㈠ 清华同方是干什么的公司
同方股份有限公司是由清华大学控股的高科技公司,于1997年6月成立并在上海证券交易所挂牌交易,股票代码600100,当时股票名称为“同方股份”。
依托清华大学的科研实力与人才平台,同方股份有限公司坚持走产学研结合之路,定位于多元化综合性科技实业孵化器,致力于中国高科技成果的转化和产业化。
沿着“技术+实业、金融+资本”的发展战略,同方形成了“以科技产业为主导,以创新孵化体系和金融投资体系为两翼支持促进科技产业发展”的“一主两翼”战略格局,通过融合产业运营、科技孵化和金融资源,实现共享、共创、共赢的科创融生态圈。
目前,同方旗下拥有互联网服务与终端、云计算与大数据、公共安全、节能环保等与国计民生密切相关的主干产业集群,以及与产业配套的具全球化生产和研发能力的科技园区。
同方已在全球二十余个国家和地区设立了分支机构和研发生产基地,源于“中国智造”的技术、产品和服务遍及五大洲一百余个国家和地区。
扩资资料
截至2018年,同方股份有限公司总资产超过600亿元,年营业收入近300亿元,每年保有的中国及海外专利、计算机软件著作权登记达到四千余项,累计获得国家及省部级科学技术奖百余项。
承担国家科技攻关项目和科技重大专项超过300项,历年入选“中国电子信息百强”、“中国软件和信息技术服务综合竞争力百强企业”、“中国电子信息行业创新能力五十强企业”、“中国企业信用100强”,被评为“国家高新技术企业”、“信息系统集成及服务行业大型骨干企业”。
㈡ 大数据知识的价值体现
大数据知识的价值体现
数据时代对人类的数据驾驭能力提出了新的挑战,也为人们获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
“大数据产业的生态环境正在加速构成。”同方股份有限公司物联网应用产业本部副总经理李小华先生在主题为”拥抱大数据共赢新时代”的2013年合作伙伴大会上如是说,并对此做了详细的分析。
首先看社会环境。信息技术向融合、智慧、绿色的方向发展。大数据伴随云计算、移动互联网领域的发展,产生新的管理模式和商业模式,能够创造出更大的价值,提升社会的管理水平和效率。纵观产业经济发展史,带来应用的技术一定能够发展繁荣的产业。
再看政策环境。政府高度重视,发展战略目标清晰明确。近期发布了一系列促进大数据产业发展的政策。《十二五国家战略新兴产业发展规划》中指出,加强海量数据处理软件为代表的技术软件开发;《物联网十二五发展产业规划》中把大数据信息处理等作为4项关键技术创新工程;《国家发改委关于加强和完善国家电子政务工程建设管理的意见》强调,政府数据中心的建设注重顶层设计,向跨部门、跨区域的协同互动和资源共享转变。
市场环境。前景巨大,空间广阔。结合对中国相关市场的研究,IDC认为中国在大数据领域具有巨大的市场潜力。越来越多的IT供应商将中国作为大数据业务发展的热点。目前,中国已经是全球最大的PC和智能手机市场,并且中国的互联网用户和移动互联网用户数量也是全球最多,这些终端设备每时每刻都在互联网上创造数据。庞大的数据容量不但令众多国际厂商重视中国市场,也使得中国的大数据应用具备了不同于国外的特点,大数据的机遇就在我们面前。
“数据,已经渗透到当今每一个行业和业务智能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” 麦肯锡称。
数据挖掘的意义
这是一个关于零售帝国沃尔玛的故事。
沃尔玛,全世界最大的零售商,它的人数和美国联邦政府的雇员等量齐观,它的收入2010年突破了4000亿美元,超过了很多国家的GDP总值。在一次例行的数据分析之后,研究人员突然发现,跟尿布一起搭配购买最多的商品竟然是啤酒!这种关系令人费解,尿布喝啤酒风马牛不相及,这是一个真正的规律吗?
