导航:首页 > 网络数据 > 容甄大数据

容甄大数据

发布时间:2023-10-16 05:21:44

A. 利用大数据分析将保险业风险防控做到极致

利用大数据分析将保险业风险防控做到极致
互联时代,特别是移动互联网日渐普及之后,大数据的搜集变得更为方便和可行,大数据的应用价值受到了各行各业的关注,甚至大数据本身也成了一个专门产业。保险作为基于大数法则运营发展的商业行为,对大数据的利用有着天然的倾向性。笔者围绕风险防控这一经营实务,围绕核保、核赔这两大关键节点,探讨大数据分析在风险防控中的应用,分析优势性,指出限制性,并基于行业现状对大数据分析的发展提出建议。
保险业面临风险控制新挑战
虽然风险防控是保险业发展过程中永恒的课题,但是随着经济社会的发展,新风险点层出不穷,恶意欺诈手段不断翻新,保险业风险防控受到的更为严峻的冲击。具体表现为:
1.行业竞争倒逼核保和理赔速度的提升,可能带来核保、核赔质量下降的负面影响。从纯理论角度和最理想化的角度来讲,核保和核赔这两个环节是可以为保险公司屏蔽所有逆选择和道德风险的。但付出的代价是用大量的人力对每个投保和理赔申请都进行大量的细致调查。这在保险公司实际运营中是不可能的。特别是在行业竞争越来越激烈的今天,为提升客户体验,保险公司的投保条件愈发宽松,核保核赔速度快,甚至免核保、免体检、快速赔付已经成为保险公司吸引客户的“标配”所在。各家公司千方百计提高服务速度,核保核赔部门往往要承受客户和销售部门的双重压力。在此情况下,虽然保险公司的保费收入有了较大增长,但是承受的风险冲击将明显增大。公司管理层对业绩增长的期待,或多或少冲淡了本该固若金汤的风控意识。
2.互联网保险的发展,客观上增加了风险控制的难度。如今,网络销售、移动互联网销售日益被保险公司所重视。各种保险销售网站,成为了保险公司新的保费增长点。甚至客户通过手机微信等软件终端,就可以轻松完成投保或理赔过程,在这种情况下,材料真实性验证难度较大,信息不对称性更为突出,机会型欺诈风险增加。异地出险的增加,也对理赔后续工作提出较高要求,容易出现保险服务流程衔接的空白。在传统保险销售过程中,销售人员与客户面对面地沟通,其实也是一种了解客户的过程。但是互联网保险的发展让这个过程消失。核保部门失去了一道天然屏障。这些都是增加了风险控制的难度。
大数据分析在保险业风险防控中的实际意义
虽然互联网技术的发展,给传统思维下的风险防控带来了巨大的挑战。但是笔者认为,任何新技术的进步都是双刃剑。而且解铃还须系铃人,互联网技术带来的“麻烦”也必将由互联网技术本身来开出药方。这个药方就是大数据分析。
IBM公司曾用5个特征来描述大数据,既大量、高速、多样、低价值密度、真实性。这些特征其实也表明了大数据对风险防控的意义。
1.大数据时代下,核保环节通过大数据分析有条件对客户进行系统性风险扫描。具体来讲,在传统核保过程中,客户告知什么,保险公司就审核什么。核保人员要从有限的告知信息中,发现风险点的蛛丝马迹。这个过程中的风控主要依靠客户的诚信水平和核保人员的工作经验。而且大量的投保告知,也挑战了客户的耐心。面对大量的提问,客户很有可能引起反感,不认真填写告知内容或干脆放弃购买保险产品。但在大数据条件下,保险公司有条件从数据库中获取客户的大量相关信息。比如通过了解客户的就医记录,可以准确推断客户的健康状况;通过查询客户在各家保险公司的既往投保记录,可以分析投保人有无重复投保、短期内大额投保等高风险行为,等等。这些都将打破既往核保的管理思路,使得核保过程更加精确化。同时客户需要进行的投保告知大大减少,只要授权保险公司查询相关信息,即可快速得到核保结果。
2.大数据时代下,核赔环节通过大数据分析更可能发现理赔欺诈的线索,堵住风险漏洞。传统的核赔过程中,主要靠核赔人员的经验甄别风险,靠调查人员有意识的排查堵住理赔欺诈的发生。这种情况下,人为制造保险事故、虚报并不真实存在的保险事故、夸大保险事故损失金额,都成为可能发生的情况。但在大数据条件下,保险公司不同地区的既往理赔数据,甚至不同保险公司之间的理赔数据有可能汇聚成一个超级数据库。任何理赔申请,都可以先经过数据库的检验。
3.大数据分析辅助风险控制的理论研究,已经有了一定的积累,为进一步应用打下了基础。近年来,大数据的开发应用不仅得到了实务界的关注,也吸引了理论界进行更为细致的研究,并取得了一定成果。例如欺诈分析技术,就是综合了大数据模型、统计技术和人工智能在反保险欺诈领域的一项应用。目前这项技术已有了比较完整的理论模型,建立了相应的算法体系,具体包括有监督算法和无监督算法。笔者认为,这些理论研究虽然对保险实务从业者来讲有一些晦涩,但是今后的大数据分析甚至人工智能在保险业的应用,就是建立在这些理论研究基础之上的。
基于大数据技术提升保险业风险控制
结合大数据技术本身的发展要求,以及当前保险公司实际运营情况。笔者在这部分将提出大数据时代提升保险业风险控制的具体工作建议。
1.以数据库建设为基础,在内部数据资源整合的基础上,争取建立全行业共享的大数据平台。在这里所讨论的所有大数据分析的优势,都建立在保险公司能够收集到海量有价值数据的基础之上。这种数据资源的整理,首先是公司内部资源的整理。特别是对于混业经营的大型金融集团来说,内部已有的数据资源整合就已经是非常伟大的成就。要让各家公司共享信息,注定是艰难的,这需要行业协会、监管部门的推动,需要各家公司站在更长远的角度展望保险业的发展。
2.保险公司要千方百计提升IT技术水平,储备大数据分析的技术力量。大数据分析对数据库技术的要求是比较高的,公司网络系统和数据计算能力面临考验。更为重要的是,如果要想进一步开发大数据资源,就必须有专门的统计分析人才。技术储备,不是过往运营数据分析等简单的数据开发,而是一整套科学的体系。保险公司有必要提前进行技术储备。
3.大数据分析过程中,要特别注意数据安全和客户信息的保密管理。大数据和互联网一样,也是一把双刃剑。保险公司挖掘好这座宝藏,能够在风险防控上取得事半功倍的效果。但同时也担负着维护数据安全的重任。海量的个人信息数据存储在保险公司,一旦泄露后果不堪设想。单个的数据泄露就可能引起客户的诉讼。批量的数据泄露,可能给公司带来的就是灭顶之灾。从法务角度来讲,保险公司在引用客户信息之前,要取得客户授权,规避法律风险。同时要尽可能依靠大数据分析,通过简单的客户信息就推断出某类业务的风险。
总之,风险控制是保险公司稳健经营的重要一环。在大数据时代,保险业必然要利用新技术手段,将风险防控工作做到极致,为公司和行业的发展创造价值。

B. 浅议大数据时代如何加强税收风险管理

内容提要:“大数据”时代的到来,为税收风险管理提供了新机遇,带来了新挑战。本文在分析大数据为税收风险管理提供契机的基础上,结合基层税务机关工作实践,尝试提出相应的税收风险管理策略和建议,提升风险管理水平。

关键字:大数据,税收风险管理

税收风险管理是提升税收征管质量、提高纳税人税收遵从度的重要手段,“大数据含顷”时谈局陆代的到来又为税收风险管理提出了新的要求,如何运用大数据提升税收风险管理水平,是新形势下基层税务机关面临的巨大挑战。

一、大数据时代的税收风险应对的机遇与挑战

(一)涉税数据规模大,速度呈现跳跃性增长。大数据时代的进步,给税务管理以信息管税带来了前所未有的机遇:现成的网络资源和真实的数据基础。“信息管税”,内涵要求是管住信息,没有信息谈何信息管税。2011年地税就实现了征管数据的全国大集中,标志已经步入了“数据驱动决策方法”的大数据时代,据统计,“金税三期”工程在全国推行后,数据量和业务量将会极大地增长,数据规模的增长速度也会呈跳跃性增长。

