导航:首页 > 网络数据 > 大数据和源大楼5楼

大数据和源大楼5楼

发布时间:2023-09-30 08:29:16

㈠ 有谁知道大数据指的是什么

大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
说起大数据,就要说到商业智能:
商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。

商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。

商务智能的产生发展
商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。

商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。

目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。

为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。

把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。

企业导入BI的优点
1.随机查询动态报表

2.掌握指标管理

3.随时线上分析处理

4.视觉化之企业仪表版

5.协助预测规划

导入BI的目的
1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。

2.降低整体营运成本(Power the Bottom Line):BIS改善企业的资讯取得能力,大幅降低IT人员撰写程式、Poweruser制作报表的时间与人力成本,而弹性的模组设计介面,完全不需撰写程式的特色也让日后的维护成本大幅降低。

3.协同组织目标与行动(Achieve a Fully Coordinated Organization):BIS加强企业的资讯传播能力,消除资讯需求者与IT人员之间的认知差距,并可让更多人获得更有意义的资讯。全面改善企业之体质,使组织内的每个人目标一致、齐心协力。

商业智能领域的技术应用
商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。

数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。

在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。

数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。

商业智能的应用范围
1.采购管理

2.财务管理

3.人力资源管理

4.客户服务

5.配销管理

6.生产管理

7.销售管理

8.行销管理

商业智能实施步骤

商业智能系统处理流程[1]
商业智能(BI)作为一个概念,描述与业务紧密结合,并且根据需要进行相关特性展示和数据处理的过程。

为了让数据“活”起来,往往需要利用数据仓库、数据挖掘、报表设计与展示、联机在线分析(OLAP)等技术。数据或者数据源包含的种类繁多,例如存储在关系型数据库中的,在外围数据文件中的,在业务流中实时产生存储在内存中的等等。而商业智能最终能够辅助的业务经营决策,既可以是操作层的,也可以是战术层和战略层的决策。

这些分析有财务管理、点击流分析(Clickstream)、供应链管理、关键绩效指标(Key Performance Indicators, KPI)、客户分析等。商业智能关注的是,从各种渠道(软件,系统,人,等等)发掘可执行的战略信息。商业智能用的工具有抽取(Extraction)、转换(Transformation)和加载(Load)软件(搜集数据,建立标准的数据结构,然后把这些数据存在另外的数据库中)、数据挖掘和在线分析(Online Analytical Processing,允许用户容易地从多个角度选取和察看数据)等 。

商业智能系统的功能
商业智能系统应具有的主要功能:

数据仓库:高效的数据存储和访问方式。提供结构化和非结构化的数据存储,容量大,运行稳定,维护成本低,支持元数据管理,支持多种结构,例如中心式数据仓库,分布式数据仓库等。存储介质能够支持近线式和二级存储器。能够很好的支持现阶段容灾和备份方案。

数据ETL:数据ETL支持多平台、多数据存储格式(多数据源,多格式数据文件,多维数据库等)的数据组织,要求能自动化根据描述或者规则进行数据查找和理解。减少海量、复杂数据与全局决策数据之间的差距。帮助形成支撑决策要求的参考内容。

数据统计输出(报表):报表能快速的完成数据统计的设计和展示,其中包括了统计数据表样式和统计图展示,可以很好的输出给其他应用程序或者Html形式表现和保存。对于自定义设计部分要提供简单易用的设计方案,支持灵活的数据填报和针对非技术人员设计的解决方案。能自动化完成输出内容的发布。

分析功能:可以通过业务规则形成分析内容,并且展示样式丰富,具有一定的交互要求,例如预警或者趋势分析等。要支持多维度的联机在线分析(OLAP分析),实现维度变化、旋转、数据切片和数据钻取等。帮助决策做出正确的判断。

典型的商业智能系统
典型的商业智能系统有:

