导航:首页 > 网络数据 > solr与大数据怎么结合

solr与大数据怎么结合

发布时间:2023-09-24 04:41:35

Ⅰ 想从事大数据方面有关的工作,要学什么我大学学的是网络工程,摆脱讲详细点!

首先从大数据本身看,大数据从采集存储计算分析可视共享等处理过程,价值在于对业务理解基础上关联预测,需要技术算法架构等能力支撑,同时注重数据安全隐私保护。大数据是个团队工作,不是一个人能完成的。
其次从所学专业看,你的网络工程偏向于网络组网,横向的数据来龙去脉比较清楚,可以结合自己的兴趣向大数据处理过程的一些环节发展,比如数据安全性考虑。数学功底好的可以考虑建模算法研究应用。
最后从职业规划看,要有一定的应用意识,抓住一点突破纵深发展为专家后再考虑面的扩展。学什么取决于你以后工作的需求,不是为了学而学。
希望能帮到你一些。

Ⅱ 大数据行业的数据精准吗

第一,用户行为与特征分析。显然,只要积累足够的用户数据,就能分析出用户的喜好与购买习惯,甚至做到“比用户更了解用户自己”。有了这一点,才是许多大数据营销的前提与出发点。无论如何,那些过去将“一切以客户为中心”作为口号的企业可以想想,过去你们真的能及时全面地了解客户的需求与所想吗?或许只有大数据时代这个问题的答案才更明确。

第二,精准营销信息推送支撑。过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要就是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。相对而言,现在的RTB广告等应用则向我们展示了比以前更好的精准性,而其背后靠的即是大数据支撑。

第三,引导产品及营销活动投用户所好。如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品生产即可投其所好。例如,Netflix在近投拍《纸牌屋》之前,即通过大数据分析知道了潜在观众最喜欢的导演与演员,结果果然捕获了观众的心。又比如,《小时代》在预告片投放后,即从微博上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。

第四,竞争对手监测与品牌传播。竞争对手在干什么是许多企业想了解的,即使对方不会告诉你,但你却可以通过大数据监测分析得知。品牌传播的有效性亦可通过大数据分析找准方向。例如,可以进行传播趋势分析、内容特征分析、互动用户分析、正负情绪分类、口碑品类分析、产品属性分布等,可以通过监测掌握竞争对手传播态势,并可以参考行业标杆用户策划,根据用户声音策划内容,甚至可以评估微博矩阵运营效果。

第五,品牌危机监测及管理支持。新媒体时代,品牌危机使许多企业谈虎色变,然而大数据可以让企业提前有所洞悉。在危机爆发过程中,最需要的是跟踪危机传播趋势,识别重要参与人员,方便快速应对。大数据可以采集负面定义内容,及时启动危机跟踪和报警,按照人群社会属性分析,聚类事件过程中的观点,识别关键人物及传播路径,进而可以保护企业、产品的声誉,抓住源头和关键节点,快速有效地处理危机。

第六,企业重点客户筛选。许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关;从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。

第七,大数据用于改善用户体验。要改善用户体验,关键在于真正了解用户及他们所使用的你的产品的状况,做最适时的提醒。例如,在大数据时代或许你正驾驶的汽车可提前救你一命。只要通过遍布全车的传感器收集车辆运行信息,在你的汽车关键部件发生问题之前,就会提前向你或4S店预警,这决不仅仅是节省金钱,而且对保护生命大有裨益。事实上,美国的UPS快递公司早在2000年就利用这种基于大数据的预测性分析系统来检测全美60000辆车辆的实时车况,以便及时地进行防御性修理

第八,SCRM中的客户分级管理支持。面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像。大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。

第九,发现新市场与新趋势。基于大数据的分析与预测,对于企业家提供洞察新市场与把握经济走向都是极大的支持。例如,阿里巴巴从大量交易数据中更早地发现了国际金融危机的到来。又如,在2012年美国总统选举中,微软研究院的David Rothschild就曾使用大数据模型,准确预测了美国50个州和哥伦比亚特区共计51个选区中50个地区的选举结果,准确性高于98%。之后,他又通过大数据分析,对第85届届奥斯卡各奖项的归属进行了预测,除最佳导演外,其它各项奖预测全部命中。

第十,市场预测与决策分析支持。对于数据对市场预测及决策分析的支持,过去早就在数据分析与数据挖掘盛行的年代被提出过。沃尔玛著名的“啤酒与尿布”案例即是那时的杰作。只是由于大数据时代上述Volume(规模大)及Variety(类型多)对数据分析与数据挖掘提出了新要求。更全面、速度更及时的大数据,必然对市场预测及决策分析进一步上台阶提供更好的支撑。要知道,似是而非或错误的、过时的数据对决策者而言简直就是灾难。

Ⅲ 如何用Solr搭建大数据查询平台

0×00 开头照例扯淡

自从各种脱裤门事件开始层出不穷,在下就学乖了,各个地方的密码全都改成不一样的,重要帐号的密码定期更换,生怕被人社出祖宗十八代的我,甚至开始用起了假名字,我给自己起一新网名”兴才”,这个看起来还不错的名字,其实是我们家乡骂人土话,意思是脑残人士…. -_-|||额好吧,反正是假的,不要在意这些细节。

这只是名,至于姓氏么,每个帐号的注册资料那里,照着百家姓上赵钱孙李周吴郑王的依次往下排,什么张兴才、李兴才、王兴才……于是也不知道我这样”兴才”了多久,终于有一天,我接到一个陌生电话:您好,请问是马兴才先生吗?