经过跟踪调查,研究人员终于发现事出有因。一些年轻的爸爸经常要到超市去购买婴儿尿布,有30%-40%的爸爸会顺便买点啤酒来犒劳自己,沃尔玛随后对啤酒和尿布进行了捆绑销售,不出意料,销售量双双增加。
这就是对历史数据进行挖掘的结果,反映的是数据层面的规律。沃尔玛是世界上最早应用数据挖掘技术的企业之一,也是数据挖掘技术的集大成者。
数据挖掘是指通过特定的计算机算法对大量的数据进行自动分析,从而揭示数据之间隐藏的关系、模式和趋势,为决策者提供新的知识。数据挖掘,把数据分析的范围从“已知”扩大到了“未知”,从“过去”推向了“将来”,它的发展和成熟,最终推动了“大数据”在各行各业的广泛应用。
正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。随着信息管理系统的普及,企业的规模越来越庞大,组织越来越复杂,市场更加多变,竞争更加激烈,信息是否及时准确、决策是否正确合理,对组织的兴衰存亡影响越来越大,一步走错可能全盘皆输。
数据服务于决策
大数据势不可挡,但践行不易。怎样发挥其价值?20世纪全世界最具影响力的科学家赫伯特。西蒙曾预测,在后工业时代,也就是信息时代,人类社会面临的的中心问题将从如何提高生产率转变为如何更好的利用信息来辅助决策。
如何将数据、信息转化为知识,扩大人类的理性,辅助决策?怎样从各个独立的信息系统中提取、整合有价值的数据,从而实现从数据到知识、从信息到知识、从知识到利润的转化?
面对记者的提问,同方副总裁周侠及物联网应用产业本部副总经理李小华对同方大数据理念做了深度的解读。
同方提出的以“数据资源体系”为核心的大数据战略,弥补了过去在不同行业中对管理和决策支持的空白。针对典型业务需求的六个产品应用平台,是数据从产生到服务全过程的六个最重要的结点,每个平台对一系列的产品。一系列掷地有声地落地实践以及“指标体系”、“顶层设计”、“独立于行业”的先进技术理念足以让企业、机构在具体业务实施时有“据”可依。
数据资源体系是独立于行业的,这是同方大数据理念最核心的一点。实现的方式就是构建独立于行业的通用数据生产流程——在不同的行业中抽取相同的数据资源体系。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。
同方副总裁周侠表示,让数据产生价值,不是大数据自身能够解决的。首先要把数据组织成数据资源体系,再对数据进行层次、类别等方面的划分,同时,要把数据和数据的相关性标注出来,这种相关性是反映客观现象的核心。在此基础上,通过分析数据资源和相关部门的业务对接程度,以此发挥数据资源体系在管理、决策、监测及评价等方面的作用,从而产生大数据的大价值,为领导决策提供服务依据。
物联网应用产业本部副总李小华进一步给记者介绍了同方数据资源体系进行数据处理的流程——同方帮助企业建立数据中心建设的理念,在理念指导下建设配套机制,企业通过这个机制和相关数据进行对接,通过对接在不同的管理层级产生出来的效果设立指标体系,有指标体系以后创建监测评价机制。值得说明的是,指标体系是随着具体情况不断变更的,指标体系的变更会引领着后续的业务和数据自动的去适应新的指标体系,这是一个闭环的系统,在闭环系统里,企业可以发现有自身目标以及目标偏差,并可以依据目标偏差进行新的决策,以此减少目标偏差带来的损失。这样就形成了一个可循环的生态系统,帮助企业良性健康发展。
㈢ 大数据和物联网时代大有可为
大数据和物联网时代大有可为
CPU+FPGA 在大数据和云计算领域更具号召力。 Intel 预计2020年将有1/3 的云数据中心节点采用FPGA 技术,CPU+FPGA 拥有更高的单位功耗性能、更低时延和更快加速性能,在大数据和云计算领域将替代CPU+GPU,而Intel 的至强处理器(Xeon)+FPGA也将在17 年量产。
