❶ 因为大数据10大行业正在改变
因为大数据 10大行业正在改变
进入大数据时代是一场跟不上就被淘汰的比赛。无论你是一家独立经营的实体商店,还是下一个美国硅谷的“独角兽”,当务之急都是在商业决策中采用大数据战略。与其说是因为数据很有价值,还不如说是数据正在改变商业经营的方式。
去年十月,在埃森哲和通用电气联合发布的调研报告中突破性地指出了这一紧迫性。89%的调查者认为,一家没有大数据战略的企业将在明年就遭到市场份额和发展势头方面的损失。虽然报告侧重的是工业互联网和医疗保健,但其中的结论对于其他行业仍有很大启示。
大约一年后,将会有10个行业因大数据战略而迅速变革。事实上,84%的企业认为大数据将在未来一年重塑竞争版图。所以即使你所处的行业不在其列,留意下周围那些正在经历这场巨变的公司也没有坏处。
10、能源产业技术和物联网颠覆了能源产业。从微观上看,有像Quirky公司的Aros这样的智能空调设备,它不但可以利用数据学习用户习惯和温度偏好,保持屋内凉爽和舒适,而且几乎不需要浪费多少能源。从宏观上看,有覆盖国家的智能网络。这一试点项目将大量的能源使用数据收集起来,帮助我们形成更好的能源使用习惯、减少碳排放和不必要的能源使用。
9、房地产行业房地产是推动市场的中坚力量。在2008年,我们看到了这一力量消极的一面,但所幸只是是产生了个体规模上的影响。可见房地产有可能带来丰厚的个人收益,也有可能对个体资产造成毁灭性的打击——只是需要衡量风险有多大。所以如果有个方法可以规避这种风险的话……
大数据就是答案,它将从三个方面上提高房地产交易质量和降低投资风险。首先,资产分析方式将改变。利用数据可以分析楼盘质量、楼盘寿命、结构完整性等。“账目上是否可信?”“是否有必要申请贷款?”都将从大数据分析中找到答案。第二,大数据将促成更精明的交易。对大量的客户投资进行评估后,可以提供更明智的方案来更快敲定交易。第三,大数据将提高物业管理水平。数据可以帮助更快发现和修复故障,再加上智能家居技术的应用,可以减少不少事故带来的不利影响。
8、保险行业保险行业从来没有像过去5年那样备受关注,当然这很大程度上是因为对于这一领域的总统立法,不过这好歹也让人们开始关注这个系统内固有的缺陷和复杂了。
保险公司必须从各个角度来考量协议:对保险供应商最优的方案是什么,对客户最明智的选择是什么,如何尽可能吸引到更多的用户,如何降低总体风险……以此看来,保险行业将是产生大数据变革的一片沃土。
其实,大数据正在改变这个行业:利用大数据提高索赔分析的效率,为个人提供更多的定向方案,反欺诈,甚至于为病患投保者提供保健的方法。
自助保险初创企业,MetroMile,为客户提供“开多少公里,扣多少保费”的车险业务,即按英里计保费。MetroMile表示,该业务可以帮助不常开车的客户平均一年省下500美元的保费。
总的来说,保险业的大数据分析可以促使系统快速迭代,不断改进。
7、音乐产业你可能在最近几周看了很多关于像Spotify和 Tidal 公司的得与失的消息。尽管在过去十年音乐市场急速缩减,艺人唱片公司仍在苦苦摸索从所有人身上用音乐赚钱的方式——包括从艺人身上——不单单是提高演唱会的票价或迫使艺人全年364天都在全球巡回演出的路上。
问题是他们并没有找到很好的赚钱方法。直到 Spotify 公司解决了如何为艺人的流音乐支付实质工资的问题后,Taylor Swift 才同意成为旗下一员。没人愿意每月花费20美元在 Jay Z 的“高保真”歌曲上,而他们在 Spotify 上完全不用花钱就可以听到 。
一种可能的解决方法是与广告商合作。社交媒体上收集的大数据表明,特别是在Instagram, 品牌和艺人间的品牌合作,即艺人作为品牌摄影师,可以为双方带来可观的利润,同时并不会损害艺人的形象。
基于社交媒体和流音乐网站的连接,听音乐的人群统计数据也变得很容易获得,唱片公司可以并且已经开始运用这些数据跟品牌做出战略性的合作,而这些品牌可以为艺人品牌化的音乐和视频买单。
6、航空业大数据将打破信息和航空业之间的裂缝,特别是在商业航空旅行领域。每年从商旅上收集的大量数据,甚至是每日收集的数据,在规划航线、制定激励计划、提升销量上,仍有大量可利用的空间。
首先就可以做质量管控。IBM一项研究表明,在飞行上收集的大量数据可以快速减少航线在设备和维修上的成本,这点无疑可以使航空公司更具竞争市场,减少票价成本,最终驱动销售。与此同时,飞行方面的数据也可以帮助节约时间、减少晚点和改善行李管理,甚至可以为后续航班推荐和客户留存提供智能指导。