(二)涉税信息采集和掌握比较困难。大数据时代的进步,给税务管理以信息管税带来的挑战也是前所未有的,理论上客观存在的这些涉税信息,税务系统是既看不着,也摸不着。面对这突变发展的大数据时代,由于落后的税务征管信息系统背离大数据时代互通特征与现实应用的网络资源脱节腊拆,所以征管系统现存的数据就不可能做到完整、真实、准确。而由于不重视文明、进步社会管理的基本理理念,至今尚未开展税源信息标准化的基础工作,致使社会税源信息五花八门,其产生只能将就各市场主体自身业务推进的需要,不能满足税源信息采集的需要,进入大数据时代就如何采集和掌握现实税源信息成了信息管理最大的难题。

二、大数据时代下基层税务机关税收风险管理现状

(一)税收风险管理专业人才匮乏。在大数据时代中,税收风险管理要通过建立风险监控模型,来进行预测分析。特别是面对海量的数据,监控模型能左右着税收风险管理的成败。能建立或者组织建立风险监控模型的人才首先要有专业的税收业务知识、要熟练掌握税收应用系统、要有大数据的理念、熟悉数据的来源和构成,同时还要有创新意识和奉献精神。在基层税务机关,这种风险管理领域的专业人才少,导致工作实绩不明显。

(二)数据获取不全面。风险管理必须依靠大量正确的数据信息,金税三期的推行,解决了内部数据获取的问题,但是,纳税人的生产经营信息、财务信息以及第三方信息的获取渠道仍然有限。基层税务机关无法像总局大企业司的全流程风险监控那样获取信息,外部涉税信息主要来源于自行报送,获取信息的范围狭窄、渠道少且不准确。一些对风险分析至关重要的物流、资金流信息数据无法取得。同时,金税三期等含有无效甚至垃圾数据,严重影响了风险监控的准确性。

(三)思想认识上有偏差。风险管理的基础是信息的采集,也就是对数据的处理。在基层税务机关,多数人认为税收数据是信息中心的活。因此,把数据管理也看成了技术活,一方面觉得事不关己高高挂起,另一方面会认为数据管理高深莫测的,遥不可及。其实数据是业务载体和表现形式,是决定风险管理质量的基础和关键所在。

(四)涉税数据更新不及时。税务管理包括税务登记、纳税申报、税款征收、发票管理、纳税评估、税务稽查等产生的涉税信息资源,构成了税务机关征管系统的主体数据。由于采集方式多以手工录入为主,数据在质量上,特别是在完整性、准确性、规范性、逻辑性等方面,依然难以满足税收风险管理的需要。另外,不同纳税人的名称、生产经营地、法人、财务负责人、经营范围经常变化,使税务机关征管系统的数据很难做到随时更新,也给税收风险管理带来难题。

(五)数据分析技术能力有待提高。在基层税务机关,绝大多数的数据分析仍停留在简单的查询和比对层面,缺乏行之有效的数据分析工具,使大量沉积在业务操作层的数据尚未有效转换为管理决策层所需要的信息,即使是纳税人提供的网上申报数据和财务报表数据电子信息,也难以实现所有信息的全面自动读取、分类加工。税务机关难以对这些数据进行深层次的分析,获得更有价值的信息,对数据所反映出的税收风险、经济内涵进行分析监控乏力,没有建立税收与相关经济数据之间的关联模型,难以对现有数据进行数理统计和趋势预测分析,不能为管理决策提供科学、有效的信息支撑。

三、税收风险管理适应大数据时代发展的建议与对策

(一)强化以数治税理念。将该理念贯穿于税收征管改革和体系建设的全过程,引导基层税务干部正确理解大数据的核心理念,培养大数据的思维方式,自觉运用大数据查找风险疑点,开展风险排查和应对,营造用数据管理、用数据决策、用数据创新的风险管理氛围。强化税收风险共治理念。立足工作实际,以科学有效的税收风险共治平台为支撑,持续推进税务部门、纳税人、政府部门、社会组织在税收风险管理上的深度合作和协同治理,构 建党 政领导、税务主责、部门合作、社会协同、公众参与的税收风险共治模式,实现部门之间数据信息的开放共享、互联互通和深度应用,形成风险管理合力。

(二)建立良性的风险监管工作机制。基层税务机关可以建立本地区专门的风险监控管理机构。并且明确各岗位的职责权限:税源管理和纳税服务部门在变管户为管事的基础上,深化纳税服务,同时提供个性化的纳税服务,比如建立对话、帮助签订税收遵从协议等。风险监控部门可以看成是既有税收业务知识和一定数据管理水平的成员组成的本地区团队,负责数据管理、设计并更新维护本地区风险监控指标、对税收风险进行分析识别、向相关部门进行风险推送。纳税评估部门接收推送过来的风险任务、采取纳税评估或者税务审计等手段进行风险应对、同时将风险应对结果向相关部门推送。综合业务部门在执行税收政策的同时,审核风险应对结果,同时向风控部门推送风险应对的审核结果,为其更新和完善风险监控指标提供依据,由此形成了一个协调配合、联动监督、良性互动的闭环工作模式。

(三)建立以风险管理为导向的扁平化立体式征管模式。为积极应对大数据时代给税收风险管理带来的挑战,应进一步明确职能,规范流程,建立上下联动、横向互动的两级任务中心,形成扁平化立体式征管模式,以适应税收风险管理工作的开展。同时,按照纳税人的“规模或行业+征管事项分类”的原则,结合税源结构特点设置与风险管理相适应的税源管理机构,形成事项分类管理、风险专门应对,科学化、专业化、精细化更加突出的征管模式。通过征管模式的重构,形成市局、基层局相互呼应、互为依托、相互补充、共同提升的工作模式,继续提升大数据时代地税部门的工作质效。

(四)提升数据采集和应用能力。税收大数据是税务部门最核心和关键的征管资源。为了不断提升税务机关的核心竞争力,必须加强对税收大数据的交换共享、智能比对和逻辑相关分析,拓宽采集渠道,全面获取各方各类涉税信息。对地税内部、外部海量涉税数据信息进行全面归集采集、整合加工,实现“信息+数据”增值应用,着力突破征纳双方信息不对称的管理瓶颈,有效促进纳税遵从和管理增效。在信息采集方面,一是继续做好政府部门涉税信息采集工作。充分发挥《江西省地方税收保障条例》的作用,继续争取政府和相关职能部门的大力支持,发挥跨部门信息交换和共享平台作用,形成跨部门协同治理格局,全面准确及时地获取涉税信息,形成全面实时、动态化的税源监控网络,有效加强地方税收征管。二是继续加强互联网涉税信息的采集力度。充分利用互联网海量资源,甄别、采集、整合上市公司中涉及企业的有效数据,为税收管理提供数据基础。

(五)多措并举,不断提升数据应用的有效性。一是规范数据质量管理。严格规范纳税人的财务报表、基本资料等基础数据信息,把好数据入口关、校验关;
同时,对通过风险管理发现的数据质量问题进行跟踪管理,确保错误数据及时得到更正;
注重发挥纳税辅导提示、服务作用,提醒纳税人重视数据质量并及时更正错误数据。二是做好数据整合应用。其一,实现税务系统内部信息的有机整合和结构化存储。对税收征管主体软件、发票系统、风险管理等各系统中的涉税信息,第三方渠道采集的各类信息,以及税务人员在实地巡查、约谈、评估、稽查中获取的各类信息,进行有机整合和一户式归集,建立起统一规范的纳税人数据仓库,在各级税务机关、各税种管理部门、前台服务人员之间,按照职能权限实行信息开放和增值应用。其二,加强内外部数据的合作应用。对内,加强市局各业务处的合作,共同探讨信息分析应用途径;
积极征求基层局意见建议,了解信息的有效性、针对性,通过信息分析方与应用方的对接,形成数据采集、整理、运用的良性互动,进一步提升信息应用效率。对外,加强与国税、财政等部门的合作,对获取的数据进行综合分析,共同应用,互利共赢,共同提升信息应用水平。