客户分析系统、菜篮分析系统、反洗钱系统、反诈骗系统、客户联络分析系统、市场细分系统、信用计分系统、产品收益系统、库存运作系统以及与商业风险相关的应用系统等。

[编辑]商业智能解决方案厂商
提供商业智能解决方案的著名IT厂商包括微软、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等

最后,希望你关注一下FineBI,帆软软件的大数据解决方案,我看了,还是很不错的

㈡ 成都做大数据的公司有哪些做的好的有哪几家

作者:小维斗
链接:https://www.hu.com/question/27933628/answer/96310427
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

关于成都做大数据的公司这几天小编特意整理出来了一份明细表,仅个人分享发表一下:
1、成都神鸟数据咨询有限公司 网址:
成都市场调研公司

成都神鸟数据咨询有限公司主营业务包括公共事务研究、商业研究、媒介研究和数据库建设及流程信息化建设,客户涵盖政府部门、公用事业单位、国内外知名企业,积累多行业研究经验,使神鸟数据的研究团队具备良好的跨行业、跨区域、跨专业的多元化视角和思维。
“神鸟数据”接受各企事业、政府机构和非政府机构的委托,独立完成市场调查、民意测验、政策性调查等各类定量与定性研究课题。多年的发展经验使本公司更了解客户的需求,从而为客户提供更有针对性的服务,“神鸟数据”研究领域涉及食品/饮料、公共事务、房地产、汽车、家电、IT、金融保险、媒体、商业服务、等多个行业,其中房地产、汽车、媒体、金融保险、快速消费品、公共事务是公司目前重点的研究领域。
2、成都探码科技有限公司
首页 | 探码科技

成都探码科技有限公司(简称探码科技)于2015年9月成立,公司总部位于成都,并在美国设立分公司服务海外客户。由清华海归创业团队组建,具有10多年国内外项目研发积累,擅长美国互联网前沿技术,崇尚硅谷创业模式,自主研发有核心技术。 是国内比较早的ROR开发团队,并在网络数据采集,大数据解析方面具有突出的能力。将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。
2015年与北京大数据研究院成为战略合作伙伴专研大数据服务。
2016年开发DB智能数据服务平台,一款基于Hadoop开源计算框架,集成了Apache社区几十个成熟的Hadoop子项目,整合了数据ETL和流程管理功能模块,融合了十几个可直接调用的应用模版而最终形成的面对大数据进行存储、计算、查询、挖掘四大应用方向的基础平台产品
3、数联铭品
成都数联铭品科技有限公司

数联铭品是行业领先的大数据解决方案提供商,商业大数据行业标准COSR数据服务框架的制定者。公司总部位于成都,在北京、贵州、深圳设有子公司,同时在新加坡设立了子公司服务海外客户。已经为金融行业、传媒行业、旅游行业、制造业和体育产业提供了具有产业化和产品化能力的领先大数据整体解决方案。
4、成都数之联科技有限公司
成都数之联科技集团

成都数之联科技有限公司成立于2012年,公司致力于帮助政府和企业设计大数据顶层规划,为客户提供数据采集、存储、治理、分析、挖掘、应用和可视化等大数据全产业链综合服务。数之联业务覆盖多个行业,参控股成都数联寻英科技有限公司、成都数联易康科技有限公司、国信优易数据有限公司,提供人力资源、医疗健康、数据交易等多个行业的大数据垂直解决方案,先后服务了包括阿里巴巴、腾讯、中国联通、中国工商银行、中国银联、海尔、五粮液集团、三泰控股、置信集团等近百家知名企业。
5、成都崇信大数据服务有限公司 暂无网站
成都崇信大数据服务有限公司(简称:崇信公司)是专注于大数据建设的国有独资企业,成立于2006年,是四川省首家国资大数据公司。崇信公司专注于数据处理和存储服务,信息系统集成服务,信息技术咨询服务集成电路设计,数字内容服务,信息化基础设施建设,计算机网络系统工程服务,软件开发,非金融性项目投资,资产管理。
6、成都勤智数码科技股份有限公司
数据说-大数据全网整合营销平台

