① 体检的健康大数据是什么
健康体检是健康管理不可缺失的一环,而根据群体需求和生活方式的不同,对疾病专的筛查也应属有的放矢,个性化的体检定制将成为趋势,针对性的检后健康干预也将是医疗服务的重要环节之一。这也是近几年医疗互联网平台和移动互联网平台崛起的重要原因之一,作为健康体检服务平台的康康体检网,旨在依靠互联网技术,通过整合国内体检机构和体检数据,为国内体检者提供个性化的体检定制服务,同时联合国内优质医疗卫生资源,做好检后健康咨询和干预,逐步打通完善国人健康大数据平台,为国内的慢病健康管理机构和中心的课题研究提供更多的依据和保障。
② 大数据分析在疾病与健康研究方面的应用
大数据分析在疾病与健康研究方面的应用
大数据分析技术将在以上方面发挥着特殊的作用。
一、疾病与健康研究
在疾病与健康研究方面,我们可将其分为三个子方面:健康研究、亚健康研究和疾病研究。
1、健康研究
中国是地域辽阔的多民族国家,不同地区不同种群的人的基因和健康指标有所不同,同一地区同一种群的人在不同的性别和年龄上健康标准也有差异。深入研究和分析上述人群的健康规律,对卫生保健、健康促进、疾病预防和治疗有着重大的指导意义。例如:
1.1 对体检数据分析和挖掘,得出不同地区、不同人群的健康差异,以确定精确的不同人群的健康标准,针对不同人群制定适宜的防病,治病方法以及预后标准,并量身打造个性化,地区化的健康评估模型。
1.2 在制定不同地区不同人群的参考值时,可进一步分析健康指标在不同性别、年龄和季节的差别,以及权重比,从而完善适合于国人全面的系统化的更科学的健康参考值。
1.3 人体存在的内在平衡,使得各个可观察数据间有其特有的规律,基于经验只能发现简单的规律如钙、磷常数等,使应用数据挖掘等大数据分析技术可以主动发现复杂的系统性的人体医学规律,大幅提升防病,治病以及预后推测的技术水平,并且也对亚健康有个更科学的判断依据,以及了解健康到亚健康的逐渐失衡的过程。
1.4 对孕妇在孕产期、产后及新生儿的健康数据进行深入分析,研究孕产妇和新生儿的健康规律,开发对孕产妇和新生儿的健康评价和因素的评估模型,给出更科学的孕产妇和新生儿保健的指导。
1.5 对儿童成长的体检数据分析和挖掘,研究儿童的健康规律,开发对儿童成长的评价和因素的评估模型,分别适应中国辽阔的地域和众多的人群,给出更科学的儿童成长发育指导。
1.6 对老年人的健康数据分析和研究,研究老年人的健康特点,开发对老年人健康的评价和因素的评估模型,给出更科学的老年人养生的指导。
1.7 对健康人的精神和心理数据进行深入分析,制定健康人的精神和心理参考标准,开发对健康精神和心理的评价和影响因素的评估模型,给出更科学的精神和心理卫生方面的保健指导。
2、亚健康研究
世界卫生组织将机体无器质性病变,但是有一些功能改变的状态称为“第三状态”,也称为“亚健康状态”,主要包括:功能性改变,而不是器质性病变;体征改变,但现有医学技术不能发现病理改变;生命质量差,长期处于低健康水平;慢性疾病伴随的病变部位之外的不健康体征。
对亚健康进行深入分析与研究对保持健康状态,预防和纠正亚健康状态以及对疾病的预防和治疗都有十分重要的意义。例如:
2.1 研究亚健康与疾病间的相互关系。研究各种可观察指标(体检数据)在亚健康中的权重,以及在不同地区、人群中的分布。应用时间序列,线性/非线性回归研究亚健康观察指标之间的关联性。通过亚健康体检数据挖掘,分析导致疾病的影响因素,建立评估模型来预测危险度,并进一步建立疾病的预测模型。