(六)建立人才培养机制,打造专业税收风险分析管理团队。以风险分析、应对纳税、调整账务处理、计算机操作技能和评估约谈技巧等为主要内容,组织开展风险管理能力培训,激发干部业务学习活力;
要优化组合,合理配备资源,使得人尽其才。逐步建立一支综合素质高、专业技能强的专业化风险管理团队。加强风险管理队伍建设。结合“数字人事”和个人绩效管理,将管、考、训、用有效统一, 围绕打造风险管理专业团队的目标加强业务培训,面向风险管理人员定期考核,优化激励机制,重视工作实绩,促进风险管理人员自觉学习业务、钻研业务,不断提高风险管理能力和水平。

参考文献

(1)彭骥鸣曹永旭 韩晓琴 《大数据时代税源专业化管理面临的机遇与挑战》,《税收经济研究》,2013年6期

(2)林伟胜 许卓伟 《大数据时代信息系统建设的一些思考》,《信息与电脑》,2013年1期

(3)阿里2014财年数据,2014

(4)赵国栋 《大数据时代的三大发展趋势》,高科技与产业化,2013

(5)孙开沈昱池 《大数据,构建现代税收征管体系的推进器》,《税务研究》,2015年1期

(6)刘畅 《大数据背景下需改革税收征管模式》,《税收征纳》2014年12期

C. 大数据营销知识点总结

一、走进大数据世界

大数据的特征(4V):

1.  数据的规模性

2.   数据结构多样性

3.   数据传播高速性

4.   大数据的真实性、价值性、易变性;

结构化数据、半结构化数据、非结构化数据

大数据处理的基本流程图

大数据关键技术:

1.  大数据采集

2.   大数据预处理

3.  大数据存储及管理

4.   大数据安全技术

5.  大数据分析与挖掘

6.   大数据展现与应用

二、大数据营销概论

Target 百货客户怀孕预测案例

大数据营销的特点:

1.   多样化、平台化数据采集: 多平台包括互联网、移动互联网、广电网、智能电视等

2.   强调时效性: 在网民需求点最高时及时进行营销

3.   个性化营销: 广告理念已从媒体导向转为受众导向

4.   性价比高: 让广告可根据时效性的效果反馈,进行调整

5.   关联性: 网民关注的广告与广告之间的关联性

大数据运营方式:

1.   基础运营方式

2.   数据租赁运营方式

3.   数据购买运营方式

大数据营销的应用

1.   价格策略和优化定价

2.   客户分析

3.   提升客户关系管理

4.   客户相应能力和洞察力

5. 智能嵌入的情景营销

6.   长期的营销战略

三、产品预测与规划

整体产品概念与整体产品五层次

整体产品概念: 狭义的产品: 具有某种特定物质形态和用途的物体。

产品整体概念(广义):向市场提供的能够满足人们某种需要的

                      一切物品和服务。

整体产品包含:有形产品和无形的服务                          

整体产品五层次:潜在产品、延伸产品、期望产品、形式产品、核心产品

 

大数据新产品开发模型:

1.   需求信息收集及新产品立项阶段

2.  新产品设计及生产调试阶段

3.  小规模试销及反馈修改阶段

4.   新产品量产上市及评估阶段

产品生命周期模型

传统产品生命周期划分法:

(1)销售增长率分析法

  销售增长率=(当年销售额-上年销售额)/上年销售额×100%

销售增长率小于10%且不稳定时为导入期;

销售增长率大于10%时为成长期;

销售增长率小于10%且稳定时为成熟期;

销售增长率小于0时为衰退期。

(2)产品普及率分析法

    产品普及率小于5%时为投入期;

    普及率在5%—50%时为成长期;

    普及率在50%—90%时为成熟期;

    普及率在90%以上时为衰退期。

大数据对产品组合进行动态优化

产品组合

       销售对象、销售渠道等方面比较接近的一系列产品项目被称为产品线。产品组合是指一个企业所经营的不同产品线和产品项目的组合方式,它可以通过宽度、长度、深度和关联度四个维度反映出来

四、产品定价与策略

大数据定价的基本步骤:

1.   获取大数据

2.   选择定价方法

3.   分析影响定价因素的主要指标

4.  建立指标体系表

5.   构建定价模型

6.  选择定价策略

定价的3C模式:成本导向法、竞争导向法、需求导向法

影响定价的主要指标与指标体系表的建立

影响定价因素的主要指标:

1.  个人统计信息:家庭出生、教育背景、所在地区、年龄、感情状况、家庭关系等。

2.   工作状况:行业、岗位、收入水平、发展空间等

3.  兴趣:健身与养生、运动和户外活动、娱乐、科技、购物和时尚等

4. 消费行为:消费心理、购买动机等。

定价策略:

精算定价: 保险、期货等对风险计算要求很高的行业

差异定价: 平台利用大数据对客户建立标签,分析对产品的使用习惯、需求判断客户的忠诚度,对不同客户进行差别定价

动态定价: 即根据顾客认可的产品、服务的价值或者根据供需状况动态调整服务价格,通过价格控制供需关系。动态定价在提高消费者价格感知和企业盈利能力方面起着至关重要的作用。

价格自动化 :根据商品成本、市场供需情况、竞争产品价格变动、促销活动、市场调查投票、网上协商、预订周期长短等因素决定自身产品价格

用户感知定价 :顾客所能感知到的利益与其在获取产品或服务中所付出的成本进行权衡后对产品或服务效用所做出的整体评价。

协同定价: 是大数据时代企业双边平台多边协同定价策略

价格歧视:

一级 :就是每一单位产品都有不同的价格,即商家完全掌握消费者的消费意愿,对每个消费者将商品价格定为其能够承受的最高出价;

二级 :商家按照客户的购买数量,对相同场景提供的、同质商品进行差别定价;

三级 :可视为市场细分后的定价结果,根据客户所处的地域、会员等级等个人属性进行差别定价,但是对于同一细分市场的客户定价一致。

五、销售促进与管理

    促销组合设计概念

大数据促销组合设计流程

精准广告设计与投放

[if !supportLists]l [endif] 广告设计5M:任务(Mission),预算(Money),信息(Message),媒体(Media),测量(Measurement)。

通过用户画像的进一步挖掘分析,企业可以找出其目标消费群体的广告偏好,如平面广告的配色偏好,构图偏好,视频广告的情节偏好,配乐偏好,人物偏好等,企业可以根据这些偏好设计出符合目标消费群体审美的广告创意,选择消费者喜欢的广告代言人,做出能在目标消费群体中迅速传播开来的广告。

在媒体决策方面,利用大数据综合考虑其广告目的、目标受众覆盖率、广告信息传播要求、购买决策的时间和地点、媒体成本等因素后,有重点地采用媒体工具。企业可以在确定前述影响变量后,通过大数据的决策模型,确定相对最优的媒体组合。

六、客户管理

    大数据在客户管理中的作用

1.   增强客户粘性

2.   挖掘潜在客户

3.   建立客户分类

    客户管理中数据的分类、收集及清洗

数据分类:

描述性数据: 这类数据是客户的基本信息。

如果是个人客户,涵盖了客户的姓名、年龄、地域分布、婚姻状况、学历、所在行业、职业角色、职位层级、收入水平、住房情况、购车情况等;

如果是企业客户,则包含了企业的名称、规模、联系人和法人代表等。

促销性数据: 企业曾经为客户提供的产品和服务的历史数据。

包括:用户产品使用情况调查的数据、促销活动记录数据、客服人员的建议数据和广告数据等

交易性数据: 这类数据是反映客户对企业做出的回馈的数据。

包括历史购买记录数据、投诉数据、请求提供咨询及其他服务的相关数据、客户建议数据等。

收集:

清洗:

首先,数据营销人需要凭借经验对收集的客户质量进行评估

其次,通过相关字段的对比了解数据真实度

最后,通过测试工具对已经确认格式和逻辑正确数据进行测试

客户分层模型

客户分层模型 是大数据在客户管理中最常见的分析模型之一,客户分层与大数据运营的本质是密切相关的。在客户管理中,出于一对一的精准营销要求针对不同层级的客户进行区别对待,而客户分层则是区别对待的基础。

RFM客户价值分析模型

时间(Rencency):

     客户离现在上一次的购买时间。

频率(Frequency):

     客户在一定时间段内的消费次数。

货币价值(MonetaryValue):

