⑴ 互联网+物流 在大数据时代能带来哪些变革
大数据,变革车货匹配
每次到物流园区都看到很多信息部,大量的车辆在园区的停车场候着,有时候等上两三天配不上货也是正常的事,大大浪费了资源,所以才催生了很多以车货匹配的信息平台和APP,且不说车货匹配带来的数据量如何,仅大数据的沉淀积累就有一段漫长的路要走,通过运力池的大数据分析,公共运力的标准化和专业运力的个性化需求之间可以产生良好的匹配,同时,结合企业信息系统也会全面整合与优化。基于大数据实现车货高效匹配,不仅能减少空驶带来的损耗,还能减少污染,是一举多得的好事情!大数据的应用能有效解决公共信息平台上没有货源或货源信息虚假的问题。当前,国内做车货匹配的平台性企业大多还在摸索,效果不佳,运作乏力。
大数据,运输路线优化
下面先看看UPS是如何用大数据优化送货路线的?UPS配送人员不需要自己思考配送路径是否最优,UPS采用Orion系统可实时分析20万种可能路线,3秒找出最佳路径。UPS通过大数据分析规定:卡车不能左转,原因是左转会导致货车长时间等待。未来,UPS将用大数据预测快递员将做什么并及时控制纠正问题。通过运用大数据,物流运输效率将得到大幅提高,大数据为物流企业间搭建起沟通的桥梁,物流车辆行车路径也将被最短化、最优化定制。所以,UPS的司机会宁愿绕个圈,也不要往左转,听着些许荒唐,因为左转而绕远路的费时和耗油真的可以忽略不计吗?根据往年的数据显示,因为执行尽量避免左转的政策,UPS货车在行驶路程减少2.04亿的前提下,多送出了350000件包裹。
大数据,销售预测与库存
通过互联网技术和商业模式的改变,可以实现从生产者直接到顾客的供应渠道的改变。这样的改变,从时间和空间两个维度都为物流业创造新价值奠定了很好的基础。借助大数据不断优化库存结构和降低库存存储成本,运用大数据分析商品品类,系统会自动调用哪些商品是用来促销的,哪些商品是用来引流的,同时,系统会自动根据以往的销售数据建模和分析,以此判断当前商品的安全库存,并及时给出预警,而不再是根据往年的销售情况来预测当前的库存状况,降低库存存货,从而提高资金利用率。通过互联网技术的变化,可以让全国物流业的布局相应地发生一系列调整。从过去生产者全国布局配送中心,逐步演化成为个性化订单,从顾客的需求向上推移,促使整个配送模式的改变。过去是供给决定需求,今后越来越多地从需求开始倒推,按照需求的模式重新设计相应的供给点的安排。这些都是因为大数据时代到来所产生的变革。
大数据,设备修理预测
美国联合包裹服务公司(UPS)从2000年就开始使用预测性分析来检测自己全美60000辆车规模的车队,这样就能及时地进行防御性的修理。如果车在路上抛锚损失会非常大,因为那样就需要再派一辆车,会造成延误和再装载的负担,并消耗大量的人力、物力,所以,以前UPS每两三年就会对车辆的零件进行定时更换。但这种方法不太有效,因为有的零件并没有什么毛病就被换掉了。通过监测车辆的各个部位,UPS如今只需要更换需要更换的零件,从而节省了好几百万美元。有一次,监测系统甚至帮助UPS发现了一辆新车的一个零件有问题,因此免除了可能会造成的困扰。
大数据,供应链协同管理
