㈠ 大数据应用必要条件:数据真实和准确
大数据应用必要条件:数据真实和准确
《哈佛商业评论》最新一期的封面上,一位勇士正挥舞着长鞭,试图驾驭大数据这匹“烈马”。的确,大数据的重要性已是公认,可你有没有想过真正想获取大数据价值的人能以何为鞭?仅有鞭在手是否足矣?
“IBM对大数据有自己独到的观点。”IBM软件集团大中华区业务分析洞察及智慧地球解决方案总经理卜晓军在主题为“大数据·大洞察·大未来”的年度大数据战略发布会上的发言举重若轻。的确,IBM严谨的智慧分析洞察方法论、完善的大数据平台解决方案以及广泛深刻的行业落地实践,让IBM有底气宣布即将驯服大数据,IBM的大数据平台或许就是企业正在苦苦寻找的“长鞭”和“缰绳”。
对付大数据4个V
大数据的3V特点(Volume、Velocity、Variety)已无需赘言——“过去两年里所产生的数据量占到人类有史以来所积累的数据总量的90%”,“每秒钟有500万笔交易发生,每天有5亿个通话记录产生”,“80%的数据增长来源于图片、视频和文档”。这就意味着在应对大数据时,要集成和管理高容量、即时、多类型和分散来源的数据。
“这一切只是开始。”卜晓军补充道,“3V只是对大数据最基本特征的归纳,实际上,大数据向外延伸的涵义很丰富。”IBM就归纳总结了第4个V——Veracity(真实和准确),为什么第4个V足以与前3个V相提并论?“这是因为,只有真实而准确的数据才能让对数据的管控和治理真正有意义。”随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限性被打破,企业愈发需要有效的信息治理以确保其真实性及安全性。
如何充分应对大数据的4V特性,成为了想获取大数据深层价值者面前的一道难题。基于“3A5步”动态路线图的大数据战略再次体现了IBM完整的软件体系架构和综合能力。
“单独谈大数据没有意义,正如认为Hadoop足以解决大数据所有问题一样过于片面。”IBM软件集团大中华区信息管理软件总经理卢伟权强调,“大数据应该渗透到企业的IT架构中,这就要求大数据平台具备在信息原有的形式上进行进一步的分析、使所有的数据具有可视性并被有效用来分析、为新的分析应用开发更加有效的环境、优化与合理分配工作量、安全与治理等能力,兼容企业级的可用性、管理性、安全性和集成性。”
Hadoop缺乏数据管理的能力,IBM将Hadoop整合到大数据平台中并结合已有的产品,由此以四大核心能力Hadoop系统、流计算、数据仓库和信息整合与治理为支点提供端到端的大数据解决方案。
卢伟权总结道:“IBM将数据库领域里多年积累的经验,和对用户需求的高度考量融合到大数据平台中,通过‘增强’的理念把大数据解决方案有机整合到客户现有的数据平台上,保护客户现有的投资,在不摈弃传统数据仓库的前提下,通过信息整合和治理等工具,为客户创造效率和成本的最佳平衡。”
落脚点是行业应用
不落实到行业,不出示行业应用,人们对大数据的感知仍然会停留在“它仅仅是一个技术趋势”的肤浅层面。只有让大数据成为新的解决业务问题的手段,才能打破大数据怀疑论者的疑虑,才能说明大数据可用——正如《哈佛商业评论》英文版总编辑阿迪·伊格内休斯所言,“大数据就在那里,关键看它如何为你的公司所用”。
“端到端的总体技术,包括信息治理和集成、大数据管理、实时分析,最后的落脚点是行业应用。”IBM中国开发中心信息管理首席架构师及大数据架构师陈奇说明技术服务于商业是终极追求。
行业应用场景是IBM大数据策略最有力的说客,在数个主要行业中应对大数据的相关场景和实践经验的分享让其优势不言自明。
伴随着制造业演变为“供应链核心模式”,IBM软件集团制造事业群总经理萧丁瑞希望制造业企业在IBM的帮助下实现供应链的可见性,以快速有效的方式处理供应链环节中的数据,弱化需求与供给之间的波动传导,达到产销协同。
IBM软件集团大中华区架构师总经理林旭认为,随着竞争不断激化,实时数据处理和客户行为预测成为运营商抢占的高地。IBM有能力帮助电信公司整理分散数据,管理动态数据,实时获取用户行为分析,增强客服效率和业务推送精准度。
“在金融行业中,客户数据是最珍贵的,这就决定了大数据平台必须是对传统数据仓库的补充和增强。”IBM软件集团大中华区银行业解决方案高级顾问陈剑指出,“此外,金融行业除了对于用户行为预测和实时处理等需求之外,还面临着风险和欺诈的巨大挑战。”IBM大处理解决方案可建立风险模型,通过实时匹配交易行为模型,对风险和欺诈进行监控,并补充和增强原有传统数据仓库中客户档案和信息。
以上是小编为大家分享的关于大数据应用必要条件:数据真实和准确的相关内容,更多信息可以关注环球青藤分享更多干货
㈡ 真实性不是大数据的特征对吗
错误。大数据五大基本特点包括容量、种类、速度、可变带差裂性、真实性庆虚,蠢闭所以这句话是错误的,真实性是大数据的特征。
㈢ 大数据目前存在什么问题
数据存储问题:随着技术不断发展,数据量从TB上升至PB,EB量级,如果还用传统的数据存储方式,必将给大数据分析造成诸多不便,这就需要借助数据的动态处理技术,即随着数据的规律性变更和显示需求,对数据进行非定期的处理。同时,数量极大的数据不能直接使用传统的结构化数据库进行存储,人们需要探索一种适合大数据的数据储存模式,也是当下应该着力解决的一大难题。
分析资源调度问题:大数据产生的时间点,数据量都是很难计算的,这就是大数据的一大特点,不确定性。所以我们需要确立一种动态响应机制,对有限的计算、存储资源进行合理的配置及调度。另外,如何以最小的成本获得最理想的分析结果也是一个需要考虑的问题。
