Ⅰ 大数据的关键技术有哪些_大数据处理的关键技术有哪些
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分早李烂析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方扰帆式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据陆漏并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。
四、大数据分析及挖掘技术
大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
六、大数据展现与应用技术
大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统)本回答根据网络文库资料整理,原文请参见《大数据关键技术》
Ⅱ 大数据技术包括哪些
大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。
大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
一、大数据采集技术
数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿
零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。
二、大数据预处理技术
主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。
三、大数据存储及管理技术
大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。
开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。
开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。
Ⅲ 甲骨文林逸飞:如何提纯大数据的业务价值
持人:大数据如何真正帮助到企业业务接下来让我们聆听来自甲骨文大中华区技术架构总监林逸飞演讲,如何提升大数据的价值。林逸飞:大家早上好,今天跟大家聊的话题是大数据,大数据跟云计算之间的关系越来越紧密,因为云计算提供了很多新的方式,使得我们有机会去处理这些大数据。今天我讲的是大数据在我们获得了以后,怎么能够让它真的在 我们业务里面有价值,所以用了一个词叫提纯,下面我带着大家一块去把大数据做一次提纯。开始之前我也想把Oracle现在的变化说一下,工程规划,很多大厂商都在跟随着甲骨文的脚步,不断的推出 各种各样的一体化设备,可能这是一个潮流,都希望通过推出这样一些一体化或者精装修的系统,帮助客户降低 他的运维成本,提高他的运行效率。大数据非常复杂,有结构化,也有非结构化的,增长速度飞快,单条数据的价值密度极低,最后一个很重要 ,为什么说单条数据业务价值极低,一条微博,或者一条博客,一条网上的日志对你来讲没有意义,我们需要的 是把整个大的数据量,从中按图索骥,或者找出一些业务规律,业务价值,大数据才能为我所用,这是大数据的四个特点。从甲骨文的角度来看,可能所有的客户,包括合作伙伴都知道,甲骨文是做数据起家的公司,今天仍然我们是做数据做得最好的公司。所以我们把数据理解成这样一个金字塔,整个金字塔的最下段,我们把它认为 是大数据,通常是大PB级的,这些数据很复杂,都存在在企业的ERP系统里面,外部系统里面都有这样的数据, 只是这些数据在今天大部分没有被利用,第二个层次是在今天我们所有的大型企业或者中型企业都有的数据仓库 ,或者业务分析类的一些系统里面,这种通常是以百T作为你的数据级别,这些数据是指导我们业务生产创新的 核心数据,这些数据今天的来源,来自于我们的生产系统,我指的生产系统,比如说我们后端的ERP系统,网商 ,电子渠道,我们的交易系统,这些系统后面的业务数据被我们采集来,放在数据仓库里面,通过对历史的分析 总结,然后我归纳一种规律,用于预测未来我的业务趋势跟走向,这是今天我的所有DWDI所做的一种做法,开个 玩笑说这些数据都是婚后数据,客户已经跟你的企业发生关系了,然后产生了这些数据,你分析的是这样一些数 据,但是你想的是什么,是我还有没有机会再找到下一个。最上端指导我们老板们做决策的,去决定新招一些人,还是砍到一百人,新发布一个产品,还是我们下架一个产品,来自BI系统,这是我们的核心决策数据。今天互联网也好,云计算也好,使得我们这些业务数据能够被涉及到范畴是如此众多,换句话说我们希望不 光采集婚后数据,我也希望把婚前的这样一些没有发生关系之前的数据也采集进来,能够为我的业务提供更多的 业务反馈点,这些反馈点可能更直接,更快,更丰富,这是大数据在今天为所有企业关注的主要原因。接下来是我的演讲题目,这些大数据,四个V的特点,量又大,速度也大,格式也众多,每一条数据的价值又非常低,我怎么把这些数据提纯起来,真的知道我的生产,这是提纯大数据的主要原因。