导入的文件在哪里 浏览:115
苹果手机可以把文件传到华为吗 浏览:63
海川化工下载的文件默认到哪里 浏览:343
学唱粤语歌app 浏览:975
qq游戏生死狙击玩不了 浏览:120
win10邮件不显示图片 浏览:922
口袋妖怪所有版本下载 浏览:504
我们身边都有哪些大数据例子 浏览:25
震旦adc307扫描的文件在哪里 浏览:999
图片打开变成文件 浏览:194
松下微单电脑传文件软件 浏览:574
苹果蓝牙键盘surface 浏览:170
mindmaplinux 浏览:733
oppo手机怎么连接电脑传输数据 浏览:624
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320
word文件水印怎么取消 浏览:443
rhel6的镜像文件在哪里下载 浏览:571

友情链接