随着供应链变得越来越复杂,如何采用更好的工具来迅速高效地发挥数据的最大价值,有效的供应链计划系统集成企业所有的计划和决策业务,包括需求预测、库存计划、资源配置、设备管理、渠道优化、生产作业计划、物料需求与采购计划等。将彻底变革企业市场边界、业务组合、商业模式和运作模式等。建立良好的供应商关系,实现双方信息的交互。良好的供应商关系是消灭供应商与制造商间不信任成本的关键。双方库存与需求信息交互、VMI运作机制的建立,将降低由于缺货造成的生产损失。部署供应链管理系统,要将资源数据、交易数据、供应商数据、质量数据等存储起来用于跟踪供应链在执行过程中的效率、成本,从而控制产品质量。企业为保证生产过程的有序与匀速,为达到最佳物料供应分解和生产订单的拆分,需要综合平衡订单、产能、调度、库存和成本间的关系,需要大量的数学模型、优化和模拟技术为复杂的生产和供应问题找到优化解决方案。
大数据,变革思维方式
物流行业的人们不再认为数据是静止和无价值的,对数据也有了重新认识,但片段性的、短期的数据似乎并未发挥出让人立竿见影看得到的价值!也许,有的企业会死在追求大数据的道路上,当然出现这种结果也是悲壮的!企业管理人员如果没有大数据的理念,就会丢失掉很多有价值的数据,譬如某专线货车价格并不完全依赖于起点和终点,也不完全依赖于公里数,太多影响其价格变动的因素了。
如今,大数据逐渐成为投资公司热衷的领域,也逐渐在成为一种商业资本,未来大数据还能创造更多的出乎意料的价值存在,短期看也许是“虚”的,但一旦转变思维,数据就能激发出更多新点子,创造更多新产品和新型服务,数据的奥妙只为一直追求、愿意聆听且掌握了学习手段的人所知。
加速大数据产业链,需要更先进的分析技术,“互联网+物流”的本质是物流行业经过互联网改造后的在线化、数据化,其前提是互联网作为一种基础设施的广泛安装。“互联网+”仰赖的新基础设施,可以概括为云(云计算和大数据基础设施)、网(互联网+物联网)、端(直接服务个人的设备)三部分,这三个领域的推进将决定“互联网+”计划改造升级物流产业的效率和深度。大数据时代的来临,不是技术的变革,首当其冲是思维的变革,随之而来的将是商业模式的改变。
⑵ 什么是大数据,大数据又给物流企业带来怎样的发展优势及具体应用
大数据指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
其对物流企业发展带来的影响主要表现在一下几个方面:
(1)信息对接,掌握企业运作信息
在信息化时代,网购呈现出一种不断增长的趋势,规模已经达到了空前巨大的地步,这给网购之后的物流带来了沉重的负担,对每一个节点的信息需求也越来越多。每一个环节产生的数据都是海量的,过去传统数据收集、分析处理方式已经不能满足物流企业对每一个节点的信息需求,这就需要通过大数据把信息对接起来,将每个节点的数据收集并且整合,通过数据中心分析、处理转化为有价值的信息,从而掌握物流企业的整体运作情况。
(2)提供依据,帮助物流企业做出正确的决策
传统的根据市场调研和个人经验来进行决策已经不能适应这个数据化的时代,只有真实的、海量的数据才能真正反映市场的需求变化。通过对市场数据的收集、分析处理,物流企业可以了解到具体的业务运作情况,能够清楚地判断出哪些业务带来的利润率高、增长速度较快等,把主要精力放在真正能够给企业带来高额利润的业务上,避免无端的浪费。同时,通过对数据的实时掌控,物流企业还可以随时对业务进行调整,确保每个业务都可以带来赢利,从而实现高效的运营。
(3)培养客户粘性,避免客户流失
网购人群的急剧膨胀,使得客户越来越重视物流服务的体验,希望物流企业能够提供最好的服务,甚至掌控物流业务运作过程中商品配送的所有信息。这就需要物流企业以数据中心为支撑,通过对数据挖掘和分析,合理地运用这些分析成果,进一步巩固和客户之间的关系,增加客户的信赖,培养客户的粘性,避免客户流失。