    客户在一定的时间内购买企业产品的金额。

七、 跨界营销

利用大数据跨界营销成功的关键点

1.   价值落地

2.  杠杠传播

3.   深度融合

4.   数据打通

八、精准营销

    精准营销的四大特点

1.   可量化

2.   可调控

3.  保持企业和客户的互动沟通

4.  简化过程

精准营销的步骤

1.  确定目标

2.  搜集数据

3.   分析与建模

4.  制定战略

九、商品关联营销

       商品关联营销的概念及应用

关联营销:

关联营销是一种建立在双方互利互益的基础上的营销,在交叉营销的基础上,将事物、产品、品牌等所要营销的东西上寻找关联性,来实现深层次的多面引导。

关联营销也是一种新的、低成本的、企业在网站上用来提高收入的营销方法。

       关联分析的概念与定义

最早的关联分析概念: 是1993年由Agrawal、Imielinski和Swami提出的。其主要研究目的是分析超市顾客购买行为的规律,发现连带购买商品,为制定合理的方便顾客选取的货架摆放方案提供依据。该分析称为购物篮分析。

电子商务领域: 关联分析可帮助经营者发现顾客的消费偏好,定位顾客消费需求,制定合理的交叉销售方案, 实现商品的精准推荐 ;

保险公司业务: 关联分析可帮助企业分析保险索赔的原因,及时甄别欺诈行为;

电信行业: 关联分析可帮助企业发现不同增值业务间的关联性及对客户流失的影响等

简单关联规则及其表达式

事务:简单关联分析的分析对象

项目:事务中涉及的对象

项集:若干个项目的集合

简单关联规则 的一般表示形式是:前项→后项(支持度=s%,置信度=c%)

或表达为:X→Y(S=s%,C=c%)

例如:面包->牛奶(S=85%,C=90%)

            性别(女)∩收入(>5000元)→品牌(A)(S=80%,C=85%)

支持度、置信度、频繁项集、强关联规则、购物篮分析模型

置信度和支持度

support(X→Y)= P(X∩Y)                  

confidence(X→Y)= P(Y|X)

十、评论文本数据的情感分析

       商品品论文本数据挖掘目标

电商平台激烈竞争的大背景下,除了提高商品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说也变得越来越有必要,其中非常重要的方式就是对消费者的文本评论数据进行内在信息的数据挖掘分析。评论信息中蕴含着消费者对特定产品和服务的主观感受,反映了人们的态度、立场和意见,具有非常宝贵的研究价值。

针对电子商务平台上的商品评论进行文本数据挖掘的目标一般如下:

分析商品的用户情感倾向,了解用户的需求、意见、购买原因;

从评论文本中挖掘商品的优点与不足,提出改善产品的建议;

提炼不同品牌的商品卖点。

商品评论文本分析的步骤和流程

商品评论文本的数据采集、预处理与模型构建

数据采集:

1、“易用型”:八爪鱼、火车采集器

2、利用R语言、Python语言的强大程序编写来抓取数据

预处理:

1文本去重

检查是否是默认文本

是否是评论人重复复制黏贴的内容

是否引用了其他人的评论

2机械压缩去词

例如: “好好好好好好好好好好”->“好”

3短句删除

原本过短的评论文本      例如:很“好好好好好好好好好好”->“好”

机械压缩去词后过短的评论文本   例如:“好好好好好好好好好好”->“好”

4评论分词

文本模型构建包括三方面:情感倾向分析、语义网络分析、基于LDA模型的主体分析

 

情感倾向分析:

基于情感词进行情感匹配

对情感词的倾向进行修正

对情感分析结果进行检验

语义网络分析:

基于LDA模型的主体分析

十一、大数据营销中的伦理与责任

       大数据的安全与隐私保护

数据安全:一是保证用户的数据不损坏、不丢失;二是要保证数据不会被泄露或者盗用

 

大数据营销中的伦理风险:用户隐私、信息不对称下的消费者弱势群体、大数据“杀熟”

大数据伦理困境的成因:

用户隐私意识淡薄

用户未能清晰认知数据价值

企业利益驱使

] 管理机制不够完善

大数据伦理构建的必要性:企业社会责任、用户与社会群体的维系

这些是我按照老师讲的课本上的内容结合PPT总结出来的《大数据营销》的重点。

D. 大数据时代企业须打好信息资源整合攻坚战

大数据时代企业须打好信息资源整合攻坚战

数据被认为是新时期的基础生活资料与市场要素,重要程度不亚于物质资产和人力资本。

近年来,企业产生的数据量呈指数级增长,信息资源爆炸式激增,其中非结构化的数据信息达到85%左右,传统的信息资源管理技术已经无法应对大数据时代的挑战。

Hadoop等大数据技术和其他大数据工具和设备的出现以及云计算数据处理与应用模式的广泛运用,为企业处理日益增长的海量非结构化数据提供了高效、可扩展的低成本解决方案,弥补了传统关系型数据库或数据仓库处理非结构化数据方面的不足,深化和拓展了企业商业智能和知识服务能力,形成了数据驱动的决策机制,提高了决策水平。

因此,大数据时代,企业应转变信息资源管理工作模式和利用方式,以价值创造为核心,以新一代信息技术深度应用为抓手,加强信息资源整合,精准、快速地提取增值性的有效信息,打响信息资源整合攻坚战。

信息资源难题

大数据时代,物联网、云计算、移动互联网等新一代信息技术在企业产品研发、客户关系管理、风险管理、供应链管理、决策支持等环节的应用逐步深入,具有“大量(Volume)、多样(Variety)、快速(Velocity)、价值(Value)”特性的信息被大量创造出来。这些信息资源在统一标准规范、实时精准管控和深层价值挖掘上难度较大,企业面临信息资源管理的巨大挑战。

结构复杂多样,统一标准规范难。大数据时代,信息资源在组织上表现为非线性化,超文本、超媒体信息逐渐成为主要的方式;同一服务器上的信息资源也可能在数据结构、字符集、处理方式等方面存在差异。大数据这一结构复杂多样的特性给信息资源统一标准和规范的建立带来麻烦,使得体量庞大的结构化和非结构化的信息资源处于无序组织状态。标准化、规范化企业信息资源是未来企业信息化建设的重点和难点之一。

动态性与交互性并存,实时精准管控难。大数据时代,互联网信息是企业信息资源的重要组成部分,丰富的网络信息资源为企业数据获取提供了便利,这些资源为企业进行大规模、精准化的消费者行为研究提供了机会,而互联网信息的动态性是显而易见的,具有很大的自由度和随意性。同时,交互性是网络信息传播的最大特点,互联网形成了企业与用户沟通的桥梁,企业和用户共同参与,使得信息双向流动。企业对自由灵活的且互动性强的信息资源实时精准控制难度越来越大。

数量庞大且内容多样,深层价值挖掘难。大数据时代企业信息资源包罗万象,一方面是与外部的客户、合作伙伴通过文本信息、社交网路、移动应用等形式进行互动时产生大量的数据;一方面,企业内部生产研发、综合办公、视频监控等日常经营管理活动产生的大量信息。这些信息资源在形式上表现为文本、图像、音频、视频等,是多媒体、多语种、多类型信息的混合体。

研究表明,中国捕获和产生的数字信息量有望在2012年至2020年间增至8.5ZB,实现22倍的增长,或保持50%的年复合增长率。企业在PB级甚至EB级的数据中寻找相关信息无异于大海捞针,利用信息驱动决策的成本和复杂性与日俱增。

不对称发展

传统粗放式信息资源管理的整合度不高。企业信息资源长期处于粗放式管理状态。企业对内部产生和外部反馈的大量数据信息仅仅是存储下来,缺少信息的甄别、分类、整合和加工,很少利用信息进行管理决策,信息资源的利用率非常低。大多数企业缺乏有效的方法、手段和机制对信息资源进行管理,无法及时有效的对信息资源进行提取、集成和分析,整合度非常低。

信息资源管理缺乏对大数据的深度认知。就企业而言,信息资源管理的核心目标就是确保信息资源的有效利用,做到正确决策。企业只有深度认知大数据特征以及大数据给企业信息资源管理带来的难点,才能有序组织和管理结构复杂、大量、实时且潜在价值高的数据信息,才能及时、准确地挖掘分析出海量数据信息的潜在价值,才能确保信息资源的有效利用。然而,多数企业在信息资源管理过程中,对大数据的认知还只留于表面,导致信息资源的有效利用率偏低。