FPGA 在物联网替代部分ASIC。FPGA 拥有并行计算优势,在高性能、多通道领域可以代替部分ASIC 和DSP。Intel 在Computex2015 上展示了大量基于FPAG 的物联网的方案,例如在安防、工业自动化和智能家居,FPGA 的并行计算在多通道处理方面可以对传统的ASIC 方案进行优化。
FPGA 小批量成本更低和抢占市场。以5 万片流片为临界点,FPGA 在高价值、批量相对较小、多通道计算的专用设备(如雷达、航天飞机、路由器)有取代ASIC 的趋势。另外,FPGA 开发周期比ASIC 低55%,可以用来快速抢占市场。
毛利率高、增速快、进口替代空间大。FPGA 平均毛利率66%,2009-2014 年复合增速15.6%;半导体领域平均毛利率47%,2009-2014 年复合增速9.6%,FPGA 的毛利率和复合增速均是半导体领域最高。2014 年FPGA 全球容量50 为亿美元,Xilinx 和Altera 等美国厂商占据98%份额,进口替代空间大。
市场在中国,技术在发展,推荐同方国芯。目前中国是全球FPGA需求最大的市场,目前能够在特定应用领域(军工、通讯)实现国产化。芯片的自主设计是实现信息安全的最底层保障,上市公司中,仅有同方国芯能够批量提供FPGA。同方国芯作为紫光集团的IC 平台,拥有国内第一梯队的IC 设计实力, “紫光CPU+同方FPGA”或许将出现在不远的未来。
以上是小编为大家分享的关于大数据和物联网时代大有可为的相关内容,更多信息可以关注环球青藤分享更多干货
㈣ 大数据、物联网、智慧城市三者的关系
大数据、物联网、智慧城市三者的关系
大数据、物联网、智慧城市三者之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
中国已步入大数据时代
有人说大数据来了,但只是在美国而不是中国。专做政府数据管理的同方对此的看法是:中国对大数据的理解普遍还不那么深入或者与美国的理解有所不同,但不能否认的是,中国已经步入大数据时代。现在中国的很多部委都已经在研究大数据、运用大数据。美国将大数据提升为国家战略,中国还没有明确提出,但已经把大数据上升为与国防一样的高度,多部委还联合发布了鼓励措施。我国政府对大数据的敏感度快速提高,并正在采取措施。所以说,中国已经步入大数据时代,这种重视是由政府层面自上而下进行普及的,可能还未普及到普通百姓层面,但各级政府已经有了高度重视。邬贺铨院士也曾表示:“我国将产生全球最大量的数据,要重视大数据的开发利用和管理。”
大数据的关键在于分享。我国智慧城市发展的一个瓶颈在于信息孤岛效应,各政府部门间不愿公开、分项数据,这就造成数据之间的割裂,无法产生数据的深度价值。关于这一问题,一些政府部门也有清醒的认识,开始寻求解决方案,这是受自身的需求驱动的。比如,一些政府部门原来不愿分享自己的数据,但现在开始寻求数据交换伙伴,因为他们逐渐意识到单一的数据是没法发挥最大效能的,部门之间相互交换数据已经成为一种发展趋势。同时,随着各方面的发展及政策的推进,很多以前不公开的数据也逐渐公开了,这对大数据的发展都是有力的支持。
物联网技术推进大数据发展
物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京7.21暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。
物联网技术跟大数据什么关系?当水位计的点增多后,就会收集到更多的数据,这样更便于发现一些规律并发出预警,这是采用大数据的技术手段自然而然就能做的事情。在点位数少的情况下,数据量不够大,只能解决一部分问题。所以说,正因为有了物联网,大数据布的点越来越多,自然而然就要会去分析实时数据。数据的挖掘,原本是对于历史数据的挖掘,现在对于实时数据的挖掘也是一种趋势,说明物联网的技术在推进着大数据相关技术的发展。