好么,该来的终于还是来了,于是按名索骥,得知某某网站我用了这个名字,然后通过各种途径找,果然,那破站被脱裤子了。
果断Down了那个裤子,然后就一发不可收拾,走上了收藏裤子的不归路,直到有一天,我发现收藏已经非常丰富了,粗略估计得好几十亿条数据,拍脑袋一想,这不能光收藏啊,我也搭个社工库用吧……

0×01 介绍

社工库怎么搭呢,这种海量数据的东西,并不是简单的用mysql建个库,然后做个php查询select * from sgk where username like ‘%xxxxx%’这样就能完事的,也不是某些幼稚骚年想的随便找个4g内存,amd双核的破电脑就可以带起来的,上面这样的语句和系统配置,真要用于社工库查询,查一条记录恐怕得半小时。好在这个问题早就被一种叫做全文搜索引擎的东西解决了,更好的消息是,全文搜索引擎大部分都是开源的,不需要花钱。

目前网上已经搭建好的社工库,大部分是mysql+coreseek+php架构,coreseek基于sphinx,是一款优秀的全文搜索引擎,但缺点是比较轻量级,一旦数据量过数亿,就会有些力不从心,并且搭建集群做分布式性能并不理想,如果要考虑以后数据量越来越大的情况,还是得用其他方案,为此我使用了solr。

Solr的基础是著名的Lucene框架,基于java,通过jdbc接口可以导入各种数据库和各种格式的数据,非常适合开发企业级的海量数据搜索平台,并且提供完善的solr cloud集群功能,更重要的是,solr的数据查询完全基于http,可以通过简单的post参数,返回json,xml,php,python,ruby,csv等多种格式。

以前的solr,本质上是一组servlet,必须放进Tomcat才能运行,从solr5开始,它已经自带了jetty,配置的好,完全可以独立使用,并且应付大量并发请求,具体的架构我们后面会讲到,现在先来进行solr的安装配置。

0×02 安装和配置

以下是我整个搭建和测试过程所用的硬件和软件平台,本文所有内容均在此平台上完成:

软件配置: solr5.5,mysql5.7,jdk8,Tomcat8 Windows10/Ubuntu14.04 LTS

硬件配置: i7 4770k,16G DDR3,2T西数黑盘

2.1 mysql数据库

Mysql数据库的安装和配置我这里不再赘述,只提一点,对于社工库这种查询任务远远多于插入和更新的应用来说,最好还是使用MyISAM引擎。
搭建好数据库后,新建一个库,名为newsgk,然后创建一个表命名为b41sgk,结构如下:

id bigint 主键 自动增长

username varchar 用户名

email varchar 邮箱

password varchar 密码

salt varchar 密码中的盐或者第二密码

ip varchar ip、住址、电话等其他资料

site varchar 数据库的来源站点

接下来就是把收集的各种裤子全部导入这个表了,这里推荐使用navicat,它可以支持各种格式的导入,具体过程相当的枯燥乏味,需要很多的耐心,这里就不再废话了,列位看官自己去搞就是了,目前我初步导入的数据量大约是10亿条。

2.2 Solr的搭建和配置

首先下载solr:
$ wget http://mirrors.hust.e.cn/apache/lucene/solr/5.5.0/solr-5.5.0.tgz

解压缩:
$ tar zxvf solr-5.5.0.tgz

安装jdk8:
$ sudo add-apt-repository ppa:webupd8team/java
$ sudo apt-get update
$ sudo apt-get install oracle-java8-installer
$ sudo apt-get install oracle-java8-set-default

因为是java跨平台的,Windows下和linux下solr是同一个压缩包,windows下jdk的安装这里不再说明。

进入解压缩后的solr文件夹的bin目录,solr.cmd和solr分别是windows和linux下的启动脚本:

因为社工库是海量大数据,而jvm默认只使用512m的内存,这远远不够,所以我们需要修改,打开solr.in.sh文件,找到这一行:

SOLR_HEAP=”512m”

依据你的数据量,把它修改成更高,我这里改成4G,改完保存. 在windows下略有不同,需要修改solr.in.cmd文件中的这一行:

set SOLR_JAVA_MEM=-Xms512m -Xmx512m

同样把两个512m都修改成4G。

Solr的启动,重启和停止命令分别是:
$ ./solr start
$ ./solr restart –p 8983
$ ./solr stop –all

在linux下还可以通过install_solr_service.sh脚本把solr安装为服务,开机后台自动运行。

Solr安装完成,现在我们需要从mysql导入数据,导入前,我们需要先创建一个core,core是solr的特有概念,每个core是一个查询、数据,、索引等的集合体,你可以把它想象成一个独立数据库,我们创建一个新core:

在solr-5.5.0/server/solr子目录下面建立一个新文件夹,命名为solr_mysql,这个是core的名称,在下面创建两个子目录conf和data,把solr-5.5.0/solr-5.5.0/example/example-DIH/solr/db/conf下面的所有文件全部拷贝到我们创建的conf目录中.接下来的配置主要涉及到三个文件, solrconfig.xml, schema.xml和db-data-config.xml。

首先打开db-data-config.xml,修改为以下内容:
<dataConfig>
<dataSource name="sgk" type="JdbcDataSource" driver="com.mysql.jdbc.Driver" url="jdbc:mysql://127.0.0.1:3306/newsgk" user="root" password="password" batchSize="-1" />
<document name="mysgk">
<entity name="b41sgk" pk="id" query="select * from b41sgk">
<field column="id" name="id"/>
<field column="username" name="username"/>
<field column="email" name="email"/>
<field column="password" name="password"/>
<field column="salt" name="salt"/>
<field column="ip" name="ip"/>
<field column="site" name="site"/>
</entity>
</document>
</dataConfig>

这个文件是负责配置导入数据源的,请按照mysql实际的设置修改datasource的内容,下面entity的内容必须严格按照mysql中社工库表的结构填写,列名要和数据库中的完全一样。

然后打开solrconfig.xml,先找到这一段:
<schemaFactory class="ManagedIndexSchemaFactory">
<bool name="mutable">true</bool>
<str name="managedSchemaResourceName">managed-schema</str>
</schemaFactory>

把它全部注释掉,加上一行,改成这样:
<!-- <schemaFactory class="ManagedIndexSchemaFactory">
<bool name="mutable">true</bool>
<str name="managedSchemaResourceName">managed-schema</str>
</schemaFactory>-->
<schemaFactory class="ClassicIndexSchemaFactory"/>

这是因为solr5 以上默认使用managed-schema管理schema,需要更改为可以手动修改。

然后我们还需要关闭suggest,它提供搜索智能提示,在社工库中我们用不到这样的功能,重要的是,suggest会严重的拖慢solr的启动速度,在十几亿数据的情况下,开启suggest可能会导致solr启动加载core长达几个小时!

同样在solrconfig.xml中,找到这一段:

<searchComponent name="suggest" class="solr.SuggestComponent">
<lst name="suggester">
<str name="name">mySuggester</str>
<str name="lookupImpl">FuzzyLookupFactory</str> <!-- org.apache.solr.spelling.suggest.fst -->
<str name="dictionaryImpl">DocumentDictionaryFactory</str> <!-- org.apache.solr.spelling.suggest. -->
<str name="field">cat</str>
<str name="weightField">price</str>
<str name="suggestAnalyzerFieldType">string</str>
</lst>
</searchComponent>
<requestHandler name="/suggest" class="solr.SearchHandler" startup="lazy">
<lst name="defaults">
<str name="suggest">true</str>
<str name="suggest.count">10</str>
</lst>
<arr name="components">
<str>suggest</str>
</arr>
</requestHandler>

把这些全部删除,然后保存solrconfig.xml文件。

接下来把managed-schema拷贝一份,重命名为schema.xml (原文件不要删除),打开并找到以下位置:

只保留_version_和_root_节点,然后把所有的field,dynamicField和Field全部删除,添加以下的部分:
<field name="id" type="int" indexed="true" stored="true" required="true" multiValued="false" />
<field name="username" type="text_ik" indexed="true" stored="true"/>
<field name="email" type="text_ik" indexed="true" stored="true"/>
<field name="password" type="text_general" indexed="true" stored="true"/>
<field name="salt" type="text_general" indexed="true" stored="true"/>
<field name="ip" type="text_general" indexed="true" stored="true"/>
<field name="site" type="text_general" indexed="true" stored="true"/>
<field name="keyword" type="text_ik" indexed="true" stored="false" multiValued="true"/>

<Field source="username" dest="keyword"/>
<Field source="email" dest="keyword"/>
<uniqueKey>id</uniqueKey>