以“大数据技术”为基础,从社交网站和电商平台等渠道收集海量数据,结合企业已有数据,从产品、品牌、客户、营销四个维度,完成相应的数据清洗、提取、整合,并进行科学、准确的数据分析。

㈢ 如何查询征信数据大数据征信哪里有

国内有两种比较常见的征信数据库:央行征信和网贷数据库。
央行征信统计的是回银行贷答款和正规网贷的借款数据。
网贷数据库统计的是所有的上征信和不上征信的网贷,不上征信的网贷都会上传到网贷数据库。所以,只看征信是不全面的。
1、带身份证去当地人民银行查询,或者在官网上面查询,需要一到三个工作日。
2、查询网贷数据库就比较简单了,可以微信搜索“明天查”,公众服务号上面的。此报告对接了市面上99%的网贷平台,数据准确而全面,能够查询到自己的个人信用情况、黑名单情况、网贷申请记录、申请平台类型、是否逾期、逾期金额、是否有仲裁案件等等各种重要的数据信息。
这两种方式区别是:人民银行查征信会留下查询记录,查询次数过多,对自己会有一定影响。但是第二种查询方法不会留下查询记录,也不会上报,是一种很好的隐私保护措施。

㈣ 成都大数据分析培训班哪家比较好

成都大数据分析培训班较好的有:

1、学大教育

2、弘成教育

3、新东方

4、达内教育

5、等等其他培训班


4、实训项目

上面我们讲了课程的重要性,课程设置是否合理影响知识结构和学习成果,而项目经验将直接影响我们就业情况。

实训项目一般包括JAVA项目,大数据项目,企业大数据平台等,不同的学习阶段配合不同的项目,加深学员对所学知识的理解和应用。

5、招生门槛

企业在招聘大数据开发人员时是有一定门槛,最低学历要求是统招大专(个别小众企业有可能会放宽要求)。所以,一家靠谱的培训机构在招生要求上肯定会设置一条:大专及以上学历。

6、班型选择

越来越多的人想进入大数据,但又不想付出太多。为了迎合大家的需求,一些培训机构推出什么“周末班”、“快速班”、“线上班”等等班型。

大数据技术庞多复杂,短期内想掌握几乎不可能,一般0基础的学习周期是5个月左右,且是全日制的学习。

7、现场试听

真正有技术的大数据培训机构根本不怕学生来实地考察、现场试听,网上信息了解得再多,不如实地走访一番,成都的小伙伴们可以前往成都大数据实地考察。

㈤ 中秋假期,你认为最值得推荐的旅游目的地是哪里

一、云和梯田
云和县位于浙江丽水市西南67km处,“云和”的意思是“祥和的云朵”。数千年来,云和以及周边的梯田像层层迷宫似的。在海拔200-1400米不等的山峦里蜿蜒盘旋,多达700层。

文章图片2
云和梯田

二、香格里拉普达措国家公园
普达措位于云南西北的香格里拉东侧22km处。它是中国首个符合世界自然保护联盟保护标准的国家级公园。自然保护联盟是全球性的环保组织。这个湿地高原养育着中国超过20%的植物以及大约1/3的哺乳动物和鸟类。喜欢摄影的话可以考虑这里呀。简直是摄影爱好者的天堂。

文章图片3
拉普达措国家公园

三、那拉提草原
那拉提草原又名(西)巩乃斯草原,瓦剌蒙古语意为“绿色谷地”(元明清时期这里是瓦剌辉特部牧区),哈萨克语意为“白阳坡”,在新疆伊犁州新源县那拉提镇东部,距新源县城约110公里,位于那拉提山北坡,是发育在第三纪古洪积层上的中山地草原。那拉提草原是世界四大草原之一的亚高山草甸植物区,自古以来就是著名的牧场。