专业的分析工具:在发展数据分析技术的同时,传统的软件工具不再适用。目前人类科技尚不成熟,距离开发出能够满足大数据分析需求的通用软件还有一定距离。如若不能对这些问题做出处理,在不久的将来大数据的发展就会进入瓶颈,甚至有可能出现一段时间的滞留期,难以持续起到促进经济发展的作用。
关于大数据分析目前存在哪些问题,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈣ 大数据的特点主要有什么
大数据的特点:
数据体量巨大。从TB级别,跃升到PB级别。
数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。
概念:
“大数据”是指以多元形式,自许多来源搜集而来的庞大数据组,往往具有实时性。在企业对企业销售的情况下,这些数据可能得自社交网络、电子商务网站、顾客来访纪录,还有许多其他来源。这些数据,并非公司顾客关系管理数据库的常态数据组。
优势:
在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。
1.数据量大 大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。 2.类型繁多 包括网络日志、音频、视频、图片、地理位置信息等等
大数据具有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)和Veracity(精确),其核心在于对这些含有意义的数据进行专业化处理。比如微码邓白氏通过数据分析发现采购A产品的用户80%也会要同时采购B产品,而采购周期大约是3个月,这样就可以每三个月来向采购A产品的客户推送一次信息,推送的时候除了A产品的信息也同时推送B的信息。
就是大,第一:数据体量巨大。第二:数据类型繁多。第三:价值的密度比较低。第四:处理的四度快。柠檬学院大数据。
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
魔方(大数据模型平台)
大数据模型平台是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。
大数据平台数据抽取工具
大数据平台数据抽取工具实现db到hdfs数据导入功能,借助Hadoop提供高效的集群分布式并行处理能力,可以采用数据库分区、按字段分区、分页方式并行批处理抽取db数据到hdfs文件系统中,能有效解决大数据传统抽取导致的作业负载过大抽取时间过长的问题,为大数据仓库提供传输管道。数据处理服务器为每个作业分配独立的作业任务处理工作线程和任务执行队列,作业之间互不干扰灵活的作业任务处理模式:可以增量方式执行作业任务,可配置的任务处理时间策略,根据不同需求定制。采用异步事件驱动模式来管理和分发作业指令、采集作业状态数据。通过管理监控端,可以实时监控作业在各个数据处理节点作业任务的实时运行状态,查看作业的历史执行状态,方便地实现提交新的作业、重新执行作业、停止正在执行的作业等操作。
互联网数据采集工具
网络信息雷达是一款网络信息定向采集产品,它能够对用户设置的网站进行数据采集和更新,实现灵活的网络数据采集目标,为互联网数据分析提供基础。
未至·云(互联网推送服务平台)
云计算数据中心以先进的中文数据处理和海量数据支撑为技术基础,并在各个环节辅以人工服务,使得数据中心能够安全、高效运行。根据云计算数据中心的不同环节,我们专门配备了系统管理和维护人员、数据加工和编撰人员、数据采集维护人员、平台系统管理员、机构管理员、舆情监测和分析人员等,满足各个环节的需要。面向用户我们提供面向 *** 和面向企业的解决方案。
显微镜(大数据文本挖掘工具)
文本挖掘是指从文本数据中抽取有价值的信息和知识的计算机处理技术, 包括文本分类、文本聚类、信息抽取、实体识别、关键词标引、摘要等。基于Hadoop MapRece的文本挖掘软件能够实现海量文本的挖掘分析。CKM的一个重要应用领域为智能比对, 在专利新颖性评价、科技查新、文档查重、版权保护、稿件溯源等领域都有着广泛的应用。
数据立方(可视化关系挖掘)
大数据可视化关系挖掘的展现方式包括关系图、时间轴、分析图表、列表等多种表达方式,为使用者提供全方位的信息展现方式。
大数据(big data),是指在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
大数据的特点:
1、容量(Volume):数据的大小决定所考虑的数据的价值的和潜在的信息;
2、种类(Variety):数据类型的多样性;
3、速度(Velocity):指获得数据的速度;
4、可变性(Variability):妨碍了处理和有效地管理数据的过程。
5、真实性(Veracity):数据的质量
6、复杂性(Complexity):数据量巨大,来源多渠道
大数据的意义:
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的缺陷:
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。” 这确实是需要警惕的。
闭幕词是一些大型会议结束时由
有关领导人或德高望重者向会议所作的讲话。
具有总结性、评估性和号召性。
旅游人数的变化,旅游时间,旅游地点,旅游习惯,过程中的消费习惯,团的还是个人的,等等数据。—柠檬学院大数据,线上大数据学习平台。