我举一个最简单的例 子,一个超市,今天我谈到的这些是有十几案例,而且这些技术在今天,可能在座很多朋友们手里都有。比如说 我可以根据在商城里面所有部署的探头或者其他的设备,客户的行进路线我可以采集得到,根据他的行进路线, 途径我的门店的时候,我可以定点向他推荐促销信息,这个完全做得到。整体的营销策略里面,跟进整个销售的 战役的制定,来调整他的一些促销,或者我进货出货的策略。采集客户在微博、博客在相关的一些网站上面,各 种各样的反馈,这样是一个很明显的,在今天我们完全能够利用到的业务场景。我拿这个金字塔套一下,大家看 ,这些数据我们把他归结为大数据,他可以被采集到系统里面来,同时我跟进他的业务策略,这些数据可能来自 于我们的数据仓库,甚至于来自我的ERP系统,这些数据是我的生产数据。那当然我采集所有网络相关的这些数 据,他一定是大数据,他希望进入到我最底层的金字塔最下面,作为我大数据的基础。关键是说这些数据之间是 完全需要互动的,换句话说你要定时定点的推一些营销策略,或者根据机器传回来的数据进行判断,这个时候这 些大数据要反过来,对你的DW,对你的生产系统直接发生关系,如果不这样的话,这些大数据没有用处。大数据提纯以后的结果,让这个大数据从金字塔最下端被逐渐提纯进入到DW,最后再进入各种各样的分析, 进入到BI,数据逐渐浓缩,最后具有商业价值。所有人都在说我希望做微博营销,我希望提高在互联网上对我企 业的影响,哪些数据对企业经营有十几价值,这就是一些数据,48%的客户,当他是手机微博的用户的时候,通 常他会更乐意接受这些促销信息,其中有很大比例的人会在它的微博,或者博客上发布我曾经在这个里面接到这 样一些东西,使用的体验是什么样的,这就是数据。对这个企业来讲,我先解决缺货的问题,我一定能够解决在 我整个店里面最基本的问题,第二我可以对这些手机微博客户做一些定点营销和精准策略,这是两个精准的例子 ,后面想做这件事情是非常难的。首先在金字塔终端这个层次上,他两个核心系统,一个是企业 ERP的生产系统,第二个就是企业原有的DW, BI系统。第二个在金字塔的最下端大数据这块,你有很多企业专业应用,这些应用可能直接跟机器,跟互联网打交道。第三金字塔的最上端你要有一个合适的BI 的工具和平台,形成管理者的驾驶舱,内容把业务数据体现出来 。想产生上面这两个简单的结果,中间画了一个环,他基本上要历经这四个步骤,只有通过这四个步骤才能把你 的大数据发挥它真正的业务价值,首先我要能够获取,我有合适手段采集到各种各样的数据。第二我能够去计算 组织他们,第三能够根据这样属于进行分析,最后形成我的判断、业务动作出来。这些大数据跟你现在的数据仓库,跟BI要集成,如果不集成的话,这些大数据在旁边又建了一个烟囱出来,没有用的。说到最后就是Oracle,Oracle实际上提供了完整的方案,同数据的捕获、组织、分析、决策我们都有平台化 的工具和产品提供给客户和合作伙伴。首先是捕获,大家都知道Oracle有自己的应用,从ERP到CRM,到各种的 ECM我们都有然间,使得你有机会从各种各样的核心系统里面找到一些数据。第二针对所有非结构化的数据, Oracle直接推出了一个产品就叫NoSQL数据库,很有伸缩性的一款产品,他可以帮助你存储非结构化数据。在组织这一块,我们业提供沙盒的功能,你可以在你的机器里面配置这样一个沙盒出来,所有分析全部在这 个沙盒里面运行,他对CPU的消耗不会超过你这个沙盒所设置的限制,这样是帮助你去运行这样一些大数据分析 的基础平台性的功能。我们提供这样一个产品ODI,Oracle已经有几十年的产品。分析有一个R的组织,他是非常适合统计分析跟图表化展示的平台,他是开源的,而且比较适合在笔记本里 面或者PC里面运行的系统。
Ⅳ 什么是大数据技术
大数据技术可以理解为在巨量的数据资源中提取到有价值的数据加以分析和处版理,主要的表现特权征如下:
数据量大(Volume)。第一个特征是数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
类型繁多(Variety)。第二个特征是种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
价值密度低(Value)。第三个特征是数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。
速度快时效高(Velocity)。第四个特征数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。
Ⅳ 大数据分析的主要技术
主要技术有五类。根据查询大数据相关资料得知,大数据分析的主要技术分为以下5类。
1、数据采集:对于任何的数据分析来说,首要的就是数据采集,因此大数据分析软件的第一个技术就是数据采集的技术,该工具能够将分布在互联网上的数据,一些移动客户端中的数据进行快速而又广泛的搜集,同时它还能够迅速的将一些其他的平台中的数据源中的数据导入到该工具中,对数据进行清洗、转换、集成等,从而形成在该工具的数据库中或者是数据集市当中,为联系分析处理和数据挖掘提供了基础。