大数据支撑智慧城市的发展
城市运行体征是通过数据进行量化表现出来的,但这些数据散乱在政府的各个部门中,同方的职责是收集各部门有关城市运行体征的数据,帮助城市管理者进行数据汇总、分析,最终对城市体征的量化形态即各类数据进行管理,供政府管理者使用。
政府部门做的每一个决策都需要长期的调研,调研的资料来源于政府部门运行、城市运行的长期积累。政府信息化的高速发展已使政府产生了几百TB的数据。但数据本身没有任何意义,只有经过一定的系统分析之后,才能发挥数据的价值。智慧城市的每一个细节都会产生庞大的数据,同时,智慧城市的运行基础也来源于对大数据的深度分析。
大数据的表面是一系列静态的数据堆砌,但其实质是对数据进行复杂的分析之后得出一系列规律的动态过程。政府部门本身没有去做这样的事,这就需要企业对其进行支撑,同方看到了大数据对城市运行的重要意义,选择政府作为突破口,是形势发展的要求,也是同方大数据的独特之处。值得说明的是,同方大数据不参与政府决策,只是为政府决策提供数据支持。用数据的直观形式展现业务之间的关系,用数据表现城市发展变化和趋势,分析总结出城市存在的问题,为政府部门的决策提供辅助。
城市运行体征的管理也需要大数据的推动。大数据在反映城市运行体征的时候,并不需要了解城市部门的主要业务及运作流程,单纯从数据的角度出发,通过计算机软件分析之后,数据就能得出一些规律,不关乎业务,不关乎结果,但能完全反映出数据之间的关联性。从大数据的角度出发,驱动城市运行体征发展,是一个可以在决策前段刨出人力的纯计算机运作模式,这样的好处是运作的量化和规范化。
对于大数据、物联网与智慧城市的发展,中国信息技术权威专家――国务院物联网领导小组组长、中国工程院邬贺铨院士曾有一个很深奥的表述:从物联网到大数据再到智慧城市,是“格物致知”的过程,通过分析决策达到“知行合一”.
智慧城市惠及每个人
大数据驱动下的智慧城市,关乎每个人的生活。最普遍的例子就是天气预报,以前的天气预报只会预测一下天气,但现今的天气预报会告诉公众更多的信息,如气象指数、空气污染指数、穿衣指数、驱车安全指数等,甚至是否有利于运动,对发型及妆容的影响都有说明。这是能让普通百姓切身体会的智慧生活,未来,教育、交通等关乎人们衣食住行的方方面面都会变得智慧起来。教育方面,我们可以看看美国的做法,美国每个大学都会将升学率、就业率、毕业生的年薪水平等如实展示,这对学生选择学校专业等是很有利的数据支持。交通方面,怎样畅通城市交通,怎样寻找停车位,选择哪种交通方式更便利安全等,都是智慧城市的未来状态。
当提到智慧城市的未来发展时,赵英表示:智慧城市来源于智慧决策,智慧决策来源于人的智慧。当每个人都很智慧的时候,一个城市也会变得智慧起来。
以上是小编为大家分享的关于大数据、物联网、智慧城市三者的关系的相关内容,更多信息可以关注环球青藤分享更多干货
㈤ 并非所有企业都适用大数据
并非所有企业都适用大数据_数据分析师
泡沫未裂,但大数据应用在国内已显雏形。 伊利乳业采用终端管理技术,聚合零售终端店面销售所带来的零散数据,让销售计划不再靠拍脑袋完成;山东省一批以“大数据”为标签的旅游网站,能够根据旅游者此前的购买行为,为不同的旅游者提供针对性的服务;国内高科技公司同方股份有限公司正计划为大数据研究成立一个专项部门…… 然而,笔者认为,不是所有企业都适用大数据。上不上大数据要从企业实际情况和具体需求出发,企业只有具备人才培养、资金投入、技术平台等全面保障才能获取数据价值。 首先,数据分析师的培养是最重要的。