这里的uniqueKey是配置文件中原有的,用来指定索引字段,必须保留。新建了一个字段名为keyword,它的用途是联合查询,即当需要同时以多个字段做关键字查询时,可以用这一个字段名代替,增加查询效率,下面的Field即用来指定复制哪些字段到keyword。注意keyword这样的字段,后面的multiValued属性必须为true。

username和email以及keyword这三个字段,用来检索查询关键字,它们的类型我们指定为text_ik,这是一个我们创造的类型,因为solr虽然内置中文分词,但效果并不好,我们需要添加IKAnalyzer中文分词引擎来查询中文。在https://github.com/EugenePig/ik-analyzer-solr5下载IKAnalyzer for solr5的源码包,然后使用Maven编译,得到一个文件IKAnalyzer-5.0.jar,把它放入solr-5.5.0/server/solr-webapp/webapp/WEB-INF/lib目录中,然后在solrconfig.xml的fieldType部分加入以下内容:
<fieldType name="text_ik" class="solr.TextField">
<analyzer type="index" useSmart="false" class="org.wltea.analyzer.lucene.IKAnalyzer"/>
<analyzer type="query" useSmart="true" class="org.wltea.analyzer.lucene.IKAnalyzer"/>
</fieldType>

保存后,core的配置就算完成了,不过要导入mysql数据,我们还需要在mysql网站上下载mysql-connector-java-bin.jar库文件,连同solr-5.5.0/dist目录下面的solr-dataimporthandler-5.5.0.jar,solr-dataimporthandler-extras-5.5.0.jar两个文件,全部拷贝到solr-5.5.0/server/solr-webapp/webapp/WEB-INF/lib目录中,然后重启solr,就可以开始数据导入工作了。

Ⅳ 大数据三大核心技术:拿数据、算数据、卖数据!

大数据的由来

对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

1

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

大数据的应用领域

大数据无处不在,大数据应用于各个行业,包括金融、 汽车 、餐饮、电信、能源、体能和 娱乐 等在内的 社会 各行各业都已经融入了大数据的印迹。

制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

汽车 行业,利用大数据和物联网技术的无人驾驶 汽车 ,在不远的未来将走入我们的日常生活。

互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

能源行业,随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。

物流行业,利用大数据优化物流网络,提高物流效率,降低物流成本。

城市管理,可以利用大数据实现智能交通、环保监测、城市规划和智能安防。

体育 娱乐 ,大数据可以帮助我们训练球队,决定投拍哪种 题财的 影视作品,以及预测比赛结果。

安全领域,政府可以利用大数据技术构建起强大的国家安全保障体系,企业可以利用大数据抵御网络攻击,警察可以借助大数据来预防犯罪。

个人生活, 大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为习惯,为其提供更加周到的个性化服务。

大数据的价值,远远不止于此,大数据对各行各业的渗透,大大推动了 社会 生产和生活,未来必将产生重大而深远的影响。

大数据方面核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。

数据采集与预处理

对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把零散的数据整合在一起,对这些数据综合起来进行分析。数据采集包括文件日志的采集、数据库日志的采集、关系型数据库的接入和应用程序的接入等。在数据量比较小的时候,可以写个定时的脚本将日志写入存储系统,但随着数据量的增长,这些方法无法提供数据安全保障,并且运维困难,需要更强壮的解决方案。

Flume NG

Flume NG作为实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据,同时,对数据进行简单处理,并写到各种数据接收方(比如文本,HDFS,Hbase等)。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,source用来消费(收集)数据源到channel组件中,channel作为中间临时存储,保存所有source的组件信息,sink从channel中读取数据,读取成功之后会删除channel中的信息。

NDC

Logstash

Logstash是开源的服务器端数据处理管道,能够同时从多个来源采集数据、转换数据,然后将数据发送到您最喜欢的 “存储库” 中。一般常用的存储库是Elasticsearch。Logstash 支持各种输入选择,可以在同一时间从众多常用的数据来源捕捉事件,能够以连续的流式传输方式,轻松地从您的日志、指标、Web 应用、数据存储以及各种 AWS 服务采集数据。

Sqoop

Sqoop,用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库(例如Mysql、Oracle)中的数据导入到Hadoop(例如HDFS、Hive、Hbase)中,也可以将Hadoop(例如HDFS、Hive、Hbase)中的数据导入到关系型数据库(例如Mysql、Oracle)中。Sqoop 启用了一个 MapRece 作业(极其容错的分布式并行计算)来执行任务。Sqoop 的另一大优势是其传输大量结构化或半结构化数据的过程是完全自动化的。

流式计算

流式计算是行业研究的一个热点,流式计算对多个高吞吐量的数据源进行实时的清洗、聚合和分析,可以对存在于社交网站、新闻等的数据信息流进行快速的处理并反馈,目前大数据流分析工具有很多,比如开源的strom,spark streaming等。

Strom集群结构是有一个主节点(nimbus)和多个工作节点(supervisor)组成的主从结构,主节点通过配置静态指定或者在运行时动态选举,nimbus与supervisor都是Storm提供的后台守护进程,之间的通信是结合Zookeeper的状态变更通知和监控通知来处理。nimbus进程的主要职责是管理、协调和监控集群上运行的topology(包括topology的发布、任务指派、事件处理时重新指派任务等)。supervisor进程等待nimbus分配任务后生成并监控worker(jvm进程)执行任务。supervisor与worker运行在不同的jvm上,如果由supervisor启动的某个worker因为错误异常退出(或被kill掉),supervisor会尝试重新生成新的worker进程。