信息资源管理缺乏数据治理体系化建设。数据治理尚属比较新兴的、发展中的概念,随着“大(大数据)云(云计算)平(平台)移(移动互联网)”等新一代信息技术的飞速发展,对企业数据质量的要求越来越高,企业亟需数据治理(Data Governance)来输出规则的可信度高的数据。

然而,目前国内大多数企业在数据治理方面还处于初级阶段,只是做了简单的数据质量检查、数据归档、数据安全等分散性的数据处理工作,没有形成数据治理方法论,数据作为企业核心资产来运作的理念尚未形成,完整的数据治理体系建设缺失。

整合资源

统一信息资源模式,强化数据标准建设。大数据时代,企业信息资源整合的关键是依托企业主数据管理(MDM,Master Data Management),强化数据标准化建设,实现信息资源模式的统一。企业主数据管理就是将企业的多个业务系统中整合最核心的、最需要共享的数据(主数据),集中进行数据的清洗和丰富,并且以服务的方式把统一的、完整的、准确的、具有权威性的主数据分发给企业内需要使用这些数据的应用。

总结多年企业信息化规划经验,结合大数据时代企业信息资源管理的要求,提出了识别、诊断、规划、实施、维护5个阶段实现企业主数据管理的方法论。

推进结构化和非结构化数据的融合发展。大数据时代,实现企业海量复杂数据信息的科学有效管理是保障大数据技术能够充分挖掘企业信息资源的潜在价值的前提。纸质信息与数字化的视频、音频、邮件、图片等非结构化数据在企业信息资源中的比重的逐步攀升,蕴含了丰富的潜在价值。这些非结构化数据的构造方法重复率高、冗余存储明显,且不同对象之间可能存在复杂的关系。然而,传统的面向对象的数据模型无法实现对非结构化数据的组织和管理。

因此,企业需推进结构化和非结构化数据的融合式发展,将超文本、超媒体数据模型和面向对象数据模型进行融合,构建适合结构化和非结构数据统一组织和管理的数据模型。

积极部署大数据应用,驱动信息资源的有效利用。大数据时代,企业信息资源整合的最终目标是利用大数据分析与挖掘技术实现信息资源的高效利用。应用系统是大数据的根基,企业应加大大数据技术的应用部署力度,综合运用云计算、分布式计算、数据交换、数据仓库、数据挖掘以及非结构化的数据处理等多层次的大数据技术搭建大数据平台。

重视数据安全管理,确保大数据生态圈信息安全。大数据时代,信息系统之间互联是必然的,他们会形成一个息息相关的生态圈。在这一生态圈里,存储和管理的大量数据信息是企业市场竞争力的核心,需要对数据安全问题进行控制和管理。因此,企业在信息资源整合过程中应以数据安全管理为前提,需要与上下游企业以及安全管理机构、评测机构等第三方机构开展广泛合作,从企业管理制度、流程和技术手段等多方面协作确保大数据生态圈的数据信息安全。

以上是小编为大家分享的关于大数据时代企业须打好信息资源整合攻坚战的相关内容,更多信息可以关注环球青藤分享更多干货

E. 大数据能为文创产业注入巨大推动力

大数据能为文创产业注入巨大推动力

大数据如何影响文创产业?大数据又将为重庆带来什么?

针对一些产业内人士所持“大数据的应用往往会抑制文化、娱乐类产品生产的原创力”的观点,施水才持否定态度。他认为:“就像电脑的发明并没有消灭作家的灵感一样,大数据的出现并不影响原创力。我认为在‘互联网+’时代,跨界融合屡见不鲜,大数据对文创是非常有用的,只是不能绝对化而已。”

大数据不仅重视普遍性,也带来了个性化,它不仅没有抹杀原创力,更对其有推动作用。他以美国Netflix制作电视剧《纸牌屋》为例进行说明。“大数据通过分析用户在网上看视频的行为、评论等,做出投资决定,同时也决定故事构造、甄选男女演员等。” 施水才说:“由此可见,文娱界对大数据的应用也是非常广泛的。”

那么,大数据对于文创到底有什么作用呢?对此,施水才提出了自己的观点:“我认为大数据在对用户的洞察、满足个性化的需求和拉动文化消费方面,有着巨大的推动力。”

在针对用户洞察方面,施水才提到了大数据的预测作用。“网上有人认为消费者的需求是无法预测的,事实上大数据可以预测很多东西,比如电影票房。” 施水才说,其公司与和合作伙伴一起预测了280部的电影票房,准确率达到80%。

拓尔思此次为文博会带来的产品就是基于网络大数据领域相关的应用类服务。他向记者透露,公司已经与重庆的一些大型企事业单位及政府部门开始了合作,而与重庆日报报业集团等大型媒体的合作正是其中重点。

“比如,在与重庆日报报业集团的合作中,我们就负责提供大数据内容生产和平台监管服务。”施水才说,这项合作就是希望用大数据的技术理念,来优化报纸的生产流程,包括确定选题、发现热点、保护知识产权、进行个性化的广告投放等等。“以前这些是做不到的,大数据成为了媒体优化的利器。”

以上是小编为大家分享的关于大数据能为文创产业注入巨大推动力的相关内容,更多信息可以关注环球青藤分享更多干货

F. “大数据”的保险业应用主题

“大数据”的保险业应用主题_数据分析师考试

在数据应用呈现爆炸式发展的时代,不能把握“大数据”商机、引领潮流的保险企业,将可能逐渐丧失市场竞争力。

“大数据”是依托新的数据处理技术,对海量、高速增长、多样化的结构和非结构数据进行加工挖掘,找寻数据背后的规律,以提高分析决策能力、优化流程和科学配置资源的管理工具。

“大数据”正在向经济、社会、科学、文体及公共卫生等多个领域快速渗透。在网络技术、移动互联、云计算等新技术和金融市场化改革的双驱动下,金融与互联网、各金融板块之间的界限和壁垒被冲破,市场的游戏规则发生了深刻变化,谁掌握了数据,谁就掌握了竞争的制高点。

现代保险服务业要在经济“新常态”中研究和实施“大数据”战略,关键要找准大数据在保险业的应用场景、应用主题和应用策略。

助力保险费率市场化

保险作为一种风险转移和管理工具,是一种社会群体之间的风险救助机制。保险产品机理主要是遵循统计学范畴的“大数法则”,基于历史风险发生和损失的数据进行分析和预测,在重复随机现象中找出“必然”规律,依靠精算技术实施产品定价、建立财务运行机制。有些观点认为大数据颠覆了“大数法则”,实际上,虽然两者都是在“大量”数据基础上进行风险和财务预测,但在保险产品定价机制中的作用基点是完全不同的。

“大数法则”是保险定价的根本法则,特别是针对车险、寿险、健康等关系社会公众利益的领域,必须依托“大数法则”确保行业基准纯风险损失率厘定的公平性、充足性和安全性。也就是说,“大数法则”是保险运行管理的数理逻辑,是保险业不可动摇的理论和定价基础。而“大数据”主要发挥保险定价的辅助作用,特别是采集和获取客户行为、交易的网络数据进行关联分析,找寻数据背后风险与成本、收益的匹配规律,推动保险公司客户细分化、责任碎片化、产品定制化,优化精算定价模型,主要基于附加费率建立科学、有效的保险费率浮动机制和差别化定价机制。

因此,“大数据”并没有颠覆“大数法则”,而是对保险费率市场化形成机制的重要优化和改进,是一种以新技术为依托、更加精细化的风险管理辅助工具。

目前,新一轮保险费率形成机制改革步伐明显加快,非车险、意外险、投资连结险、普通型寿险、万能险等已经相继放开,商业车险、分红险市场化改革也即将发令放行,更多的产品定价权和选择权将交给市场。科学、有效的费率形成机制是市场化改革成功的关键。应全面构造以“大数法则”为基础的基准费率和以“大数据”技术为辅助的附加费率和产品创新机制。