2.2 研究亚健康与健康间的相互关系。通过对体检人群的地区、职业、年龄等因素的分析,研究最新的健康和亚健康的人群分布。不同的人群地区环境不同,生活习惯不同,加入亚健康医学指标以外的相关外部数据(如职业、饮食、习惯、性格、爱好等)后,可发现综合因素对亚健康的影响,以及这些因素的各自权重,及相关关系,从而探究出亚健康的原因,对预防和治疗亚健康起着指导作用。
2.3 研究亚健康治疗和预后的研究。通过对亚健康治疗和预后的数据分析,评价治疗效果,评估最佳治疗方案,进一步开展对专科亚健康治疗和预后的研究,同时研究其与疾病的关系。
2.4 对精神和心理亚健康的研究。如对常见的精神亚健康状态:如神经衰弱、抑郁、焦虑和强迫等症状,进行数据归纳整理、分析挖掘,从而导出精神和心理亚健康的新知识发现,探究出精神疾病的原因,对预防和治疗精神疾病起着指导作用。
2.5 将住院和社区健康管理数据相结合,进行因素权重分析和多因素的特性抽取,最后形成模型指导治疗。最理想的情况是个体化评估模型,为每个病人建立专用预测模型。
3、疾病研究
中国面临的严重危害人民健康的疾病包括:
传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等;
慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等;
精神和心理疾病;
小儿出生缺陷。
对患有各种疾病的病人的医学数据及相关数据的研究分析,对各种疾病的预防和治疗都有十分重要的价值。例如:
3.1 对传染性疾病,如结核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。应用数据挖掘技术对传染性疾病的数据进行分析,找出传染性疾病的发病规律,揭示传染性疾病的病因,进一步摸索出传染性疾病的变异规律,建立传染性疾病的预测模型。
3.2 对慢性非传染性疾病,如恶性肿瘤、脑血管病、心脏病、糖尿病等疾病的研究。应用数据仓库技术和数据挖掘技术对慢性常见病的数据进行分析,找出慢性常见病的发病规律,探索慢性常见病的病因,进一步摸索出慢性常见病的并发症规律,科学评估各种治疗方案的疗效,建立慢性常见病的预测模型。
3.3 对精神和心理疾病的研究。应用数据仓库技术、数据挖掘技术和数理统计技术对精神和心理疾病的数据进行分析,从广泛的多变量集中找出影响精神和心理疾病的主要因素,在遗传学、后天影响和病理学等多方面探索精神和心理疾病的病因,科学评估各种治疗方案的疗效,建立精神和心理疾病的预测模型。
3.4 对小儿出生缺陷的研究。应用大数据分析技术对儿童出生缺陷的数据进行分析,从广泛的大变量集中找出影响儿童出生缺陷的主要因素,在环境、遗传学、病理学等多方面探索儿童出生缺陷的病因,建立儿童出生缺陷的预测模型。
3.5 针对门诊和住院病人数据在线分析统计学差异,寻找阳性案例,为研究提供素材,并为科研的预实验提供思路和准备。对住院数据进行多维度分析和挖掘,横向达到单病种的水平,纵向包括所有可观测数据,所收集来的知识有很大可能会启发医学专家有新发现。
3.6不同 治疗手段和治疗效果的在线分析。结合收集来的大量资料全面分析,尽量提前全面的了解治疗的临床效果。
3.7 药品治疗效果在线分析,治疗效果、副作用、对其他疾病的效果评估。结合收集来的大量资料全面分析,尽量提前全面的了解新药和老药。目前的药品不良反应主要靠医生的通报,对医生的职业素养和敏感有很大的依赖,而使用数据挖掘及数据库中的知识发现,可以极大限度地改进这项工作。
二、环境与健康研究