Zookeeper

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。它的作用主要有配置管理、名字服务、分布式锁和集群管理。配置管理指的是在一个地方修改了配置,那么对这个地方的配置感兴趣的所有的都可以获得变更,省去了手动拷贝配置的繁琐,还很好的保证了数据的可靠和一致性,同时它可以通过名字来获取资源或者服务的地址等信息,可以监控集群中机器的变化,实现了类似于心跳机制的功能。

数据存储

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。HBase是一种Key/Value系统,部署在hdfs上,克服了hdfs在随机读写这个方面的缺点,与hadoop一样,Hbase目标主要依靠横向扩展,通过不断增加廉价的商用服务器,来增加计算和存储能力。

Phoenix

Phoenix,相当于一个Java中间件,帮助开发工程师能够像使用JDBC访问关系型数据库一样访问NoSQL数据库HBase。

Yarn

Yarn是一种Hadoop资源管理器,可为上层应用提供统一的资源管理和调度,它的引入为集群在利用率、资源统一管理和数据共享等方面带来了巨大好处。Yarn由下面的几大组件构成:一个全局的资源管理器ResourceManager、ResourceManager的每个节点代理NodeManager、表示每个应用的Application以及每一个ApplicationMaster拥有多个Container在NodeManager上运行。

Mesos

Mesos是一款开源的集群管理软件,支持Hadoop、ElasticSearch、Spark、Storm 和Kafka等应用架构。

Redis

Redis是一种速度非常快的非关系数据库,可以存储键与5种不同类型的值之间的映射,可以将存储在内存的键值对数据持久化到硬盘中,使用复制特性来扩展性能,还可以使用客户端分片来扩展写性能。

Atlas

Atlas是一个位于应用程序与MySQL之间的中间件。在后端DB看来,Atlas相当于连接它的客户端,在前端应用看来,Atlas相当于一个DB。Atlas作为服务端与应用程序通讯,它实现了MySQL的客户端和服务端协议,同时作为客户端与MySQL通讯。它对应用程序屏蔽了DB的细节,同时为了降低MySQL负担,它还维护了连接池。Atlas启动后会创建多个线程,其中一个为主线程,其余为工作线程。主线程负责监听所有的客户端连接请求,工作线程只监听主线程的命令请求。

Ku

Ku是围绕Hadoop生态圈建立的存储引擎,Ku拥有和Hadoop生态圈共同的设计理念,它运行在普通的服务器上、可分布式规模化部署、并且满足工业界的高可用要求。其设计理念为fast analytics on fast data。作为一个开源的存储引擎,可以同时提供低延迟的随机读写和高效的数据分析能力。Ku不但提供了行级的插入、更新、删除API,同时也提供了接近Parquet性能的批量扫描操作。使用同一份存储,既可以进行随机读写,也可以满足数据分析的要求。Ku的应用场景很广泛,比如可以进行实时的数据分析,用于数据可能会存在变化的时序数据应用等。

在数据存储过程中,涉及到的数据表都是成千上百列,包含各种复杂的Query,推荐使用列式存储方法,比如parquent,ORC等对数据进行压缩。Parquet 可以支持灵活的压缩选项,显著减少磁盘上的存储。

数据清洗

MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Rece(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。

随着业务数据量的增多,需要进行训练和清洗的数据会变得越来越复杂,这个时候就需要任务调度系统,比如oozie或者azkaban,对关键任务进行调度和监控。

Oozie

Oozie是用于Hadoop平台的一种工作流调度引擎,提供了RESTful API接口来接受用户的提交请求(提交工作流作业),当提交了workflow后,由工作流引擎负责workflow的执行以及状态的转换。用户在HDFS上部署好作业(MR作业),然后向Oozie提交Workflow,Oozie以异步方式将作业(MR作业)提交给Hadoop。这也是为什么当调用Oozie 的RESTful接口提交作业之后能立即返回一个JobId的原因,用户程序不必等待作业执行完成(因为有些大作业可能会执行很久(几个小时甚至几天))。Oozie在后台以异步方式,再将workflow对应的Action提交给hadoop执行。

Azkaban

Azkaban也是一种工作流的控制引擎,可以用来解决有多个hadoop或者spark等离线计算任务之间的依赖关系问题。azkaban主要是由三部分构成:Relational Database,Azkaban Web Server和Azkaban Executor Server。azkaban将大多数的状态信息都保存在MySQL中,Azkaban Web Server提供了Web UI,是azkaban主要的管理者,包括project的管理、认证、调度以及对工作流执行过程中的监控等;Azkaban Executor Server用来调度工作流和任务,记录工作流或者任务的日志。

流计算任务的处理平台Sloth,是网易首个自研流计算平台,旨在解决公司内各产品日益增长的流计算需求。作为一个计算服务平台,其特点是易用、实时、可靠,为用户节省技术方面(开发、运维)的投入,帮助用户专注于解决产品本身的流计算需求