2、数据存取:数据在采集之后,大数据分析的另一个技术数据存取将会继续发挥作用,能够关系数据库,方便用户在使用中储存原始性的数据,并且快速的采集和使用,再有就是基础性的架构,比如说运储存和分布式的文件储存等,都是比较常见的一种。
3、数据处理:数据处理可以说是该软件具有的最核心的技术之一,面对庞大而又复杂的数据,该工具能够运用一些计算方法或者是统计的方法等对数据进行处理,包括对它的统计、归纳、分类等,从而能够让用户深度的了解到数据所具有的深度价值。
4、统计分析:统计分析则是该软件所具有的另一个核心功能,比如说假设性的检验等,可以帮助用户分析出现某一种数据现象的原因是什么,差异分析则可以比较出企业的产品销售在不同的时间和地区中所显示出来的巨大差异,以便未来更合理的在时间和地域中进行布局。
5、相关性分析:某一种数据现象和另外一种数据现象之间存在怎样的关系,大数据分析通过数据的增长减少变化等都可以分析出二者之间的关系,此外,聚类分析以及主成分分析和对应分析等都是常用的技术,这些技术的运用会让数据开发更接近人们的应用目标
Ⅵ 大数据时代有哪些主要特点
最早提出"大数据"时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:"数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。"
"大数据"在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
1.数据量大
大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。
2.类型繁多
包括网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。
3.价值密度低
如随着物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难题。
4.速度快、时效高
第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数据挖掘最显著的特征。
既有的技术架构和路线,已经无法高效处理如此海量的数据,而对于相关组织来说,如果投入巨大采集的信息无法通过及时处理反馈有效信息,那将是得不偿失的。可以说,大数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。[6]
Ⅶ 大数据预处理有哪些技术及方法呢
1)数据清理
数据清理例程就是通过填写缺失值、光滑噪声数据、识别或者删除离群点,并且解决不一致性来进行“清理数据”。
2)数据集成
数据集成过程将来自多个数据源的数据集成到一起。
3)数据规约
数据规约是为了得到数据集的简化表示。数据规约包括维规约和数值规约。
4)数据变换
通过变换使用规范化、数据离散化和概念分层等方法,使得数据的挖掘可以在多个抽象层面上进行。数据变换操作是提升数据挖掘效果的附加预处理过程。
1)缺失值
对于缺失液蔽消值的处理,一般是能补的就想办法把它补上,实在补不上的就丢弃处理。
通常的处理方法有:忽略元组、人工填写缺失值、使用一个全局变量填充缺失值、使用属性的中心度量填充缺失值、使用与给定元组属同一类的所有样本的属性均值或中位数、使用最可能的值填充缺失值。
2)噪声数据
噪声是被测量变量的随机误差或方差。去除噪声、使数据“光滑”的技术有分箱、回归、离群点分析等。
3)数据清理过程
这个环节主要包括数据预处理、清理方法、校验清理方法、执行清理工具及数据归档。
数据清理的原理是通过分析“无效数据”产生的原因和存在形式,利用现有的技术手段和方法去清理,将“无效数据”转化为满足数据质量或应用要求的数据,从而提高数据集的数据质量。
常用的工具有Excel、Access、SPSS Modeler、SAS、SPSS Statistics等。
4)模型构建数据统计分析
数据统计为模型构建提供基础,只有通过数据统计分析探索到了数据中隐藏的规律,深度学习才有意义,人工智能才有可能。
数据统计又包括数据分析与结果分析,基本的分析方法有:对比分析法、分组分析法、交叉分析法、因素分析法、结构分析法、漏斗图分析法、矩阵关联分析法、综合评价分析法等。
高级的分析方法有:主成分分析法、因子分析法、对应分析法、相关分析法、回归分析法、聚类分析法、判别分析法、时间序列等。这些类别并不是独一使用的,往往是混合使用的,然后再通过进一步闹知的分析对比从中挑选某些组合模型。
5)数据可视化
数据可视化,就是通过一些可视化图形或者报表形式进行并慧展示,增强对分析结果的理解。再针对结果进行进一步的数据再分析,使得整个业务环节形成闭环。只有闭环的数据才能真正发挥出深度学习的效用。
Ⅷ 什么是大数据,大数据的的基本特征是什么
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。 1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化
大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 *** 。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