(4)数据“加工”从而实现数据“增值”
在物流企业运营的每个环节中,只有一小部分结构化数据是可以直接分析利用的,绝大部分非结构化数据必须要转化为结构化数据才能储存分析。这就造成了并不是所有的数据都是准确的、有效的,很大一部分数据都是延迟、无效、甚至是错误的。物流企业的数据中心必须要对这些数据进行“加工”,从而筛选出有价值的信息,实现数据的“增值”。
,大数椐在物流企业中的应用主要包括以下几个方面。
(1)市场预测
商品进入市场后,并不会一直保持最高的销量,是随着时间的推移,消费者行为和需求的变化而不断变化的。在过去,我们总是习惯于通过采用调查问卷和以往经验来寻找客户的来源。而当调查结果总结出来时,结果往往已经是过时的了,延迟、错误的调查结果只会让管理者对市场需求做出错误的信计。而大数据能够帮助企业完全勾勒出其客户的行为和需求信息,通过真实而有效的数据反映市场的需求变化,从而对产品进入市场后的各个阶段作出预测,进而合理的控制物流企业库存和安排运输方案。
(2)物流中心的选址
物流中心选址问题要求物流企业在充分考虑到自身的经营特点、商品特点和交通状况等因素的基础上,使配送成本和匿定成本等之和达到最小。针对这一问题,可以利用大数据中分类树方法来解决。
(3)优化配送线路
配送线路的优化是一个典型的非线性规划问题,它一直影响着物流企业的配送效率和配送成本。物流企业运用大数据来分析商品的特性和规格、客户的不同需求(时间和金钱)等问题,从而用最快的速度对这些影响配送计划的因素做出反映(比如选择哪种运输方案、哪种运输线路等),制定最合理的配送线路。而且企业还可以通过配送过程中实时产生的数据,快速地分析出配送路线的交通状况,对事故多发路段的做出提前预警。精确分析配送整个过程的信息,使物流的配送管理智能化,提高了物流企业的信息化水平和可预见性。
(4)仓库储位优化
合理的安排商品储存位置对于仓库利用率和搬运分拣的效率有着极为重要的意义。对于商品数量多、出货频率快的物流中心,储位优化就意味着工作效率和效益。哪些货物放在一起可以提高分拣率,哪些货物储存的时间较短,都可以通过大数据的关联模式法分析出商品数据间的相互关系来合理的安排仓库位置。
上海欧坚及其旗下仓储积极学习大数据,并将其运用到对仓库的日常管理当中。取得一定的成效。
⑶ 大数据、人工智能对物流行业的发展影响大吗它们怎么应用在物流行业
谢邀,作为从事物流工作五六年,略有些经验的人,来回答你这个问题。大数据、人工智专能等技术对各属行各业影响都很大,物流行业也不能例外,这些新兴技术的发展,能够有效降低物流成本,提高物流速度,在一定程度上还能保证物流服务的质量。
比如以时效著称的跨越速运,他们经过多年的研发,推出了铸剑系统,可以通过大数据、人工智能等技术,按照路况、天气、成本、目的地、客户特征等多个维度,分析得到多个动态路由方案,从中选出最优解,实现在更多维度上满足客户需求。除此之外,跨越速运还推出了末端派送AI全程技术监控,增加了物流服务的安全性,为客户提供更加精准、更人性化的服务。
在未来,数字技术必定会更多地应用到物流行业之中,给用户和物流企业带来更多的便利,各大物流公司谁掌握了科技,谁就能够在新时代得到更好的发展。
⑷ 物流企业的大数据有什么用
物流企业的大数据有什么用
物流公司的大数据有两大方面的价值,一方面,优化物流企业本身的运营和决策;另外一方面,物流大数据可用于非物流领域的应用,比如征信和金融应用,下面我们一起来详细看一下!