在这里你可以体会到哈萨克族的民族风情。

文章图片4
那拉提草原

四、九寨沟
在四川九寨沟随处可见迷人的高山湖泊和瀑布,在这里你可以欣赏最美丽的湖泊,该湖湖水的神奇之处在于,它能够日日夜夜年复一年的变换颜色。湖水的颜色来源于湖边风景的倒影,还有湖底的藻类和钙化的岩石。

秋季是游览九寨沟的最佳时间,此时,湖面颜色纷繁绚丽,堪与画家色彩丰富的调色板相媲美。

文章图片5
九寨沟

五、山西云冈石窟
云冈石窟是具有1500年历史的佛教圣地。石窟共有252个山洞和51000多具佛像。这些佛像大多雕刻于5、6世纪的北魏。

这批砂岩雕像组合了风格迥异的佛像艺术品,有中国式佛像,印度式佛像,也有波斯式佛像。其中最大的雕塑高达17米,最小的则只有2厘米。

文章图片6
云冈石窟

六、喀拉库勒湖
新疆喀拉库勒湖泊位于海拔3600米之上的帕米尔高原,波平如镜的湖面,倒影着环湖群山的丽影,如诗如画。

文章图片7
新疆喀拉库勒湖

七、大理崇圣寺三塔
云南大理崇圣寺三塔,主塔是在9世纪中叶首次建立的,当时是为了缓解周期性的水患。塔高69米,共有16层,在唐朝算得上是“摩天大厦”了,即使现在它也是中国最高的宝塔。塔的每一层都饰有栩栩如生的佛像。另两座塔高42米,建立时间比主塔晚约100多年。