“大数据的炒作已达高峰。大数据泡沫的存在不是因为数据的作用被夸大,而是真正具备分析能力的数据分析师凤毛麟角,故未让大数据更好地发挥价值。”同方数据资源事业部副总经理席壮华在接受记者采访时说。《哈佛商业评论》认为数据分析师是“21世纪最性感的职业”,海量数据刨金的诱惑、超高的技能需求让数据分析师成为紧缺人才。“同方股份的专项大数据计划,除了资金投入,更关键的是培养人才,扶植大数据产业的发展。”席壮华说。 金融、医疗等领域植入大数据,复合型人才更是不可或缺。中国工程院院士韦钰曾表示,生物医学引入大数据,当务之急是解决生物医学和信息科学兼通的复合型人才缺乏问题。
其次,大数据真的很贵,企业要衡量决定是否投入大数据。据了解,Facebook每天存储约100TB的用户数据;NASA每天要处理约24TB的数据。惊人数据背后是高昂的费用按照亚马逊Redshift定价,NASA需要为45天数据存储服务支付超过100万美元。 笔者曾采访过几家企业的CIO,他们多数表示企业日常所需要处理的数据并不是很大,而且数据存储和处理的成本实在太高,按他们的预算无法承受大数据部署的成本。
最后,若应用大数据,企业要选择成熟的大数据平台,且要和数据仓库有高性能的连接,易于让不同人员应用,根据业务需求让技术人员利用平台去快速提升数据的价值。这是企业需要资金、技术投入的“大头”,也是企业值得做功课的地方。 大数据擅长的是锦上添花而非雪中送炭,如果企业该做的事情没做好,就别指望大数据能帮忙。正如席壮华告诉记者的,只有重视技术平台、恰当地投入资金、能吸引优秀数据分析人才的企业,才能在大数据时代有所斩获。
以上是小编为大家分享的关于并非所有企业都适用大数据的相关内容,更多信息可以关注环球青藤分享更多干货
㈥ 什么是北交所概念股北交所概念股有哪些
北交所概念股是指北交所具有特殊内涵的股票,通常被视为选股和投机的主体,成为股票市场的热点。例如:
1、深赛格(股票代码:000058)
所属其他概念:阿里巴巴、北斗导航、BIPV概念、北交所概念、创投、重组、地方国资改革、电子竞技、电子商务、电子元件、广东国资改革、光伏、金融改革、深股通、深圳本地、深圳国资改革、体育产业、网络直播、预盈预增、证金持股
2、申万宏源(股票代码:000166)
所属其他概念:北交所概念、参股基金、大金融、大盘蓝筹、富时罗素概念、汇金概念、金控平台、MSCI、券商、融资融券、深股通、新疆振兴、证金持股
3、金融街(股票代码:000402)
所属其他概念:北交所概念、保险重仓股、地方国资改革、大盘蓝筹、富时罗素概念、高股息、汇金概念、基金重仓股、MSCI、融资融券、深股通、碳中和、预盈预增、证金持股
4、中关村(股票代码:000931)
所属其他概念:北交所概念、创投、创新药、汇金概念、京津冀一体化、基金重仓股、健康中国、融资融券、生物疫苗、雄安新区、新三板、预亏预减
5、摩恩电气(股票代码:002451)
所属其他概念:5G、北交所概念、充电桩、创投、电力物联网、风电、股权转让、军工股、基金重仓股、融资融券、上海本地、上海自贸区、新三板、预盈预增、智能电表
6、创业黑马(股票代码:300688)
所属其他概念:2021年10月解禁、2021年9月解禁、北交所概念、创投、创业板壳股、基金重仓股、区块链、网红、预盈预增
7、海泰发展(股票代码:600082)
所属其他概念:北交所概念、互联网金融、京津冀一体化、基金重仓股、蚂蚁金服、蚂蚁集团概念股、新三板、预盈预增
8、同方股份(股票代码:600100)
所属其他概念:安防监控、北交所概念、创投、大数据、地热能、高校、沪股通、汇金概念、互联网金融、军工股、基金重仓股、LED照明、美丽中国、漂亮50、融资融券、TMT、外管局持股、网络安全、物联网、网络游戏、新三板、云计算、云计算数据中心、预亏预减、养老概念、智慧城市、智慧政务、证金持股