第一方面,优化物流企业本身的运营和决策。
物流企业的数据包括运输、仓储、配送、包装、流通加工等数据。对于物流企业,通过大数据分析,可以帮助提高企业运营管理效率,降低物流库存率,提高商品处理效率、运输效率、送达准确率等方面。以物流的路径优化为例,路径优化是节约物流企业成本的一个重要大数据分析应用。在物流配送运输中,由于货运点多、客户多、货物种类繁多、城市交通路线复杂、运输服务地区内运输网点分布不均匀等诸多因素的影响,同时还要满足客户提出的如时间窗等约束条件的要求,使得如何安排最佳路线,如何使配装和配送路线有效搭配等,成为物流配送中的难点。
车辆的路径问题是一个有约束的组合优化问题。合理解决车辆路径问题,不仅可以简化配送程序、减少配送次数、降低配送车辆的空载率,从而降低物流成本,提高经济效益,而且可加快对客户需求的响应速度,提高服务质量,增强客户对物流环节的满意度等。阿里在路况预测的基础上,使用基于集合划分的树型搜索算法进行车辆分配和路径优化。该算法用于车辆路径计算,比业界通用的经典算法包括局部搜索、遗传算法、蚁群算法等,运输成本至少降低了6%
第二方面,物流大数据可用于非物流领域,尤其是征信和金融应用。
以物流配送单为例,我们做一个简单的数据分析,便可以实现客户画像,以作为征信模型的基础数据。物流配送单至少有两类信息。一类是寄件人的姓名、手机号和地址;另外是收件人的姓名、手机号和地址。通过这些信息,可以分析:寄件人或收件人的常住地或办公地点,如果是常住地,则还可以通过小区地址分析出来这个小区的房价(通过关联房产网站的价格数据实现),反过来推断该客户的.消费能力;通过手机号,可以分析出这个客户的年龄、性别等人口统计学特征,以及兴趣爱好(与拥有客户的人口统计学特征的企业做数据关联得出)。如果在电商购物,有些物流配送单还会标注是哪个商家发货,从而可以分析这个客户喜欢的商品类别。以上这些数据可以作为征信模型的基础数据。企业使用数据的使用,一定要尊重用户隐私,对隐私类信息做好脱敏和保护。当然,这只是对个人客户的征信应用。物流企业还可以对供应商(如发货单位)进行信用评估(根据发货量等大数据),从而进行金融服务。
总之,物流企业的数据不仅仅可以优化企业内部的运营效率,还可以做更多的增值分析,如以上提到的征信数据以及金融的应用。我们从顺丰的官方网上可以看到一个顺丰有三大业务,一是众所周知的物流,第二是金融,第三是电商(顺丰优选)。金融是物流企业大数据应用很好的一个方向,顺丰在其官方网提到:我们致力于为顺丰的供应商和客户提供存货质押、保理、订单融资、小额信贷、融资租赁等一系列“物流+金融”服务。
;⑸ 快递旺季来临 大数据如何推动快递信息化
快递旺季来临 大数据如何推动快递信息化
随着节日的到来,快递行业进入一年中最旺的季节。借助大数据分析,利用互联网工具优化快递流程、缩减物流成本、使得消费者获得更好的物流服务和体验,快递企业已经从低端劳动力密集型,向互联网高端管理转变。
电子面单
电子面单是一种高效率、环保的信息化面单。不同于以前快递包裹上的三联单或四联单。贴在包裹上的电子面单,全部是电脑打印,有的还有二维码标识,背面的不干胶使得消费者轻易可以撕下来。有了电子面单,一个包裹才能在上亿件包裹中被识别、处理、配送。
通过数据的流转,电子面单系统可以自动串联发货商家、送货快递公司、收货消费者以及干支线路的数据信息。基于电子面单串联的数据,可对快递链路进行一系列优化。
今年8月,国内排名前15的快递公司全部实现了电子面单的普及使用,这意味着占全国电商市场份额90%以上的主流快递企业全部完成了快递基础业务的信息化,大数据产品已经成为快递企业的标准配置。
据圆通、中通等快递企业的数据显示,使用电子面单,发货速度能提升30%以上。根据德邦快递的使用后的数据对比,录单效率提升了15倍。
大数据路由分单
根据目前快递企业收件路径,来自全国各地的大量包裹先集中到分拨中心,再按照收货地址将包裹归类后分拨往下一网点。