一是数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
二是数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
三是价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
四是处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显著特征。
社群营销,是基于圈子、人脉概念而产生的营销模式。通过将有共同兴趣爱好的人聚集在一起,将一个兴趣圈打造成为消费家园。
可以通过大数据预测进行组建社群为企业做宣传搞活动,让社群形成一个宣传途径或者一个小的发布平台,不过性质的社群,依赖于群主对群的组织和维护能力。
作为一名工作两年多的大数据系统研发师,之前在北京老男孩教育学习了四个多月的大数据,总结我学习和工作两年来对大数据的理解,从具体的应用上,也大概可以分为三类。一是决策支持类的二是风险预警类的第三种是实时优化类的从三个维度,我个人对大数据在各行业应用的可能性做了一个定位,但这个定位还是非常定性和粗略的,具体可能还需要对行业有更多的大数据应用的探讨和探索。我也是看书学的,但是效果很慢。
“大数据”是指以多元形式,许多来源搜集而来的庞大数据组,往往具有实时性。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
第一,Volume(大量),数据体量巨大。从TB级别,跃升到PB级别。
第二,Variety(多样),数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,Value(价值密度),价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,Velocity(高速),处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
所以通俗来说,大数据就是通过各种不同渠道收集到的大量数据,堆积起来帮助做决策分析的数据组
那么什么是大数据呢技术?大数据的概念是什么呢?本文就为大家详细解读大数据的构成、模型和未来大数据发展方向: 大数据概念: 随着每天互联网上海量数据的产生,数据分析尤其显得重要。所谓大数据技术,就是从各种各样类型的数据中,快速获得有价值信息的能力。 大数据产生的原因: 大数据时代的来临是由数据丰富度决定的。首先是社交网络兴起,互联网上每天大量非结构化数据的出现。另外,物联网的数据量更大,加上移动互联网能更准确、更快地收集用户信息,比如位置、生活信息等数据。从这些数据每天增加的数量来说,目前已进入大数据时代。 大数据书籍推荐: 一、《大数据-正在到来的数据革命.以及它如何改变 *** .商业与我们的生活》 大数据浪潮,汹涌来袭,与互联网的发明一样,这绝不仅仅是信息技术领域的革命,更是在全球范围启动透明 *** 、加速企业创新、引领社会变革的利器。 二、《大数据——大价值、大机遇、大变革(全彩)》 从实证的角度探讨了大数据对社会和商业智能的影响,能否对大数据进行处理、分析与整合将成为提升企业核心竞争力的关键,什么是大数据技术?既是一场大机遇,也将引发一场大变革!
要提一下魔据的数据不错的
大数据(big data),或称海量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
4V特征:Volume(大量)、Velocity(实时)、Variety(多样)、Value(价值)。
大数据已经成为各类大会的重要议题,管理人士们都不愿错过这一新兴趋势。毫无疑问,当未来企业尝试分析现有海量信息以推动业务价值增值时,必定会采用大数据技术。
大数据(BigData)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 *** 。”业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。
数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。
-------------------------------------------
社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。
所以,建立在上述的概念上我们可以看到大数据的产业变化:
1大数据飞轮效应所带来的产业融合和新产业驱动
2信息获取方式的完全变化带来的新式信息聚合
3信息推送方式的完全变化带来的新式信息推广
4精准营销
5第三方支付——小微信贷,线上众筹为代表的互联网金融带来的全面互联网金融改革
6产业垂直整合趋势以及随之带来的产业生态重构
7企业改革以及企业内部价值链重塑,扩大的产业外部边界
8 *** 及各级机构开放,透明化,以及随之带来的集中管控和内部机制调整
9数据创新带来的新服务