环境因素对健康造成的损害较其他健康损害复杂,是微量、慢性、长期和不可逆转的。环境健康影响与公众利益息息相关,环境健康损害如得不到妥善处理还将转化为社会、经济问题。环境与公共健康研究以人类生态系统可持续发展研究为基础,关怀人类现在和未来的健康与安全,从环境研究途径关注社会、经济活动对人类生理和心理的健康影响,探索环境变迁对人民健康造成危害的预防和治理措施。
应用大数据分析技术对环境健康的研究,主要包括发现案例、发病机理和临床治疗研究,预防和治理各类环境流行病在污染源以及污染途径控制的研究等。例如:
1. 应用大数据分析技术研究环境因素对健康的影响,实行 一体化的环境和健康监测,并在全国实现数据共享。
2. 应用大数据分析技术研究环境污染对儿童的影响,以解决环境对儿童所造成的不健康和疾病迅速增长的问题,从而给予儿童特殊注意的环境和健康指导。
3. 应用大数据分析技术开展职业病和职业多发病的预防预测。对于各种职业的发病分布和严重程度,以及对职业病的深入分析。不仅包括传统意义的职业病,也包括不同职业的不同的疾病分布和在病因中的权重。另外,还可以分析不同职业的暴露特点进而对病因进行研究。
4. 应用大数据分析技术开展对空气污染显著提高城市人群呼吸道和过敏性疾病的发生 率的研究。
5. 应用大数据分析技术开展噪声污染损害儿童的听力和干扰他们的学习能力的研究。
6. 应用大数据分析技术开展快餐业的发展使肥胖病发病率不断增长的研究,尤其是不合理的营养对儿童健康的影响。
7. 应用大数据分析技术开展对转基因生物技术的应用对自然界生物和人类基因的潜在影响的研究。
三、医药生物技术与健康
生物技术涵盖生命科学的所有领域,医药生物技术是生物技术的重要组成部分。当今人类面临的人口、食物、健康、环境和资源问题,无不与之紧密相关。医药生物技术最鲜明的特点是大量新思想、新技术、新材料、新方法和新产品引入医学研究和医疗保健之中,如全新的医学成像技术、基因工程技术、微电子技术、干细胞工程技术、组织工程技术、纳米技术、生物芯片技术、克隆技术、酶工程技术、细胞工程技术、发酵工程技术、蛋白质工程技术、生物医学工程技术、基因组与蛋白质组技术、生物信息技术和中医药技术等及其产品,将大大提高疾病预防、诊断、治疗和药物设计研制水平,以及对突发事件(如传染病和生物恐怖等)的检测、预防与治疗水平。
以大数据分析技术为核心的生物信息技术在由众多新技术构成的医药生物技术中发挥有独特的作用。例如:
1. 利用生物信息技术进行生物信息的存储与获取。
2. 利用生物信息技术开展基因的序列对比、测序和拼接。
3. 利用生物信息技术进开展基因预测。
4. 利用生物信息技术进行生物进化与系统发育分析。
5. 利用生物信息技术进行蛋白质结构预测和RAN结构预测。
6. 利用生物信息技术进行分子设计和药物设计。
7. 利用生物信息技术进行肿瘤分类及遗传学分析。
8. 利用生物信息技术开展在生物分子层面对精神病的研究及遗传学分析。
9. 利用生物信息技术开展在生物分子层面对如H1N1等传染病的研究。
四、卫生宏观决策支持
卫生宏观决策支持系统是以数据仓库为数据中心、以数据挖掘为技术核心、以商务智能为展现工具的综合卫生信息平台。它可以建立在各级别卫生系统上,如医院、地区卫生系统、全国卫生系统,为各级卫生部门提供智能决策系统,深入了解卫生系统的历史和现在,把握卫生系统业务发展的未来,评估卫生系统内部各部门的业务效绩,帮助各级决策者提供最佳实施方案,给决策者一双慧眼,清晰认知系统内各方面变化趋势和业务得失,使对系统各部门的评价、考核、奖励更加科学、公正、客观,使系统内各级关系更加和谐,积极发挥各部门的潜能,提高系统的整体业务水平和经济效益。使用商务智能辅助决策,可以提供各种有价值的信息,各种事件的关联,以及不同于微观的角度分析各种卫生信息,如预防接种基本数据,传染病报告等等。