一方面,保险监管部门应主导构建公开公正的保险基准费率形成机制,建立保险基准费率定期测算和发布机制,特别是借鉴国际上的成熟经验和模式,设立独立的保险费率厘定机构,形成主要保险产品的定价参照基准体系。另一方面,要鼓励保险企业在遵循基准费率的同时,发挥大数据在保险产品区域化、差别化、个性化的创新支撑作用,处理好产品创新与风险、成本、收益的关系。

驱动新一轮转型发展

自改革开放以来,保险市场保费和资产规模迅速扩张,却难以逃脱产品同质化、“跑马圈地”、价格恶性竞争、服务体验差的外部诟病,归根到底还是源于“以产品为中心”的粗放式发展模式。由于保险企业数据维度、质量、可利用度和处理能力不足,向“以客户为中心”的集约化管理模式转型“常提却难新”。

伴随金融综合化、保险集团化、渠道多元化发展,特别是电销、第三方电商、移动互联等新渠道的兴起,保险数据的历史积累、采集维度、关联分析与实践应用日益成熟,由于大数据有利于提升保险企业对客户行为特征、风险和产品偏好的分析能力,为保险企业客户关系管理、风险识别与定价、营销策略分析、理赔欺诈风险防控提供了新的驱动力,成为保险业新一轮转型发展的“利器”。

因此,保险企业应找准大数据在经营管理中的应用场景,着力解决制约转型发展的关键环节。

一是加强数据资源内外部整合。加强集团内部、各渠道、各产品线的数据整合利用,积极采集全面反映客户行为特征和交易偏好的移动互联、社交媒体、电商、地理位置、OBD等线上数据,引入身份、信用、车辆、驾驶行为等线下数据,为大数据技术应用建立现实基础。

二是构建完整的客户数据图谱。依托数据挖掘技术,推进客户需求分析和客户群组细分,在集团或公司内部建立客户虚拟账户,丰富客户全景视图,加强客户挽留与个性化推荐,促进客户的获取率、留存率和持续率。构建完善的客户自助服务体系,改善客户体验、提升客户忠诚度、提高客户整体价值。

三是提升数据发现和决策能力。重点提升对非结构化数据的存储、加工和分析能力。围绕交叉和二次销售、精准营销、代理人甄选和流失预警,加强数据分析和快速响应,整合昂贵的渠道资源,提升销售渠道价值。通过理赔洞见分析、反欺诈关联分析,提升成本精细化管理、精准打击欺诈行为。

四是加强数据架构规划。引入新的大数据分析工具和存储技术,提高对语音、视频、图片、网络日志等非结构化数据的分析处理能力,对信息模型、主辅数据源以及数据集成架构进行前瞻性设计,加强主数据和元数据管理,推动信息数据的逻辑整合。提高自身数据质量,注重数据全生命周期管理。

开创“数据治理”新模式

在保险资金运用和费率市场化加快推进的背景下,按照保监会“放开前端、管住后端”的市场化改革思路,市场化的“新常态”使传统的文件出台、现场检查、行政处罚等保险市场治理手段难以奏效,滞后的监管技术手段将无助于有效防控区域性和系统性风险,客观上要求保险监管部门从依靠行政手段向依靠“数据手段”治理市场转变:

一是从场外交易向场内交易转变。通过建立保险产品交易、中介交易和资产交易的交易场所和信息平台,促进保险交易的透明化、规则化和信息对称化;二是从监管信息统计与非现场监管向保单登记管理转变。市场和风险的快速变化,促使保险监管从依靠时滞的统计数据和局部的样本数据,向保单级的全量数据和实时的生产数据演变;三是由条款费率静态审批管理向基准费率测算常态化转变。定价权逐步交给市场后,产品创新必然层出不穷,基准费率常态监测、回溯分析和定期测算是产品监管和风险控制的必然要求。

基于上述行业转型发展和市场治理需求,应从提高行业核心竞争力和抗风险能力的高度,科学规划行业大数据体系。

一是全面推进行业信息共享与应用。在客户隐私保护和数据安全的前提下,建立行业中央集成数据仓库,打破企业之间的数据孤岛,将分散在各保险机构的数据,按照客户、保单、业务等多个主题进行采集、存储和有限共享,充分释放数据共享在规范市场行为、反保险欺诈、提升定价能力、促进精细化管理等方面的内在价值。

二是主动与外部数据交互应用。拓宽行业整体数据维度,依托行业数据共享的平台优势,积极引入公安、气象、医疗、教育、信用、移动通信等外部数据,主动与交管、税务、经侦、社保、征信等公共管理部门进行数据交互,发挥外部数据在行业内部治理中的独特作用,依托共享平台有效延伸保险参与社会治理的范围和触点。

三是研究制定行业大数据战略和设施框架。完善信息共享平台和保单登记制度等相关法律法规,为行业大数据战略实施建立良好的政策环境。加强行业数据标准建设,规范统一共享接口标准,提高数据整体质量;不断优化共享数据库的采集、存储、处理与结果应用的流程和技术,研究建立行业数据分析框架和模型,依托数据挖掘、云计算平台、虚拟化技术,支持海量、多结构类型、高频度的大数据处理。加强行业信息共享的安全体系建设,保障保险机构与共享信息关联生产的连续性、安全性和稳定性。