数据查询分析

Hive

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。Hive本身不存储和计算数据,它完全依赖于HDFS和MapRece。可以将Hive理解为一个客户端工具,将SQL操作转换为相应的MapRece jobs,然后在hadoop上面运行。Hive支持标准的SQL语法,免去了用户编写MapRece程序的过程,它的出现可以让那些精通SQL技能、但是不熟悉MapRece 、编程能力较弱与不擅长Java语言的用户能够在HDFS大规模数据集上很方便地利用SQL 语言查询、汇总、分析数据。

Hive是为大数据批量处理而生的,Hive的出现解决了传统的关系型数据库(MySql、Oracle)在大数据处理上的瓶颈 。Hive 将执行计划分成map->shuffle->rece->map->shuffle->rece…的模型。如果一个Query会被编译成多轮MapRece,则会有更多的写中间结果。由于MapRece执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。在Hive的运行过程中,用户只需要创建表,导入数据,编写SQL分析语句即可。剩下的过程由Hive框架自动的完成。

Impala

Impala是对Hive的一个补充,可以实现高效的SQL查询。使用Impala来实现SQL on Hadoop,用来进行大数据实时查询分析。通过熟悉的传统关系型数据库的SQL风格来操作大数据,同时数据也是可以存储到HDFS和HBase中的。Impala没有再使用缓慢的Hive+MapRece批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala将整个查询分成一执行计划树,而不是一连串的MapRece任务,相比Hive没了MapRece启动时间。

Hive 适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据人员提供了快速实验,验证想法的大数据分析工具,可以先使用Hive进行数据转换处理,之后使用Impala在Hive处理好后的数据集上进行快速的数据分析。总的来说:Impala把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的map->rece模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。但是Impala不支持UDF,能处理的问题有一定的限制。

Spark

Spark拥有Hadoop MapRece所具有的特点,它将Job中间输出结果保存在内存中,从而不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。

Nutch

Nutch 是一个开源Java 实现的搜索引擎。它提供了我们运行自己的搜索引擎所需的全部工具,包括全文搜索和Web爬虫。

Solr

Solr用Java编写、运行在Servlet容器(如Apache Tomcat或Jetty)的一个独立的企业级搜索应用的全文搜索服务器。它对外提供类似于Web-service的API接口,用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引;也可以通过Http Get操作提出查找请求,并得到XML格式的返回结果。

Elasticsearch

Elasticsearch是一个开源的全文搜索引擎,基于Lucene的搜索服务器,可以快速的储存、搜索和分析海量的数据。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。

还涉及到一些机器学习语言,比如,Mahout主要目标是创建一些可伸缩的机器学习算法,供开发人员在Apache的许可下免费使用;深度学习框架Caffe以及使用数据流图进行数值计算的开源软件库TensorFlow等,常用的机器学习算法比如,贝叶斯、逻辑回归、决策树、神经网络、协同过滤等。

数据可视化

对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。主流的BI平台比如,国外的敏捷BI Tableau、Qlikview、PowrerBI等,国内的SmallBI和新兴的网易有数等。

在上面的每一个阶段,保障数据的安全是不可忽视的问题。

基于网络身份认证的协议Kerberos,用来在非安全网络中,对个人通信以安全的手段进行身份认证,它允许某实体在非安全网络环境下通信,向另一个实体以一种安全的方式证明自己的身份。

控制权限的ranger是一个Hadoop集群权限框架,提供操作、监控、管理复杂的数据权限,它提供一个集中的管理机制,管理基于yarn的Hadoop生态圈的所有数据权限。可以对Hadoop生态的组件如Hive,Hbase进行细粒度的数据访问控制。通过操作Ranger控制台,管理员可以轻松的通过配置策略来控制用户访问HDFS文件夹、HDFS文件、数据库、表、字段权限。这些策略可以为不同的用户和组来设置,同时权限可与hadoop无缝对接。