以上是小编为大家分享的关于 大数据分析在疾病与健康研究方面的应用的相关内容,更多信息可以关注环球青藤分享更多干货
③ 北京市被大数据监测到的健康监测人员如何管理
处于健康监测期间的人员,需每天两次测量体温,定时向社区、单位、学校或居住酒店上报个人健康状况,不聚集、不聚会、避免不必要的外出。 健康监测期间,如出现发热等症状,应及时去设有发热门诊的医疗机构就诊。就诊途中要闭环管理,不要乘坐公共交通工具。在条件允许的情况下,尽量步行或乘坐私人交通工具前往。抵达医疗机构后,要向医务人员如实准确提供个人近期旅居史、接触史、个人健康情况,不得瞒报、漏报。配合开展流行病学调查、健康排查、核酸检测、隔离观察等防控措施。如经筛查排除新冠肺炎可能,仍要按要求做好剩余时间的健康监测。
④ 大数据在医学领域有什么应用
1、健康监测
大数据技术可以提供居民的健康档案,包括全部诊疗信息、体检信息,这些信息可以为患病居民提供更有针对性的治疗方案。并且通过智能手表等可穿戴设备,随时带着,可以实时汇报病人的健康情况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
2、数据电子化管理
患者的影像数据,病历数据、检验检查结果、诊疗费用等各种数据录入大数据系统,统一管理起来,每位医生都能够在系统中查到病人的详细资料以及变更记录。而无需再通过耗时的纸质工作来完成,这对于大夫更好地把握疾病的诊断和治疗十分重要。
3、医疗科研
在医疗科研领域,运用大数据技术对各种数据进行筛选、分析,可以为科研工作提供强有力的数据分析支持。例如健康危险因素分析的科研中,利用大数据技术可以在系统全面地收集健康危险因素数据,包括环境因素,生物因素,经济社会因素,个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等的基础上,进行比对关联分析,针对不同区域、家族进行评估和遴选,研究某些疾病发病的家族性、地区区域分布性等特性。
⑤ 健康大数据分析技术有哪些
21世纪是以生命科学为主导、科学技术迅猛发展的世纪,科技竞争力已成为决定国家前途和命运的重要因素,是推动经济发展、促进社会进步和维护国家安全的关键所在。医学在生命科学中占有极其重要的地位,卫生科技的创新和进步,将促进医疗卫生事业的发展,提高全民族的健康素质,增强中国的科技竞争力和综合国力。世界最新医学科研技术是包括医学、药学、分子生物学、数学、计算科学、以及大数据分析技术等多种学科和技术的综合。
大数据分析技术主要包括是以最新应用数学、前沿计算科学和信息工程学为核心,以数据挖掘、数据仓库、商务智能等智能化的信息科技技术为手段,它不仅能够大幅提高传统的医学科研技术,而且在最新的分子生物技术的发展中也发挥着关键的作用。
一项新技术的采用,往往意味着全新的方向。如同伦琴射线在医学上的应用,开创了全新的医学视角一样,随后的CT,MRI,B-US,PETS等新技术的采用一次次的推动了医学的发展,扩展了医生的视野,如今,影像学已经是不可缺少的组成部分。信息学的重点是对一切可观测的指标(如年龄,住址,性别,化验,治疗,影像等一切通过现有手段可以观测的数据)整合后,结合应用数学,系统工程学,进行再分析、再处理。