5、电信业如果你看过关于NSA告密者 Edward Snowden 的纪录片 《第四公民》,那么你应该已经理解了电信业和数据的联系。利用元数据,似乎会让你发布的 Instagram 图片泄露你的位置。但在下面这个案例中,这不是数据改变电信行业的原因。
T-Mobile 合并了所有的客户数据集,将其分为六大类,以此来进行完整的客户行为分析,最终分析使得客户流失率降低了50%。简而言之,大数据分析帮助 T-Mobile 得出影响客户做出是否续用电信服务的因素,然后成为了他们做出调整的依据。
4、生活消费品产业关于大数据对于生活消费品产业的变革并不用说太多,事实上,只需要两个词就足够,供给和需求。
你可能已经注意到大部分的咖啡店都将以往笨重老旧的POS机更换成了更加轻便的 iPad 样式的 POS 系统,像是 Square 解决方案。Square 是小范围信用卡处理系统,它可以帮助实体商户收集大量客户数据,这也意味着独立经营的商户自己就可以很容易地收集数据。
这些数据首先也是最重要的事情就是为上下浮动的货品和供应提供智能指导,也可以帮助商户为大量购买的情况做好准备,更加理解消费者的统计信息,帮助商户运营得更有效率。大数据可以为每个人的首要之事(商户的账目和消费者的需求)都提供更好的分析。
3、酒店管理业酒店管理业不死——不管以何种形态存在。我们总是会去旅行,总是需要假期,只是需要解决旅行方式、地点和时间的问题。一些公司过分依赖这种模式,而忽视了共享经济带来的变化,像是Airbnd 这种公司带来的变化。但是也有 Duetto 这样的公司,给这个市场带来了新的竞争力。【译者注:Airbnb,联系旅游人士和家有空房出租的房主的服务型网站。Duetto,酒店定价管理 SaaS 服务商】
Duetto 为酒店提供客户行为习惯数据,帮助酒店管理房间预订、调整房间定价,甚至于预测需求量。人们总是在旅行,其中产生了大量酒店可利用的数据,而 Duetto 将它们变得极易获取并且易于分析。
2、游戏业在过去十年游戏业是爆炸性产业。随着《光环5:守护者(Halo 5: Guardians)》在这个秋天的发布,这款游戏已为微软在全球创收达35亿美元。单单这一系列不仅撑起了 Xbox One 的销售,并且成为索尼 PS4 的有力竞争者。【译者注:Halo,《光晕》(又名:光环),微软,发行的第一人称射击游戏之一】
然而游戏世界并不是只有这两家独大。魔兽世界Steam游戏平台等都促成了市场的生机和繁荣,十余亿的忠实粉丝参与其中。而现如今的游戏业也已经开始利用大数据来进一步改善体验。从30年前NES游戏平台产生以来,我们已经走过很远的路。
社交连接性和大型线上多人玩家游戏产生可观的数据,利用这些数据可以整体提升玩家体验。随着游戏的持续迭代和内容更新的下载,得到反馈并且立即做出提升用户体验的应对变得相当容易。
1、数据存储业最后是数据存储业。由于数据量很大而且在各行各业都有其不同的特性,亟需找到一种存储入库数据的方法,这种方法不需要大量服务器的要求也没有笨重的CRM系统。
Box 的解决方案应运而生。他们希望颠覆商业存储和利用数据的方法,使得各种规模的公司都可以很轻松地分析处理数据并从中获益。
无论你身处哪个行业,市场版图已然改变。赶紧打破所在行业和数据的壁垒吧,不然你的公司将沦为市场上落后的一员。
以上是小编为大家分享的关于因为大数据10大行业正在改变的相关内容,更多信息可以关注环球青藤分享更多干货
❷ 政府利用大数据分析什么
公共部门或政府部门以创建和利用大量数据而闻名。大数据分析为政府机构提供了节省公共资金的机会。实际上,通过有效利用大数据分析,联邦政府每年可以节省数百亿美元。以下是大数据分析对联邦和政府的好处:
快速而完善的决策
当识别出锁定在大数据分析中的趋势和其他见解时,制定组织决策变得更加容易和快捷。这是通过使用流工具和其他技术处理生成的实时数据来实现的。如果这些工具不可用,则决策可以恢复为猜测或完全避免决策过程。
提高生产力
必要工具的可用性使所有用户可以有效地使用大数据分析集来查找信息,做出明智的决定并更好地提供服务。政府更好的选择会转化为增强对公民的服务。
提高透明度并降低成本
许多政府税务机构存储个人信息,这些信息会在整个公共部门中复制。公民不断被要求填写表格以收集政府已经拥有的数据。提供预先填写的表格可以帮助加快处理时间,还可以减少收集到的信息中的错误。
如果将数据存储在中央位置,则所有政府机构都可以轻松地从共享池访问信息。这也有助于降低效率,并确保仅使用正确的数据。