简单说有三大核心技术:拿数据,算数据,卖数据。

Ⅳ elasticsearch 在大数据中能实现哪些功能

由于需要提升项目的搜索质量,最近研究了一下Elasticsearch,一款非常优秀的分布式搜索程序。最开始的一些笔记放到github,这里只是归纳总结一下。
首先,为什么要使用Elasticsearch?最开始的时候,我们的项目仅仅使用MySQL进行简单的搜索,然后一个不能索引的like语句,直接拉低MySQL的性能。后来,我们曾考虑过sphinx,并且sphinx也在之前的项目中成功实施过,但想想现在的数据量级,多台MySQL,以及搜索服务本身HA,还有后续扩容的问题,我们觉得sphinx并不是一个最优的选择。于是自然将目光放到了Elasticsearch上面。
根据官网自己的介绍,Elasticsearch是一个分布式搜索服务,提供Restful API,底层基于Lucene,采用多shard的方式保证数据安全,并且提供自动resharding的功能,加之github等大型的站点也采用 Elasticsearch作为其搜索服务,我们决定在项目中使用Elasticsearch。
对于Elasticsearch,如果要在项目中使用,需要解决如下问题:
索引,对于需要搜索的数据,如何建立合适的索引,还需要根据特定的语言使用不同的analyzer等。
搜索,Elasticsearch提供了非常强大的搜索功能,如何写出高效的搜索语句?
数据源,我们所有的数据是存放到MySQL的,MySQL是唯一数据源,如何将MySQL的数据导入到Elasticsearch?
对于1和2,因为我们的数据都是从MySQL生成,index的field是固定的,主要做的工作就是根据业务场景设计好对应的mapping以及search语句就可以了,当然实际不可能这么简单,需要我们不断的调优。
而对于3,则是需要一个工具将MySQL的数据导入Elasticsearch,因为我们对搜索实时性要求很高,所以需要将MySQL的增量数据实时导入,笔者唯一能想到的就是通过row based binlog来完成。而近段时间的工作,也就是实现一个MySQL增量同步到Elasticsearch的服务。
Lucene
Elasticsearch底层是基于Lucene的,Lucene是一款优秀的搜索lib,当然,笔者以前仍然没有接触使用过。:-)
Lucene关键概念:
Document:用来索引和搜索的主要数据源,包含一个或者多个Field,而这些Field则包含我们跟Lucene交互的数据。
Field:Document的一个组成部分,有两个部分组成,name和value。
Term:不可分割的单词,搜索最小单元。
Token:一个Term呈现方式,包含这个Term的内容,在文档中的起始位置,以及类型。
Lucene使用Inverted index来存储term在document中位置的映射关系。
譬如如下文档:
Elasticsearch Server 1.0 (document 1)
Mastring Elasticsearch (document 2)
Apache Solr 4 Cookbook (document 3)
使用inverted index存储,一个简单地映射关系:
Term
Count
Docuemnt

1.0 1 <1>
4 1 <3>
Apache 1 <3>
Cookbook 1 <3>
Elasticsearch 2 <1>.<2>
Mastering 1 <2>
Server 1 <1>
Solr 1 <3>
对于上面例子,我们首先通过分词算法将一个文档切分成一个一个的token,再得到该token与document的映射关系,并记录token出现的总次数。这样就得到了一个简单的inverted index。
Elasticsearch关键概念
要使用Elasticsearch,笔者认为,只需要理解几个基本概念就可以了。
在数据层面,主要有:
Index:Elasticsearch用来存储数据的逻辑区域,它类似于关系型数据库中的db概念。一个index可以在一个或者多个shard上面,同时一个shard也可能会有多个replicas。
Document:Elasticsearch里面存储的实体数据,类似于关系数据中一个table里面的一行数据。
document由多个field组成,不同的document里面同名的field一定具有相同的类型。document里面field可以重复出现,也就是一个field会有多个值,即multivalued。
Document type:为了查询需要,一个index可能会有多种document,也就是document type,但需要注意,不同document里面同名的field一定要是相同类型的。
Mapping:存储field的相关映射信息,不同document type会有不同的mapping。
对于熟悉MySQL的童鞋,我们只需要大概认为Index就是一个db,document就是一行数据,field就是table的column,mapping就是table的定义,而document type就是一个table就可以了。
Document type这个概念其实最开始也把笔者给弄糊涂了,其实它就是为了更好的查询,举个简单的例子,一个index,可能一部分数据我们想使用一种查询方式,而另一部分数据我们想使用另一种查询方式,于是就有了两种type了。不过这种情况应该在我们的项目中不会出现,所以通常一个index下面仅会有一个 type。
在服务层面,主要有:
Node: 一个server实例。
Cluster:多个node组成cluster。
Shard:数据分片,一个index可能会存在于多个shards,不同shards可能在不同nodes。
Replica:shard的备份,有一个primary shard,其余的叫做replica shards。
Elasticsearch之所以能动态resharding,主要在于它最开始就预先分配了多个shards(貌似是1024),然后以shard为单位进行数据迁移。这个做法其实在分布式领域非常的普遍,codis就是使用了1024个slot来进行数据迁移。
因为任意一个index都可配置多个replica,通过冗余备份的方式保证了数据的安全性,同时replica也能分担读压力,类似于MySQL中的slave。
Restful API
Elasticsearch提供了Restful API,使用json格式,这使得它非常利于与外部交互,虽然Elasticsearch的客户端很多,但笔者仍然很容易的就写出了一个简易客户端用于项目中,再次印证了Elasticsearch的使用真心很容易。
Restful的接口很简单,一个url表示一个特定的资源,譬如/blog/article/1,就表示一个index为blog,type为aritcle,id为1的document。
而我们使用http标准method来操作这些资源,POST新增,PUT更新,GET获取,DELETE删除,HEAD判断是否存在。
这里,友情推荐httpie,一个非常强大的http工具,个人感觉比curl还用,几乎是命令行调试Elasticsearch的绝配。
一些使用httpie的例子:
# create
http POST :9200/blog/article/1 title="hello elasticsearch" tags:='["elasticsearch"]'