分拨中心流水线上会有大量的分拣员,他们需要看着包裹上的地址信息,凭记忆确定包裹下一站到达哪个网点,这个过程至少需要3-5秒。
“大数据路由分单”就好比人们出行时用到的高德地图,通过对海量的地址进行大数据分析,结合互联网地图的空间定位技术,可用数据实现包裹跟网点的精准匹配,准确率达98%以上,随着大数据沉淀,可向100%接近。
据中通和圆通等快递公司的数据显示,快递公司启用大数据路由分单后,分单的速度从3-5秒每单,下降到1-2秒每单,仓库分拣效率普遍提高50%以上。根据大数据路由的计算原理,订单一产生,就能够知道派送的网点,未来可帮助快递公司做网点派件量预报。
根据大数据处理产生的4级地址库,可以匹配消费者的配送地址到结构化的乡镇或是街道。有了这些架构化的地址讯息,就可以对揽件和派件地址进行精准定位,为快递员提供更精准的线路规划和配送分派。
“超时异常件”管理
快递公司的烦恼是什么?就是无法正常配送的“超时异常件”,即48小时尚未完成派送的包裹。通过大数据,将这些包裹订单数据筛选出来,可以帮助快递企业及时了解自己产生了多少“超时异常件”,哪个网点最严重,并通过订单及时了解原因,有针对性地着手改善。
目前,申通、中通、圆通、百世汇通等快递公司已经开始推广这个技术。据圆通快递介绍,运营了4个月之后,“超时异常件”的比例下降了30%。
物流预警雷达
物流预警雷达可以通过大数据对包裹量进行提前预测,来引导商家备仓发货,帮助快递公司调配运能能力资源,在“双11”这类旺季单量剧增的时候可以起到一个核心协调枢纽的作用。目前,国内已经有15家快递公司使用这一预警系统。在过去的两年“双11”,预警雷达成功地保障了海量包裹的有序顺利送达。
大数据反炒信系统
网购最难辨识的就是商家的信誉,虚假好评给消费者网购带来了很大困扰。如何杜绝商家刷单?大数据反炒信系统,控制好网购的最后流程、物流环节,对物流订单的流转数据进行全程监控,并且根据炒信订单特征,自动识别炒信运单号以及应对商家的商品订单。
未来,大数据越来越渗透到快递业务的每一个环节,成为快递的基础设施。
以上是小编为大家分享的关于快递旺季来临 大数据如何推动快递信息化的相关内容,更多信息可以关注环球青藤分享更多干货
⑹ 要想布局农村物流 申通快递应当如何应用大数据、人工智能技术抢占竞争市场
摘要 电商和快递的推动,也会让工业自动化,工业智能会成为大规模的需求,到2020年应该有189亿,在电商和快递这块。就针对这种需求,针对智能化、自动化,我们现有的主流能够提供的设备基本上是基于右边的这些输送类、分拣类、互联类、无线射频技术类等等还停留在这样的层面。
⑺ 大数据对物流行业有什么影响
1、提高物流行业的智能化
物流行业可以看出,是一个程序化很强的行业,而大数据则是一种严谨的数据分析技术。两者相结合之下,通过对物流数据的跟踪分析,大数据应用可以根据情况为物流企业做出智能化的决策和建议。在物流行业的决策中,大数据还可能会涉及竞争环境分析、物流供给与需求匹配、物流资源优化与配置等的决策分析,这种情况下大数据也能够很好的应对。
2、能够促进行业的发展
现在的物流行业,整体上的运输、仓储和搬运等都是通过人为来控制和完成的,在效率上都较为落后。而大数据技术能够在整体上完成对物流行业全过程的迭代整理。而且在行业竞争环境的分析中,为了达到品牌利益的最大化,需要对竞争对手进行全面的分析,预测其行为和动向,从而来寻找自己品牌在行业中的不足和需要改进的地方。这种方式下,大数据能够很快的完成对行业的促进作用,加速行业的发展。
3、提高用户的体验感
物流行业在最后,是需要把产品送到用户的手中的,而在大数据黑科技的加持下,相较于以前低效率的人工配送,大数据技术可以为用户提供更好的物流体验,进一步巩固和用户之间的关系,增加用户的粘性。
关于大数据对物流行业有什么影响,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。