利用大数据分析集的政府可以使信息自由流通,提高透明度并建立与公民的信任。公民了解政府收集的数据以及政府如何处理数据。这种透明性使公民能够监控政府支出的效果,并迫使政府明智地支出。组织可以通过处理和共享大数据分析来将信息作为服务提供。
消除欺诈,消除浪费和滥用
政府中大数据分析的核心优势之一是消除欺诈。此外,组织可以通过识别差异来消除内部浪费。根据任务的不同,这些机构可以消除由政党或其服务人员造成的滥用和欺诈。
减少犯罪和安全威胁
大数据分析可以帮助政府部门发现对社会构成安全威胁的犯罪和其他非法活动。大数据分析还将协助地方政府和政府共同努力,减少社区的犯罪活动。
对大数据分析的仔细分析可以帮助发现异常行为模式,从而表明存在欺诈行为。该模式可用于提供配置文件和统计参数,以识别可疑交易,然后可以对其进行密切监视。在不同数据集上应用以信息为中心的方法有助于提高刑事司法系统的有效性和效率。
增加投资回报率
大数据分析的主要目的是优化IT系统的使用并增强对财务活动的分析。可以整合其数据和分析工具的政府机构将极大地减少基础架构和运营成本。
改善任务成果
大数据分析提供了预测结果和对数据场景进行建模的功能。
改善应急响应
大数据分析可用于应对危险的自然灾害,发现健康问题,防止水资源短缺问题并协调数千名流离失所者。例如,飓风玛利亚(Hurricane Maria),分析用于确定需要快速帮助和更好地分配资源的区域。
识别并减少低效率
仔细分析大数据分析有助于政府机构和地方议会了解他们过去犯的错误。
劳动力效率
大数据分析可以帮助地方政府或其他机构了解员工离职或退休时造成的劳动力缺口。这些机构可以通过确保新员工填补退休人员引入的空白来提供平稳的运营。
大数据分析在政府中的应用
大数据分析的灵活性使其可以在不同领域中使用。通过实施大数据分析平台,政府机构可以访问对其日常功能至关重要的大量信息。对这些信息的实时访问使政府能够指出需要关注的领域,做出更好,更快速的决策并制定必要的更改。以下是可以在政府中应用大数据分析的领域:
卫生保健
医疗保健是世界各地的大问题。许多卫生系统依靠政府补贴和支持。因此,存在资源浪费或政府补贴分配不公的风险。大数据分析使政府有机会清楚地了解资金分配的位置以及分配背后的原因。这意味着政府机构可以更好地控制资源及其对社区的有效性。
农业
很难追踪一个国家乃至全球的牲畜和土地。对于政府而言,要跟踪其公民种植的多种农作物和牲畜将是一项艰巨的任务。大数据分析可以改变政府管理和支持农民及其资源的方式。收集和分析大量
数据的能力使农业管理变得容易。
运输
每天都有数百万的市民在开车或步行时使用公共道路。许多因素都会影响道路安全,例如道路状况,警务人员,车辆安全和天气状况。有了这些因素,几乎不可能控制所有可能导致事故的事情。大数据分析使政府能够监督
运输部门,以确保道路更安全,道路更美好,道路更新。
地方政府机构可以分析从不同道路上的交通流获得的数据。分析工具有助于汇总由道路传感器,摄像机,GPS设备传输的实时交通数据。作为回报,这些信息使交通管理人员能够识别对道路安全的潜在威胁。通过实时调整公共交通路线,可以解决对城市交通流量造成的任何潜在威胁。
教育
大数据分析可帮助政府更好地了解联邦和地方各级的教育需求。
这确保了青年人获得最高质量的教育,这将对该国将来带来极大的好处。
消除贫困
世界上许多国家都试图消除贫困,这已经有很多年了。
大数据分析为政府提供了必要的工具,以揭示关于如何减少全球贫困水平的更好的创新想法。这些数据使确定紧急需求的领域以及如何满足这些需求变得更加容易。
政府用例
天气预报:
中国国家海洋和大气管理局不断从海,陆和空基传感器收集数据。当您听到有关飓风或龙卷风的天气预报时,数据来自NOAA。该组织使用大数据分析方法来收集和分析大量数据,以提供正确的信息。
国家安全:
NSA从大数据分析获得其数据处理能力。它利用了由NSA设计的开源项目Accumulo,为用户提供了将数据存储在大表中的功能,智慧政务:利用大数据分析政府能做那些事儿从而可以轻松地访问信息并增强安全性。当代理商将数据集放在一起时,它可以使用Accumulo调查各种细节,同时阻止访问可能泄露个人信息的信息。
犯罪侦查和预防:
联合国毒品和犯罪问题办公室报告说,2009年犯罪分子洗钱超过1.6万亿美元,占国内生产总值的2.7%。中国财政部金融犯罪执法局(FinCEN)使用大数据分析工具来收集和分析大量银行交易。这有助于打击洗钱,资助恐怖主义和其他非法活动。