以上是小编为大家分享的关于“大数据”的保险业应用主题的相关内容,更多信息可以关注环球青藤分享更多干货

G. 大数据时代校本教研转型策略及路径

大数据时代校本教研转型策略及路径

基于云、物联网、数据库技术以及人工智能和虚拟现实在教育中的广泛渗透,大数据时代正催生着一场场新的教育变革。现有的教研机制如何适应大数据主导的未来?基于大数据的运用如何创新校本教研思路和策略?如何依托大数据平台探寻到最佳的校本教研转型路径?这正是本文试图回答的问题。
一、大数据缺乏的传统教研局限性
我们生活在一个被几何级爆炸的数据包围的时代,我们的一切行为都在产生海量的数据,这些数据被称作“大数据”。[1]2大数据之“大”,并不仅在于“容量之大”,更大的意义在于可以借助云技术等手段,通过海量数据的筛选、整合和分析,解决新的问题,创造新的价值。大数据时代,传统校本教研形态已经滞后于时代的发展。
第一,以行政命令型为主的教研管理已不能适应教研发展的新趋势。传统的校本教研活动因其行政主导过多、任务驱动过强、互动生成较少、过程数据欠缺等,其教研形态存在着单一性、封闭性、滞后性与静态化的特点。教研活动更多执行的是“规定性动作”,大多数学校都是循着“期初学校安排教研计划—教研组按计划布置落实—分阶段组织教学展示或研讨—期末各部门进行教研总结”这样的模式进行。[2]在这样“齐步走”的统一步调中,教研的目光很难细致地聚焦到课堂真实疑难问题的研究上,研讨活动更少触及普遍学科规律探寻的应有深度。校本教研缺乏实实在在的研究历程,案例追踪缺少过程性资料的佐证。没有过程,缺乏实践数据的支撑,教研的有效性大打折扣,教研视野也很难有效拓宽。这种形态的教研活动,聚合性、开放性、创新性与动态性都明显不足,形式化、低效化特征突出。
第二,以经验帮带型为主的教研方式已不能适应教研发展的新态势。现如今,绝大部分学校对于大数据的认识和研究尚处于起步阶段,对于大数据在教育领域的探索和实践才刚刚开始。对于如何真正地将大数据应用于教研,反馈于教育,普遍缺乏深度的认识和操作的策略。究其原因,一方面是因为传统教研“自下而上的主题确认意识”缺乏,加上空间、时间以及技术设备的约束,教研内容无法直接唤起教师教研的内在需求,无法直接对其课堂产生辐射与效益,因此难以吸引教师深度参与。另一方面,面对新时期急剧变化的教研态势,更多的学校没有主动与时代对接,无法前瞻性地为教师提供思维自由碰撞的教研平台(比如活动前后讨论平台的提供),无法适时、足量地为其提供教育科研所需要的数据支持与技术便利,教师教研的多元合作与深度拓展缺乏足够的凝聚与吸引。这样的教研必然无法在大数据时代展现应有的价值与活力。
二、大数据时代校本教研的转型策略
面对海量信息呼啸而来的大数据时代,面对以“移动互联和平板触控技术”为核心的云计算、云存储、云教育、云课堂、云教研叠加出现的全新教育态势,中小学校该如何应对这种前所未有的教育变革?有哪些好的教研策略与应用范式呢?
(一)核心视角转型:由关注“教”转向聚焦“学”
“师本”还是“生本”一度成为教研热议的话题。以“谁”为本体现的是一种教学观念的更新,更展现的是一种教学行动的选择。传统的教学教研当中,学生主体的评价往往是最单薄的——听课者大多只能根据经验来假想学生的体验,这种隔靴搔痒式的评价弊端,源于一个重要因素的缺席——没有足够的数据源可提供学情分析与实证考据。
大数据时代的到来,恰恰能够对这种缺失作出有效转化。借助视频传输、数据收集、点对点终端、云存储服务器和个性化的数据分析软件等,能够从技术层面解决数据源缺乏的问题,对数据的全面处理和分析,可以让学生个体化的感受得以精准的量化与显现。学生在教学活动进程中的现实需求与即时心态,也可以经过技术的转化和动态整合分析变得可读、可视、可量化。这就为教研视角由关注“教”转向关注“学”提供了强大的技术支持与解读保障,为学情的研究与预判提供了更为鲜活的素材。我们甚至还可以利用流媒体视频和数据分析等手段,帮助教师跟踪学生的即时学习情况,从而根据他们的能力等级水平制订相应的教学计划并调整策略方案,更好地开展有针对性的个性化学习研究。
借助大数据的运用,课堂有了一个全新的观察视角,教学研讨有了一个全新的视点,站在学生学情分析与预判的角度去改变教师的教学行为已经成为可能。当技术能够帮助我们了解每个学生的需求之后,绵延了两千多年的“因材施教”思想,是否离我们更近一些?
(二)常态方法转型:由经验重复转向数据实证
传统的校本教研往往是经验式的。我们总是主观地揣定某些教育因素对学生很重要,哪些变量对课堂有影响,然后,再依据自己的判定,通过一次次反复的实践来验证这些主观经验的可靠性。这种以经验为主导的传统教研往往存在着主观化、臆测式、灵感型的缺陷,常常容易出现“问题不够‘草根’、目标比较宽泛、实证相对缺乏”等状况。研究后与研究前相比,对问题的认识高度与解决程度并没有质的提升。究其原因,是研究之前没有深入的问题质疑和数据调查,研究中缺乏足够的数据比对和逻辑分析,研究后少了细致的演绎分析及实践认证。
大数据时代的来临,为有效解决经验重复型教研的痼疾找到了凭借和方向。依据实验数据的收集、整理和分析所得,能有效确立教研主题,让研究直指现实问题的解决;依托“云教研、云管理”平台,过去无法收集与分析的数据都被新的技术手段赋予了获取的可能,为有效展开问题的探究与课题的论证提供了技术保障。这种依托数据实证的教研更加具有科学性、逻辑性和说服力。正如魏忠博士在《教育正悄悄发生一场革命》一书中所说:“教育将继经济学之后,不再是一个靠理念和经验传承的社会科学和道德良心的学科,大数据时代的教育,将变成一门实实在在的实证科学。”[1]3明确的目标监控、海量的数据支撑、清晰的过程性案例资料,强大的数据分析与论证,配以与之紧密融合的教与研创新平台,让教研更加充满创新与活力。
(三)实践模式转型:从零散问题研究转向系列项目研究
“指令式”、任务驱动式教研在我国中小学普遍存在,其被动接受式的研究心态、直指结论的研究方式、以分散点状活动替代系列研究实践的研讨模式,让校本教研难以贴地而行,最终导致教研成果的可信度、可推广度不高。新时期的教研必须从形式化、表层化、零散状的教研形态中转变出来,向主题化、系列化、课题化、项目化教研转型,这也是由大数据时代的教育和研究特点所决定的。
大数据时代,由于教学平台、教研平台、管理平台已经有效对接,各个层面、各个系列的数据已经可以共享到大教育的“云平台”,大数据技术将较娴熟地运用于课堂和教研的方方面面。无论是自上而下的数据调用,还是自下而上的数据收集,都已经或者能够成为中小学教育教研的常态。技术手段的创新与变革,为教育大数据的储存、整合、分析创造了条件。“苏醒的数据能够说话”,尤其是当研究者开始自觉地、有意识地将数据采集、转化和运用,当作一种大数据时代系列性、周期性、可比对性的常态研究去做,这种经过甄别、筛选的数据,将成为主题教研、项目研究的最强有力的实证,也必将给那些原本因为技术或条件限制无法便利地获取研究数据而苦恼的教师们带来教研思路的突变,并将最终实现校本教研的实践模式由零散问题研究向系列项目研究转型。
三、大数据时代校本教研的转型路径
(一)“云课堂”研究:技术与数据更好地服务于“学”
新技术就在身边,你用与不用,它都在那里。苏州工业园区星海小学让“ipad进课堂”,以数字技术带动教学教研,为我们提供了研究大数据运用的全新视角。2014年,该校开启了以移动网络为平台、ipad为终端的实验教学,通过新技术的应用,构建了以生为本的“云课堂”,在很大程度上改变了传统“教”与“学”的方式。云课堂技术支撑的核心是“云计算”。它是一种计算方式,通过大量网络连接的统一管理和调度,将大量信息和资源按需向用户提供服务。这种全息服务的网络就叫作“云”。“云”就像一个专业的“信息提款机”,其强大的信息技术和极为丰富的立体数据资源,为学生的学、教师的教、团队的研搭建了多维互动的“云平台”。[3]
该校基于大数据时代教研方式转变的研判,并在充分调查、论证和研发的基础上,为师生数字化的学与研搭建了一整套自主的云存储服务器,每个ipad上都安装了用于云存储和分享的“网盘精灵”,学生和教师都能在其中建立一个单独的存储空间,每位教师制作的课件、收集的实验数据等,都能在第一时间上传到服务器,全校师生都能在第一时间下载所需资源。各科老师还能借助无线平台和应用软件,协同开展数据上传下载、数据存储与分析的尝试与研究,许多或大或小的教研探究活动都在强大的数据平台支持下进行,网络教研让更多的教师提升了教研的动力。比如,英语学科将ipad接入课堂后,学生可以在家里录制自己朗读和吟唱的视频,上传到“网盘精灵”,为教师即时了解学生学习状态和学习成效,提供了第一手的研究和分析资料。鲜活的数据让教学的跟踪与预判成为常态。[4]
再比如,亚洲教育网自主研发的“三网智慧泛教育云平台”,就是一种“三网融合、泛在学习”的公共智慧云,它利用云计算、物联网和虚拟化等新技术来升级校园网、城域网,其创建的“教育云+互动电视+电子书包”新模式开启了教育信息化新纪元,为全方位、大范围地实现多校、多地教育资源共享、教育成果分享、教学研的互动打下了基础。[5]10-11
(二)“实证研究”:加强数据论证,探寻“普适”规律
近些年,依托于数据实证的教研探索已然展开,微格教研、片段教研、主题教研等应运而生。这些教研模式大多采用的是“实证研究”的方式。它们都是通过对研究对象大量的观察、实验和调查,获取客观数据,从个别到一般,归纳出事物的本质属性和发展规律的一类研究方法。这些教研模式以问题研究为基础,以教学案例为载体,以数据分析为根据,对教学教研工作进行了微格化、片段化、前置化和主题实践性论证,依托数据探寻规律,教研成果更加清晰、显性、有效。
近几年,上海静安区开始在7所幼儿园和9所小学试点实施“社会性与情绪能力养成”实践项目研究。经过近百名教师长达四年多的摸索和改进,如今,静安区小学阶段的“社会性与情绪能力养成”课程正逐步走向成熟,其研究方法之一就是“实证研究”。他们以“社会性情绪”项目为主题,探索出依靠“数据终端”去记录每一个学生、每一堂课、每一个环节表现的数据收集方法。例如,在一节拥有六个环节的课堂上,大部分时间内学生的节奏都是紧密跟随教师,但是在某个环节,大多数学生停留的时间远远超过了教师。这就提醒我们,这个环节需要着重研究,需要调整,也许这个部分的内容非常吸引学生,也有可能这部分内容难度较高,他们需要更多的时间来阅读与消化。这种借助大数据进行教研探索的方法也适合于我们在课堂中更有效地去捕捉学生点滴行为的微观研究。可以这样说,大数据时代的到来,让跟踪每一个数据成为可能,从而让研究“人性”成为可能。而对于教育研究者来说,我们将比任何时候都更接近发现真正的学生。
(三)“项目研究”:用证据支撑评价,用项目推进教研
2014年,苏州市教育局设立了“义务教育质量综合评价改革”等五大教改项目,从全市范围遴选了50所特色鲜明的学校组建项目学校共同体,推进项目研究的实施。在研究过程中,各项目学校有效地借助云计算、物联网和虚拟化等新技术来升级校园网,努力将云技术与物联网进行高度融合,对全方位、个性化的过程数据和研究资源的上传、存储、整合与分析进行了必要的硬件配置和软件开发,然后在严格的过程管理中依托平台、依托案例、依托数据开展系列主题研究和项目实践论证。目前,项目研究进展顺利,也取得了可喜的成果。以苏州工业园区星海小学为例,学校以“十佳”取代“三好”,推出了“十佳星海娃”多元评价体系,率先开启了苏州市“义务教育质量综合评价改革”的实践与研究。项目研究中,全面的资源和个性化的数据收集与分析是项目推进的基础,研究的进程中共享研究资源、分享教育成果,使研究者与被研究者实现有效互动是研究成功的关键。为有效地整合资源,显化数据,苏州工业园区星海小学推出了“星海娃”自主申报、“四叶草”积点奖章、金点子征集、小公民系列招募等个性化实践案例,拓宽了评价体系,丰富了评价数据。与“星海娃”评价体系相配套,苏州工业园区星海小学还创新出“四叶草”小公民实践中心等多元评价支撑系统,并着手开发“星海师生成长档案在线跟踪平台”,该平台全面支持绿色评价体系,以开放共享的“云”资源平台的无缝对接,消除学校、家庭及社会间的信息孤岛,以电脑、手机、电视、平板等多终端实现了教师、学生、家长的轻松上传与访问,从而有力地促进了绿色评价研究资源的优化配置。[5]281-282苏州工业园区星海小学项目建设试点的初步探索说明,数据实证让教研更加准确,更为科学,“用证据支撑评价,用项目推进教研”成了校本教研的一条可行之路。