少量的个案往往不足以揭示规律和知识,当数量足够大时,规律才有可能显现。所以整合成数据仓库也是必要的。而规律并不仅仅浮在数据表面,所以统计学和数据挖掘成为必要的手段,而在线式的方法提高了速度,基于系统工程的向导式结构有利于稳定大数据分析质量。
当年伦琴射线引入医学的时候,一定不会想到今日的局面。而将KDD引入医学领域,在中国广阔地域,巨大的人口基数下,基于这些特点形成的巨大的卫生信息数据,仅仅是用在线式的传统方法就可以发现大量有价值的医学知识,而结合数据挖掘,数据仓库,系统工程,发现新知识的可能性更是大大增加了。
健康大数据分析技术
大数据分析技术主要包括:
以数据挖掘为核心的知识发现技术,
以数据仓库为核心的数据整合技术,
以商务智能为核心的智能决策技术。
一、以数据挖掘为核心的知识发现技术
以数据挖掘为核心的知识发现技术可以直接挖掘医学新知识,帮助科研人员加速取得科研成果,甚至重大科研发现。
运用多种数据挖掘技术探索数据规律,为科研人员的科研设计提供科学依据,为科研命题指明方向,保证了科研的成功率。
数据挖掘是一种突破传统的分析手段,为各类科研技术提供新的技术方法,大大缩短科研和分析周期,深入揭示医学潜在规律。
数据挖掘,又称知识发现(KDD),是从大量的数据中,抽取潜在的、有价值的知识的过程。数据挖掘所探寻的模式是一种客观存在的、但隐藏在数据中未被发现的知识。例如,KDD可直接挖掘疾病高发人群,疾病及症状间的未知联系,化验指标间的影响关系及化验指标与疾病间的潜在影响,对未知的检验项值进行预测等等。通过可观测指标推断不可观测指标,或通过简单易行的观测指标推断昂贵的或有创的指标。由简而知繁,由易而知难。再如,在科研设计中利用聚类分析、因子权重分析,我们可以对数据进行科学分组、考察多因素的不同权重、帮助确定析因分析或嵌套分析等不同的科研设计。KDD在医学中应用非常广泛,为医学研究提供传统方法不能企及的前沿技术手段,例如:
聚类分析关联规则分析因子权重分析回归预测分析特性抽取分析
二、以数据仓库为核心的数据整合技术
以数据仓库技术为核心的医学数据整合系统,独立于已有的医疗机构业务系统,以全新的设计将分散的业务系统产生的不一致的数据进行整理、变换、集成,整合得到全面、高效、一致的信息。
数据仓库技术还使得对历史的全部海量数据进行在线的、实时的、深入的分析成为可能,并使其变得很轻松。
直接利用积累的现有医学数据,使科研成本大大降低,相同的的科研经费取得更多科研成果。
应用数据仓库的整合技术,使获得大数据科研样本数据易如反掌。
结合中国庞大的人口基数和横跨寒带温带热带的广阔地域,可建成世界上最大的卫生信息数据仓库,其全面的信息量是每个医务人员梦寐以求的。如能与世界各国合作,共享,整合,将成为与人类基因组计划齐名的壮举。
三、以商务智能为核心的智能决策技术
应用成熟的专业分析系统提供一致的准确的实时的数据分析,为各级各方面卫生决策提供可靠依据,使资源和效率得到优化,还能从经营决策和管理上获取经济效益和社会效益。
将商务智能技术(BI)应用于卫生决策分析,使决策者摆脱传统报表的束缚,以全新的先进的分析手段多维度地深入理解需要的数据,为广泛而深入的分析提供了新的有力工具。
专业的分析报表如累计贡献度分析,分摊百分比分析,嵌套排名分析等专业分析报表使决策者对历史和现状一目了然,对各种业务表现的因果关系能轻松的了如指掌。
健康大数据分析的应用
健康大数据分析技术在如下四个方面得到应用:
疾病与健康研究
环境与健康研究
医药生物技术研究
卫生宏观决策支持
大数据分析技术将在以上方面发挥着特殊的作用。