网络安全:
国土安全部为传感器采用了入侵检测系统,除了检测恶意软件和未经授权的访问尝试外,该传感器还可以分析进出联邦系统的互联网流量。大数据分析用于识别异常和可疑行为。获得的信息有助于打击网络犯罪。
改进的服务交付:
在自然资源局已经实施了大数据分析,以帮助保护,恢复和管理国家的历史,自然和文化资源,为子孙后代。该机构已创建一个共享服务通知,该信息库包含一个州内其他机构可能需要的每条信息。这种共享的信息池为该机构的利益相关者以及公众提供了见解和分析。
❸ 互联网大数据现关心的是什么
楼主您好:
首先,我认为大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
其次,想要系统的认知大数据,必须要全面而细致的分解它,我着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
和大数据相关的理论
? 特征定义
最早提出大数据时代到来的是麦肯锡:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
业界(IBM 最早定义)将大数据的特征归纳为4个“V”(量Volume,多样Variety,价值Value,速Velocity),或者说特点有四个层面:第一,数据体量巨大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T);第二,数据类型繁多。比如,网络日志、视频、图片、地理位置信息等等。第三,价值密度低,商业价值高。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。
其实这些V并不能真正说清楚大数据的所有特征,下面这张图对大数据的一些相关特性做出了有效的说明。
36大数据
古语云:三分技术,七分数据,得数据者得天下。先不论谁说的,但是这句话的正确性已经不用去论证了。维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候要用大数据思维去发掘大数据的潜在价值。书中,作者提及最多的是Google如何利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;Amazon如何利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast如何利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适。
那么,什么是大数据思维?维克托·迈尔-舍恩伯格认为,1-需要全部数据样本而不是抽样;2-关注效率而不是精确度;3-关注相关性而不是因果关系。
阿里巴巴的王坚对于大数据也有一些独特的见解,比如,
“今天的数据不是大,真正有意思的是数据变得在线了,这个恰恰是互联网的特点。”
“非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。”
“你千万不要想着拿数据去改进一个业务,这不是大数据。你一定是去做了一件以前做不了的事情。”
特别是最后一点,我是非常认同的,大数据的真正价值在于创造,在于填补无数个还未实现过的空白。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。
? 价值探讨
大数据是什么?投资者眼里是金光闪闪的两个字:资产。比如,Facebook上市时,评估机构评定的有效资产中大部分都是其社交网站上的数据。
如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
Target 超市以20多种怀孕期间孕妇可能会购买的商品为基础,将所有用户的购买记录作为数据来源,通过构建模型分析购买者的行为相关性,能准确的推断出孕妇的具体临盆时间,这样Target的销售部门就可以有针对的在每个怀孕顾客的不同阶段寄送相应的产品优惠卷。
Target的例子是一个很典型的案例,这样印证了维克托·迈尔-舍恩伯格提过的一个很有指导意义的观点:通过找出一个关联物并监控它,就可以预测未来。Target通过监测购买者购买商品的时间和品种来准确预测顾客的孕期,这就是对数据的二次利用的典型案例。如果,我们通过采集驾驶员手机的GPS数据,就可以分析出当前哪些道路正在堵车,并可以及时发布道路交通提醒;通过采集汽车的GPS位置数据,就可以分析城市的哪些区域停车较多,这也代表该区域有着较为活跃的人群,这些分析数据适合卖给广告投放商。