# get
http GET :9200/blog/article/1

# update
http PUT :9200/blog/article/1 title="hello elasticsearch" tags:='["elasticsearch", "hello"]'

# delete
http DELETE :9200/blog/article/1

# exists
http HEAD :9200/blog/article/1
索引和搜索
虽然Elasticsearch能自动判断field类型并建立合适的索引,但笔者仍然推荐自己设置相关索引规则,这样才能更好为后续的搜索服务。
我们通过定制mapping的方式来设置不同field的索引规则。
而对于搜索,Elasticsearch提供了太多的搜索选项,就不一一概述了。
索引和搜索是Elasticsearch非常重要的两个方面,直接关系到产品的搜索体验,但笔者现阶段也仅仅是大概了解了一点,后续在详细介绍。
同步MySQL数据
Elasticsearch是很强大,但要建立在有足量数据情况下面。我们的数据都在MySQL上面,所以如何将MySQL的数据导入Elasticsearch就是笔者最近研究的东西了。
虽然现在有一些实现,譬如elasticsearch-river-jdbc,或者elasticsearch-river-mysql,但笔者并不打算使用。
elasticsearch-river-jdbc的功能是很强大,但并没有很好的支持增量数据更新的问题,它需要对应的表只增不减,而这个几乎在项目中是不可能办到的。
elasticsearch-river-mysql倒是做的很不错,采用了python-mysql-replication来通过binlog获取变更的数据,进行增量更新,但它貌似处理MySQL mp数据导入的问题,不过这个笔者真的好好确认一下?话说,python-mysql-replication笔者还提交过pull解决了minimal row image的问题,所以对elasticsearch-river-mysql这个项目很有好感。只是笔者决定自己写一个出来。
为什么笔者决定自己写一个,不是因为笔者喜欢造轮子,主要原因在于对于这种MySQL syncer服务(增量获取MySQL数据更新到相关系统),我们不光可以用到Elasticsearch上面,而且还能用到其他服务,譬如cache上面。所以笔者其实想实现的是一个通用MySQL syncer组件,只是现在主要关注Elasticsearch罢了。
项目代码在这里go-mysql-elasticsearch,现已完成第一阶段开发,内部对接测试中。
go-mysql-elasticsearch的原理很简单,首先使用mysqlmp获取当前MySQL的数据,然后在通过此时binlog的name和position获取增量数据。
一些限制:
binlog一定要变成row-based format格式,其实我们并不需要担心这种格式的binlog占用太多的硬盘空间,MySQL 5.6之后GTID模式都推荐使用row-based format了,而且通常我们都会把控SQL语句质量,不允许一次性更改过多行数据的。
需要同步的table最好是innodb引擎,这样mysqlmp的时候才不会阻碍写操作。
需要同步的table一定要有主键,好吧,如果一个table没有主键,笔者真心会怀疑设计这个table的同学编程水平了。多列主键也是不推荐的,笔者现阶段不打算支持。
一定别动态更改需要同步的table结构,Elasticsearch只能支持动态增加field,并不支持动态删除和更改field。通常来说,如果涉及到alter table,很多时候已经证明前期设计的不合理以及对于未来扩展的预估不足了。
更详细的说明,等到笔者完成了go-mysql-elasticsearch的开发,并通过生产环境中测试了,再进行补充。
总结
最近一周,笔者花了不少时间在Elasticsearch上面,现在算是基本入门了。其实笔者觉得,对于一门不懂的技术,找一份靠谱的资料(官方文档或者入门书籍),蛋疼的对着资料敲一遍代码,不懂的再问google,最后在将其用到实际项目,这门技术就算是初步掌握了,当然精通还得在下点功夫。
现在笔者只是觉得Elasticsearch很美好,上线之后铁定会有坑的,那时候只能慢慢填了。话说,笔者是不是要学习下java了,省的到时候看不懂代码就惨了。:-)

阅读全文

与solr与大数据怎么结合相关的资料

热点内容
华为恢复文件如何打开 浏览:237
微信提示多文件分享 浏览:425
excel多文件如何一起打印 浏览:54
苹果a1780支持什么网络 浏览:625
大数据离我们有多少公里 浏览:950
win10修改文字大小 浏览:555
游戏编程异常怎么解决 浏览:929
哪个职业学校的专业有电脑编程 浏览:220
s7200如何打开库的源文件 浏览:55
有哪些非遗app 浏览:882
文件上的图表如何涂黑关键文字 浏览:13
相同文件删除使用哪个软件 浏览:606
薇薇免费小说文件名 浏览:215
vue写的app为什么流畅 浏览:605
怎么在ppt上切换数据 浏览:202
ps矢量工具在哪里 浏览:167
纵横app怎么删除书 浏览:522
iphone4删除应用 浏览:367
win10怎样设置桌面图标位置 浏览:534
什么是文件的名称 浏览:415

友情链接