H. 如何利用大数据平台提升税收治理

一、用“互联网+”大数据强化税源控管

“互联网+”大数据条件下,税务部门在积累了纳税人大量有价值数据基础上,通过与工商、银行、海关、技监、住建、房产、规划、社保、审计等部门联网,在云计算数据综合分析判研的驱动下,从海量数据中挖掘有价值的经济税收数据,从所有经济税收数据信息中扫描、控管全部的经济税源。如地税部门要建立个人财产收入信息大数据平台,通过对个人的房产租赁、存款利息、有价证券溢价、财产增值、股权转让、投资收益等财产收入的海量数据进行综合的逻辑判研和严密的数理分析,使个人财产的税源在“互联网+”大数据的透视下一览无遗。基于云计算、大数据的运用,通过对税收弹性分析、税负分析、税收关联分析等方法,对经济形势作科学研判,对税收收入作精准预测,就能对动态的经济税源进行有效严密控管。一言蔽之,税收数据挖掘有多深,云计算数据就有多精,税源控管就有多准。“以票控税”时代将终结,“人海战术”被“云海战术”所取代,以专业、精准的大数据分析,可以牢牢控管住所有的经济税源。

二、用“互联网+”大数据应对新生业态的税收征管

在“互联网+”大数据的作用下,网络销售平台、互联网金融等新兴经济业态以其虚拟、无址、跨域、高效、隐蔽等特点,使经营地点、税源归属、征管权限、税收分配等发生重大变化,极大地挑战了传统的税收征管模式。为加强对新生业态税收征管,税务部门要通过“互联网+”大数据,从“管事制”向“管数制”转变,实施“数据管税”:将纳税人税收、财务、经营等信息链条完全打通,实现涉税信息电子化,税务机关、纳税人、消费者和第三方部门的信息数据,完全取代纸质申报和发票等实物载体,构建以信息数据为核心要素展开的税收征管新模式;利用“互联网+”大数据助推纳税人自助式管理,使纳税人自主申报、税收政策自动适用成为征管主流;借助“互联网+”大数据效率高、成本低的优势,改变以往征管强调抓大放小、集中精力管好重点税源,转变为大企业与中小型企业并重,重点税源与非重点税源并重;对税收信息判研出纳税人的异常数据,为一线税管员提供“精确制导”,以强化税收征管。

三、用“互联网+”大数据加强税收风险管理

“互联网+”大数据通过云计算等技术手段,使政府信息系统和公共数据逐步互联共享,税务部门从海量数据库中获取大量有价值的涉税数据,为推动税收风险管理提供有利条件。在简政放权的大背景下,涉税事项逐步发展为纳税人对照税法和税收政策、自行掌握执行、税务机关进行后续管理的方式。税务机关更多地通过大数据、涉税信息平台抓取有关经济涉税信息数据进行比对分析、评估判研,将所有的海量涉税信息转化为可量化、可比对的数据,实现涉税信息的数字化管理。通过网络技术、信息技术、整合技术等判研,对纳税人涉税情报进行智能化分析、计算、比较、判断、甄别、联想和定性,依据采集和积累的征管基础数据、风险分析数据、第三方数据等信息资源,多角度对税收风险进行综合关联分析,精准计算出如税负、税种、行业、纳税规模、纳税信用、纳税遵从等各种税收风险指数,揭示涉税风险的发展规律。针对不同类别、不同税收风险的纳税人,采取不同的税收风险应对措施:对高风险的纳税人实施税务稽查,对中等风险的纳税人进行税务约谈,对较低风险的纳税人则通过纳税辅导以促进纳税遵从。

四、用“互联网+”大数据做好纳税服务

“互联网+”大数据条件下,纳税人类型、办税业务、时空跨度、新兴业态的多样化,必然导致纳税服务需求的多元化。针对当前税务部门大众化的纳税服务资源和能力过剩,个性化纳税服务不足的困局,必须从纳税人的个性化需求出发,切实改进纳税服务的有效供给,以满足纳税人个性化的纳税服务需求。税务部门要依托大数据分析制导服务供求,做到始于需求、终于满意。在“互联网+”大数据相互作用下,个性化纳税服务需求容易被识别,对于纳税大户、高新技术企业、小微企业等个性化、特殊化的纳税服务容易实现。因此,税务部门要针对不同行业、不同类型纳税人,从改变纳税服务的供给侧角度入手,根据每个纳税人所需求的纳税服务进行“私人定制”,一改粗放型“端菜式”的纳税服务为精准型“点菜式”的纳税服务。要借助“互联网+”大数据,超越时间、空间、地域、业态等限制,使纳税人可以在家里、办公室、旅行途中通过互联网全流程、无纸化办理所有涉税事务,在大大降低纳税成本的同时,享受到精准、便捷的纳税服务。要充分依托互联网和移动通讯技术,构建“实体办税厅+网上办税+移动办税终端+自助办税终端”的纳税服务平台,将申报缴税功能拓展到移动互联网,支持银行转账、POS机刷卡、网上银行、手机银行、微信支付等税款缴纳方式,使纳税人足不出户就可以享受到优质、高效的纳税服务。

阅读全文

与容甄大数据相关的资料

热点内容
瑞银3887win10 浏览:833
学网络编程哪个好 浏览:805
手机vmos导入的文件在哪里 浏览:115
苹果手机可以把文件传到华为吗 浏览:63
海川化工下载的文件默认到哪里 浏览:343
学唱粤语歌app 浏览:975
qq游戏生死狙击玩不了 浏览:120
win10邮件不显示图片 浏览:922
口袋妖怪所有版本下载 浏览:504
我们身边都有哪些大数据例子 浏览:25
震旦adc307扫描的文件在哪里 浏览:999
图片打开变成文件 浏览:194
松下微单电脑传文件软件 浏览:574
苹果蓝牙键盘surface 浏览:170
mindmaplinux 浏览:733
oppo手机怎么连接电脑传输数据 浏览:624
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320

友情链接