不管大数据的核心价值是不是预测,但是基于大数据形成决策的模式已经为不少的企业带来了盈利和声誉。
从大数据的价值链条来分析,存在三种模式:
1- 手握大数据,但是没有利用好;比较典型的是金融机构,电信行业,政府机构等。
2- 没有数据,但是知道如何帮助有数据的人利用它;比较典型的是IT咨询和服务企业,比如,埃森哲,IBM,Oracle等。
3- 既有数据,又有大数据思维;比较典型的是Google,Amazon,Mastercard等。
未来在大数据领域最具有价值的是两种事物:1-拥有大数据思维的人,这种人可以将大数据的潜在价值转化为实际利益;2-还未有被大数据触及过的业务领域。这些是还未被挖掘的油井,金矿,是所谓的蓝海。
Wal-Mart作为零售行业的巨头,他们的分析人员会对每个阶段的销售记录进行了全面的分析,有一次他们无意中发现虽不相关但很有价值的数据,在美国的飓风来临季节,超市的蛋挞和抵御飓风物品竟然销量都有大幅增加,于是他们做了一个明智决策,就是将蛋挞的销售位置移到了飓风物品销售区域旁边,看起来是为了方便用户挑选,但是没有想到蛋挞的销量因此又提高了很多。
还有一个有趣的例子,1948年辽沈战役期间,司令员林彪要求每天要进行例常的“每日军情汇报”,由值班参谋读出下属各个纵队、师、团用电台报告的当日战况和缴获情况。那几乎是重复着千篇一律枯燥无味的数据:每支部队歼敌多少、俘虏多少;缴获的火炮、车辆多少,枪支、物资多少……有一天,参谋照例汇报当日的战况,林彪突然打断他:“刚才念的在胡家窝棚那个战斗的缴获,你们听到了吗?”大家都很茫然,因为如此战斗每天都有几十起,不都是差不多一模一样的枯燥数字吗?林彪扫视一周,见无人回答,便接连问了三句:“为什么那里缴获的短枪与长枪的比例比其它战斗略高?”“为什么那里缴获和击毁的小车与大车的比例比其它战斗略高?”“为什么在那里俘虏和击毙的军官与士兵的比例比其它战斗略高?”林彪司令员大步走向挂满军用地图的墙壁,指着地图上的那个点说:“我猜想,不,我断定!敌人的指挥所就在这里!”果然,部队很快就抓住了敌方的指挥官廖耀湘,并取得这场重要战役的胜利。
这些例子真实的反映在各行各业,探求数据价值取决于把握数据的人,关键是人的数据思维;与其说是大数据创造了价值,不如说是大数据思维触发了新的价值增长。
? 现在和未来
我们先看看大数据在当下有怎样的杰出表现:
大数据帮助政府实现市场经济调控、公共卫生安全防范、灾难预警、社会舆论监督;
大数据帮助城市预防犯罪,实现智慧交通,提升紧急应急能力;
大数据帮助医疗机构建立患者的疾病风险跟踪机制,帮助医药企业提升药品的临床使用效果,帮助艾滋病研究机构为患者提供定制的药物;
大数据帮助航空公司节省运营成本,帮助电信企业实现售后服务质量提升,帮助保险企业识别欺诈骗保行为,帮助快递公司监测分析运输车辆的故障险情以提前预警维修,帮助电力公司有效识别预警即将发生故障的设备;
大数据帮助电商公司向用户推荐商品和服务,帮助旅游网站为旅游者提供心仪的旅游路线,帮助二手市场的买卖双方找到最合适的交易目标,帮助用户找到最合适的商品购买时期、商家和最优惠价格;
大数据帮助企业提升营销的针对性,降低物流和库存的成本,减少投资的风险,以及帮助企业提升广告投放精准度;
大数据帮助娱乐行业预测歌手,歌曲,电影,电视剧的受欢迎程度,并为投资者分析评估拍一部电影需要投入多少钱才最合适,否则就有可能收不回成本;
大数据帮助社交网站提供更准确的好友推荐,为用户提供更精准的企业招聘信息,向用户推荐可能喜欢的游戏以及适合购买的商品。
其实,这些还远远不够,未来大数据的身影应该无处不在,就算无法准确预测大数据终会将人类社会带往到哪种最终形态,但我相信只要发展脚步在继续,因大数据而产生的变革浪潮将很快淹没地球的每一个角落。
比如,Amazon的最终期望是:“最成功的书籍推荐应该只有一本书,就是用户要买的下一本书。”
Google也希望当用户在搜索时,最好的体验是搜索结果只包含用户所需要的内容,而这并不需要用户给予Google太多的提示。
而当物联网发展到达一定规模时,借助条形码、二维码、RFID等能够唯一标识产品,传感器、可穿戴设备、智能感知、视频采集、增强现实等技术可实现实时的信息采集和分析,这些数据能够支撑智慧城市,智慧交通,智慧能源,智慧医疗,智慧环保的理念需要,这些都所谓的智慧将是大数据的采集数据来源和服务范围。