文章图片8
崇圣寺三塔

八、楠溪江
楠溪江位于浙江

㈥ 大数据的预测功能是增值服务的核心

大数据的预测功能是增值服务的核心
从走在大数据发展前沿的互联网新兴行业,到与人类生活息息相关的医疗保健、电力、通信等传统行业,大数据浪潮无时无刻不在改变着人们的生产和生活方式。大数据时代的到来,给国内外各行各业带来诸多的变革动力和巨大价值。
最新发布的报告称,全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,虽然仍旧有许多模式尚不明朗,但是也逐渐形成了一些成熟的商业模式。
两种存储模式为主
互联网上的每一个网页、每一张图片、每一封邮件,通信行业每一条短消息、每一通电话,电力行业每一户用电数据等等,这些足迹都以“数据”的形式被记录下来,并以几何量级的速度增长。这就是大数据时代带给我们最直观的冲击。
正因为数据量之大,数据多为非结构化,现有的诸多存储介质和系统极大地限制着大数据的挖掘和发展。为更好地解决大数据存储问题,国内外各大企业和研究机构做了许许多多的尝试和努力,并不断摸索其商业化前景,目前形成了如下两种比较成熟的商业模式:
可扩展的存储解决方案。该存储解决方案可帮助政府、企业对存储的内容进行分类和确定优先级,高效安全地存储到适当存储介质中。而以存储区域网络(SAN)、统一存储、文件整合/网络连接存储(NAS)的传统存储解决方案,无法提供和扩展处理大数据所需要的灵活性。而以Intel、Oracle、华为、中兴等为代表的新一代存储解决方案提供商提供的适用于大、中小企业级的全系存储解决方案,通过标准化IT基础架构、自动化流程和高扩展性,来满足大数据多种应用需求。
云存储。云存储是一个以数据存储和管理为核心的云计算系统,其结构模型一般由存储层、基础管理、应用接口和访问层四层组成。通过易于使用的API,方便用户将各种数据放到云存储里面,然后像使用水电一样按用量进行收费。用户不用关心数据的存储介质、网络状况以及安全性的管理,只需按需向提供方购买空间。
源数据价值水涨船高
在红红火火的大数据时代,随着数据的累积,数据本身的价值也在不断升值,这种情况很好地反应了事物由量变到质变的规律。例如有一种罕见的疾病,得病率为十万分之一,如果从小样本数据来看非常罕见,但是扩大到全世界70亿人,那么数量就非常庞大。以前技术落后,不能将该病情数字化集中研究,所以很难攻克。但是,我们现在把各种各样的数据案例搜集起来统一分析,我们很快就能攻克很多以前想象不到的科学难题。类似的例子,不胜枚举。
正是由于可以通过大数据挖掘到很多看不见的价值,源数据本身的价值也水涨船高。一些掌握海量有效数据的公司和企业找到了一条行之有效的商业路径:对源数据直接或者经过简单封装销售。在互联网领域,以Facebook、twitter、微博为代表的社交网站拥有大量的用户和用户关系数据,这些网站正尝试以各种方式对该源数据进行商业化销售,Google、Yahoo!、网络[微博]等搜索公司拥有大量的搜索轨迹数据以及网页数据,他们可以通过简单API提供给第三方并从中盈利;在传统行业中,中国联通[微博](3.44, 0.03, 0.88%)、中国电信[微博]等运营商拥有大量的底层用户资料,可以通过简单地去隐私化,然后进行销售盈利。
各大公司或者企业通过提供海量数据服务来支撑公司发展,同时以免费的服务补偿用户,这种成熟的商业模式经受住了时间的考验。但是对于任何用户数据的买卖,还需处理好用户隐私信息,通过去隐私化方式,来保护好用户隐私。
预测是增值服务的核心
在大数据基础上进行深度挖掘,所衍生出来的增值服务,是大数据领域最具想象空间的商业模式。大数据增值服务的核心是什么?预测!大数据引发了商业分析模式转变,从过去的样本模式到现在的全数据模式,从过去的小概率到现在的大概率,从而能够得到比以前更准确的预测。目前形成了如下几种比较成熟的商业模式。
个性化的精准营销。一提起“垃圾短信”,大家都很厌烦,这是因为本来在营销方看来是有价值的、“对”的信息,发到了“错”的用户手里。通过对用户的大量的行为数据进行详细分析,深度挖掘之后,能够实现给“对”的用户发送“对”的信息。比如大型商场可以对会员的购买记录进行深度分析,发掘用户和品牌之间的关联。然后,当某个品牌的忠实用户收到该品牌打折促销的短信之后,一定不是厌烦,而是欣喜。如优捷信达、中科嘉速等拥有强大数据处理技术的公司在数据挖掘、精准广告分析等方面拥有丰富的经验。
企业经营的决策指导。针对大量的用户数据,运用成熟的数据挖掘技术,分析得到企业运营的各种趋势,从而给企业的决策提供强有力的指导。例如,汽车销售公司,可以通过对网络上用户的大量评论进行分析,得到用户最关心和最不满意的功能,然后对自己的下一代产品进行有针对性的改进,以提升消费者的满意度。
总体来说,从宏观层面来看,大数据是我们未来社会的新能源;从企业微观层面来看,大数据分析和运用能力正成为企业的核心竞争力。深入研究和积极探索大数据的商业模式,对企业的未来发展有至关重要的意义。

阅读全文

与大数据和源大楼5楼相关的资料

热点内容
wordpress主题笑话 浏览:836
ps文件扫描去褶皱 浏览:430
12306忘记密码邮箱找回失败 浏览:557
免流app为什么还会扣流量 浏览:759
qq群文件夹内存 浏览:394
java里assest 浏览:298
手机相册视频文件名 浏览:822
如何下载手机拍照的文件 浏览:22
为什么qq远程是黑屏 浏览:55
找二手房源用哪个APP好 浏览:722
小苹果红领巾 浏览:656
苹果小游戏知乎 浏览:628
新版pdf怎么插入文件 浏览:544
怎么邀请qq好友入群 浏览:175
查苹果手机id怎么查看 浏览:516
数据库视图是什么表 浏览:413
怎么将excel图表插入word 浏览:802
魅族数据抢救能备份哪些数据 浏览:877
app推广优化工具有哪些 浏览:190
如何判断被复制文件夹 浏览:673

友情链接