9、北京城建(股票代码:600266)
所属其他概念:北京冬奥会、北交所概念、创投、富时罗素概念、沪股通、环球影城概念股、融资融券、雄安新区、新三板、证金持股
10、电子城(股票代码:600658)
所属其他概念:北交所概念、创投、地方国资改革、基金重仓股、O2O、REITs、社保重仓、新三板
11、京投发展(股票代码:600683)
所属其他概念:北交所概念、长三角经济区、创投、地方国资改革、土地流转、特斯拉、预盈预增
拓展资料
1、概念股是指具有某种特别内涵的股票,与业绩股相对而言的。业绩股需要有良好的业绩支撑。而概念股是依靠某一种题材比如资产重组概念,三通概念等支撑价格。而这一内涵通常会被当作一种选股和炒作题材,成为股市的热点。
2、、概念股是股市术语,作为一种选股的方式。相较于绩优股必须有良好的营运业绩所支撑,概念股只是以依靠相同话题,将同类型的股票列入选股标的的一种组合。由于概念股的广告效应,因此不具有任何获利的保证。
㈦ 大数据的大价值预测
大数据的大价值预测
数据本身是不会说话的,但是数据总结出的历史、数据反映出来的现状、数据呈现出的趋势能够说话。基于指标体系的预测分析平台建设的价值在于:平台展现出的任何一条曲线的变化都对应着某一个现状或问题,以及相关联的一系列指标,都意味着需要采取相应的改良措施。同时,由于行业数据的特殊性,结合专家的经验,可获取到管理上的缺陷,制定出相应的预防措施,反馈到企业的指标体系中,通过调整来进一步加强数据质量的管理,进而为有效提高续保率提供科学的数据依据。
2013年伊始,大数据开始充斥媒体,各行各业都相继进行数据分析、数据挖掘、领导决策等,那些占有“大数据”资源先天优势的群体,能否有效利用好数据,打破现有的传统格局,将决定其未来发展的命运。
大数据时代面临的挑战与机遇
大数据时代下的三百六十行,最不缺乏的就是数据,包括历史数据、行业最新数据等,但是却受阻于过量的冗余数据和数据不一致,而且它们变得越来越难于访问、管理和用于决策支持。目前的行业数据大多还停留在“集中化使用”阶段,传统的数据仓库方式,数据有进无出,仅解决了数据存储的问题,如何综合有效地使用这些数据,成为一大难题。而随着数据量成倍的增长,如何把这些大量的数据转换成可靠的信息以便于决策支持,是各行业面临的挑战。
大数据的本质是解决问题,大数据的核心价值就在于预测,而企业经营的核心也是基于预测所做出的正确判断。所以,我们应当充分地认识到:大数据时代对于各个业来讲,既存在挑战,也是一个巨大的机遇。
首先,面对海量数据,依靠在各行各业丰富的数据治理方法论,实现源头数据的质量保障,确保基于这些真实数据的分析与决策能够行之有效。
如何保障数据质量?
通过顶层设计的理念,确立企业的核心目标,围绕这个核心目标进行逐级分解,形成细颗粒度的详细指标体系,而基于指标体系的数据采集及处理平台,则以指标体系为依据,来到各个业务系统里去采集数据,或根据需要使用数据采集平台由人工进行填报,基于涉及各个指标的全样数据的完整采集,通过数据质量清洗工具与相应的检查规则,发现问题可及时对其进行修改,来对源头的数据从技术上进行严格把关。
其次,各行业的应用系统可谓纷繁复杂,由于这些系统的建设都是相对独立的,传统的数据处理方式只能针对各个业务系统去形成相应的分析数据,本质上未将数据进行整合与统一规划,因此形成了数据孤岛的现象。同方运用顶层设计理念下的指标体系梳理方法,以及业务元数据的技术手段,对各个业务系统的数据最终形成资源,进行统一化、标准化、集中化管理,实现数据的全局共享。用于综合应用、预测分析、领导决策等。
最后,通过基于指标体系的预测分析平台,能够为决策管理者提供科学的数据依据,同时也为涉及企业的客户管理、销售管理、市场管理、运维管理等各方面提供调整依据。