未来的大数据除了将更好的解决社会问题,商业营销问题,科学技术问题,还有一个可预见的趋势是以人为本的大数据方针。人才是地球的主宰,大部分的数据都与人类有关,要通过大数据解决人的问题。
比如,建立个人的数据中心,将每个人的日常生活习惯,身体体征,社会网络,知识能力,爱好性情,疾病嗜好,情绪波动……换言之就是记录人从出生那一刻起的每一分每一秒,将除了思维外的一切都储存下来,这些数据可以被充分的利用:
医疗机构将实时的监测用户的身体健康状况;
教育机构更有针对的制定用户喜欢的教育培训计划;
服务行业为用户提供即时健康的符合用户生活习惯的食物和其它服务;
社交网络能为你提供合适的交友对象,并为志同道合的人群组织各种聚会活动;
政府能在用户的心理健康出现问题时有效的干预,防范自杀,刑事案件的发生;
金融机构能帮助用户进行有效的理财管理,为用户的资金提供更有效的使用建议和规划;
道路交通、汽车租赁及运输行业可以为用户提供更合适的出行线路和路途服务安排;
……
当然,上面的一切看起来都很美好,但是否是以牺牲了用户的自由为前提呢?只能说当新鲜事物带来了革新的同时也同样带来了“病菌”。比如,在手机未普及前,大家喜欢聚在一起聊天,自从手机普及后特别是有了互联网,大家不用聚在一起也可以随时随地的聊天,只是“病菌”滋生了另外一种情形,大家慢慢习惯了和手机共渡时光,人与人之间情感交流仿佛永远隔着一张“网”。
? 大数据隐私
你或许并不敏感,当你在不同的网站上注册了个人信息后,可能这些信息已经被扩散出去了,当你莫名其妙的接到各种邮件,电话,短信的滋扰时,你不会想到自己的电话号码,邮箱,生日,购买记录,收入水平,家庭住址,亲朋好友等私人信息早就被各种商业机构非法存储或贱卖给其它任何有需要的企业或个人了。
更可怕的是,这些信息你永远无法删除,它们永远存在于互联网的某些你不知道的角落。除非你更换掉自己的所有信息,但是这代价太大了。
用户隐私问题一直是大数据应用难以绕开的一个问题,如被央视曝光过的分众无线、罗维邓白氏以及网易邮箱都涉及侵犯用户隐私。目前,中国并没有专门的法律法规来界定用户隐私,处理相关问题时多采用其他相关法规条例来解释。但随着民众隐私意识的日益增强,合法合规地获取数据、分析数据和应用数据,是进行大数据分析时必须遵循的原则。
说到隐私被侵犯,爱德华?斯诺登应该占据一席之地,这位前美国中央情报局(CIA)雇员一手引爆了美国“棱镜计划”(PRISM)的内幕消息。“棱镜”项目是一项由美国国家安全局(NSA)自2007年起开始实施的绝密电子监听计划,年耗资近2000亿美元,用于监听全美电话通话记录,据称还可以使情报人员通过“后门”进入9家主要科技公司的服务器,包括微软、雅虎、谷歌、Facebook、PalTalk、美国在线、Skype、YouTube、苹果。这个事件引发了人们对政府使用大数据时对公民隐私侵犯的担心。
再看看我们身边,当微博,微信,QQ空间这些社交平台肆意的吞噬着数亿用户的各种信息时,你就不要指望你还有隐私权了,就算你在某个地方删除了,但也许这些信息已经被其他人转载或保存了,更有可能已经被网络或Google存为快照,早就提供给任意用户搜索了。
因此在大数据的背景下,很多人都在积极的抵制无底线的数字化,这种大数据和个体之间的博弈还会一直继续下去……
专家给予了我们一些如何有效保护大数据背景下隐私权的建议:1-减少信息的数字化;2-隐私权立法;3-数字隐私权基础设施(类似DRM数字版权管理);4-人类改变认知(接受忽略过去);5-创造良性的信息生态;6-语境化。
但是这些都很难立即见效或者有实质性的改善。
比如,现在有一种职业叫删帖人,专门负责帮人到各大网站删帖,删除评论。其实这些人就是通过黑客技术侵入各大网站,破获管理员的密码然后进行手工定向删除。只不过他们保护的不是客户的隐私,而大多是丑闻。还有一种职业叫人肉专家,他们负责从互联网上找到一个与他们根本就无关系用户的任意信息。这是很可怕的事情,也就是说,如果有人想找到你,只需要两个条件:1-你上过网,留下过痕迹;2-你的亲朋好友或仅仅是认识你的人上过网,留下过你的痕迹。这两个条件满足其一,人肉专家就可以很轻松的找到你,可能还知道你现在正在某个餐厅和谁一起共进晚餐。
当很多互联网企业意识到隐私对于用户的重要性时,为了继续得到用户的信任,他们采取了很多办法,比如google承诺仅保留用户的搜索记录9个月,浏览器厂商提供了无痕冲浪模式,社交网站拒绝公共搜索引擎的爬虫进入,并将提供出去的数据全部采取匿名方式处理等。
在这种复杂的环境里面,很多人依然没有建立对于信息隐私的保护意识,让自己一直处于被滋扰,被精心设计,被利用,被监视的处境中。可是,我们能做的几乎微乎其微,因为个人隐私数据已经无法由我们自己掌控了,就像一首诗里说到的:“如果你现在继续麻木,那就别指望这麻木能抵挡得住被”扒光”那一刻的惊恐和绝望……”
和大数据相关的技术
? 云技术
大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。
云计算思想的起源是麦卡锡在上世纪60年代提出的:把计算能力作为一种像水和电一样的公用事业提供给用户。
如今,在Google、Amazon、Facebook等一批互联网企业引领下,一种行之有效的模式出现了:云计算提供基础架构平台,大数据应用运行在这个平台上。
业内是这么形容两者的关系:没有大数据的信息积淀,则云计算的计算能力再强大,也难以找到用武之地;没有云计算的处理能力,则大数据的信息积淀再丰富,也终究只是镜花水月。
那么大数据到底需要哪些云计算技术呢?
这里暂且列举一些,比如虚拟化技术,分布式处理技术,海量数据的存储和管理技术,NoSQL、实时流数据处理、智能分析技术(类似模式识别以及自然语言理解)等。
云计算和大数据之间的关系可以用下面的一张图来说明,两者之间结合后会产生如下效应:可以提供更多基于海量业务数据的创新型服务;通过云计算技术的不断发展降低大数据业务的创新成本。
36大数据
如果将云计算与大数据进行一些比较,最明显的区分在两个方面:
第一,在概念上两者有所不同,云计算改变了IT,而大数据则改变了业务。然而大数据必须有云作为基础架构,才能得以顺畅运营。
第二,大数据和云计算的目标受众不同,云计算是CIO等关心的技术层,是一个进阶的IT解决方案。而大数据是CEO关注的、是业务层的产品,而大数据的决策者是业务层。
详情:http://ke..com/view/9424571.htm
❹ 大数据的应用领域有哪些
1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.
改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APPResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我搏衫们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.
了解和优化业务流程
大数据也困毕越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。SociometricSolutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
5.
改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政汪银芹府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。XcelEnergy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.
提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBMSlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。
❺ 大数据的应用领域有哪些
1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。
❻ 什么是大数据。。大数据是什么
大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理内和处理的数据集合,容是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。
大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
(6)大数据nsa扩展阅读:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。
据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了。