① 智能交通中有哪些问题可以用大数据来解决
随着时代的发展,人们已经不知不觉走进了信息化时代,在信息化时代大量的数据爆棚成了新时代的特征。在这种特征下人们依然追求生产生活质量的提高。对于发展智能交通使人们生活以及现实社会的需要,然而在智能交通的构建当中,大量的信息数据也给其增添了变化和难度,如何在大数据时代构建一个智能化、安全化、低成本、高效便捷化的智能交通系统成为了当今人们研究的课题。
就目前而言,国际上还没有给予“大数据”一个明确的具有权威性的定义,但是其在本质上的认识各个国家基本相同。一些研究人士认为“大数据”是数量极大的一堆数据,其作用性非常强,并且其可以对其应用领域的大体上做出预测。还有一些研究人士认为,在大量信息数据技术处理应用当中,“大数据”是一项大的数据集合,并且该种集合不仅数据量大并且还非常复杂。但是无论怎样大数据时代已经走来,我们必须接受并且要利用好其在各个领域的应用。因此在今天的智能交通领域,利用大数据技术已经成为了时代发展的必然,因为其可以给现代智能交通带来诸多大的变化。
随时网络信息技术以及相关配套技术的快速发展,使得当今时代在不知不觉中走进一个“大数据”时代阶段。大数据时代已经来临,对于城市交通来说既是机遇,也是挑战,如何应对,如何利用,这是一个很大的课题。在传统交通中,城市交通是中流砥柱,具有基础性的作用。大数据时代的特征人们用四个V字开头的英文单词来表达即速度(Velocity)、多样性(Variety)、体量(Volume)以及价值密度(Value)。在大数据时代,城市交通与大数据必然发生各种联系,通过大数据带来的技术突破推动城市交通迈向全面信息化时代,通过城市交通的快速发展推动大数据更加落地,产生实效城市交通大数据的集成和未来的挖掘应用对于现代轨道的发展具有重要作用。不论对哪一个传统行业来说,对大数据的需求,都要既懂技术又深谙内情。能够驾驭行业大数据的人,需要比金融更懂金融,比电信更懂电信,比交通更懂交通,需要充分调查乘客的实际需求,需要对高峰期充分了解。
② 大数据在交通领域的应用
大数据在交通领域的应用可以改善城市交通拥堵情况、提高道路通行能力、降低交通事故发生率等,具体应用如下:
1. 交通流量预测:通过分析历史车流量数据和实时车辆位置等信息,可以预测未来的交通流量,进而实现交通信号灯控制优化或者路况导航提示。
总之,大数据在交通领域的应用为城市交通运输管理提供了更加准确、高效和科学的手段,从而有效解决了城市交通问题。
③ 大数据,数据挖掘在交通领域有哪些应用
交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
④ 交通大数据分析会对智慧交通产生那些影响
随着这些年我国城市化发展的加速,城市交通拥堵、交通污染日益严重,交通事故频繁发生。众所周知,智能交通成为改善城市交通的关键策略。因此,及时、准确获取交通大数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。
交通行业现状
我国智能交通发展始于上世纪90年代,在“十二五”规划中,我国交通部进一步明确未来智能交通运输的发展目标,例如,感知识别、网络传输、智能处理和数据挖掘等。在改善结构调整和城际沟通的支撑、引领双重作用,成为城市交通最重要的发展领城。包括大数据等现代先进技术的应用,提高整个交通运输系统的发展水平、质量和管理及服务水平,实现能力供给增加、安全保障性以及经济、环保等的提高。而且,大数据的应用在地铁网络化、大客流运营常态下愈发凸现其对地铁安全、高效运行和乘客服务方面的重要价值。
我国新型城镇化将需要形成城市群内部城市之间、城市内部的轨道交通系统,交通运输环境进一步改善。包括大数据等现代先进技术的应用,目的在于提高整个交通运输系统的发展水平、质量和管理及服务水平,实现能力供给增加、安全保障性以及经济、环保等的提高。而且,大数据的应用在地铁网络化、大客流运营常态下愈发凸现其对地铁安全、高效运行和乘客服务方面的重要价值。
目前遇到的问题
1、海量数据
轨道交通系统每时每刻都在产生大量数据,来自故障维修系统、实时监控系统、项目实施进度系统、物资物料统计系统等,且数据增长速度越来越快,这些数据的价值在哪?该如何利用提升地铁运营效率,确保项目交付的及时监控。
2.数据认知
大多数传统系统,故障维修系统,实时监控系统,物资物料统计系统中,已有简单的分析统计图表,但数据格式比较单一,灵活性差,交互性低,管理者难以对数据有很好的认知。
3、管理决策
大数据运营在地铁网络化、大客流运营常态下愈发凸现其对轨道交通安全、高效运行和乘客服务方面的重要作用,能迅速从底层数据中提取关键数据,以数据驱动运营方向,对决策提供科学支撑。
现在很多地方的交通大数据系统都用的BI平台,比如永洪科技,一般的大数据分析系统分为3个层次:
1、数据层以及建模层:整合交通行业各信息系统,打破信息孤岛,实现数据共享。数据决策方面、销售方面、运营方面关心的指标,建立不同分析主题集市。
2、业务层:梳理交通行业指标,将分析结果推送至展现层。
3、展现层:以丰富美观的图表展现方式,灵活多变的交互方式,将分析结果呈现给各角色管理人员。
基本上现在的大数据分析平台都可以做到以下几个方面:
1、基于交通数据分析平台,决策层、管理层可能洞察轨交运行状况。
2、应对轨交各系统数据量的迅速增长,基于明细数据,任意业务的计算及展现,可达到秒级响应。
3、运营和分析部门都能做部分自服务分析,以满足实时探索分析需求。
4、能够快速响应新的分析需求和变化,提高工作效率 。
⑤ 大数据之于智能交通意义重大仍面临五大难题
大数据之于智能交通意义重大仍面临五大难题
日前,在2015中国智慧城市国际博览会上,来自台湾的勤亚科技张及人透露“台湾政府在将近九年前就开始规划所谓的大的交通数据云,用数据来管理整个交通出行。比如通知你从A到B大概走多少时间,这个时间给你选择走西会更快或者更慢一点,通过这种模式来做。”在公共交通部门,张及人称台湾已经全面做到了公车到站提醒,准确率在96在97%。“这样大家坐公交时不会浪费时间,能合理地安排自己的出行计划。”在出租车和商用车方面,“台湾有一个服务厅,可以清楚地告诉调度公司,在某个天气、时间、路口会有比较多乘客,只要买了这个服务,系统会高速你客人在哪里,这就是大数据做的应用。
大数据之于智能交通意义重大
智能交通建设和运营的过程中,从视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等每天产生的数据量可以达到PB级别,并且是指数级的增长。虽然绝大部分数据是“沉睡的数据”,但按照相关规定,需要对数据进行有期限或无期限的保存,这无疑给用户在存储成本上带来压力,而通过监控摄像机前端智能技术和大数据分析技术的应用,很好地解决了行业用户的此类问题,给用户带来经济效益,同时也可以将工作人员从纷繁复杂的监控画面中解放出来。
大数据之于智能交通的意义,可以解决跨越行政区域的限制,实现数据信息的共享,在信息集成优势和组合效率上,有助于建立综合性立体的交通信息体系;另外在车辆安全、交通资源配置以及利用大数据的快速性和可预测性能提升交通预测的水平都有极大的帮助。
大数据支撑智能交通发展仍面临五大难题
随着移动互联网、大数据、车联网等技术越来越多地渗透到交通领域,百姓的出行将越来越高效便捷,同时也有利于管理部门为社会提供更好的公共交通服务。借助移动互联网、云计算、大数据、物联网等先进技术和理念,将互联网产业与传统交通运输业进行有效渗透与融合,形成具有线上资源合理分配,线下高效优质运行的新业态和新模式。积极用好大数据技术来支撑交通运输行业科学决策。交通运输部正在推进开展行业信息资源整合,同时也与互联网企业开展合作,利用定位大数据和智能化分析技术,成为科学决策的技术支撑。
不过,大数据虽然支撑着智能交通的前行,但其发展道路上难免要历经磨难,从目前来看主要存在五个问题。
问题一:海量设备管理问题
随着系统规模扩大,前端设备点位增加,设备故障点也呈几何级数增长,管理人员仅忙于应付设备故障,无暇他顾。以电子警察系统为例,目前一、二线城市基本都实现了电警设备在重点路口、路段的全覆盖,建设规模均有上千台摄像机及相应的控制设备,由于各厂商产质量量良莠不齐,前端设备实际完好率不高。设备故障未暴露,或暴露但没有得到及时维护的现象非常严重,给业主造成了大量的投资浪费。
问题二:统一标准和技术规范
国内智能交通系统项目的建设先于行业统一标准的推出。在缺乏标准的条件下,许多地区的智能交通系统自成体系,缺乏应有的衔接和配合,标准互不统一。即便在城市内部,道路上的传感器标准也非常混乱,因为传感器设备生产企业缺乏统一的接口标准。标准和规范的混乱妨碍了交通数据的获取,从而无法进行交通流的分析和预测。在高速公路收费系统方面,各省或地区内建设的网络一卡通或不停车收费系统,也没有统一指导和标准,为将来的全国联网造成了困难。
问题三:系统可靠性与稳定性
智能交通系统复杂度和整合程度越来越高,而系统的健壮性却没有同步提高,往往有牵一发而动全身的问题出现。以某地级市为例,智能交通系统由近200台服务器和2千多台前端设备组成,包括信号控制、交通流量采集、交通诱导、电子警察、卡口等子系统,数据要和省级交管平台、区县级交管子平台、公安业务集成平台等系统相连。系统具有流程复杂、业务系统众多、客户端分散等等一系列特点。业主竭尽全力为了保证业务系统的正常运行,但还是经常出问题。系统及网络结构复杂是一方面,业务系统众多无法“照顾”过来才是最严重的问题。
问题四:数据源的质量
智能交通应用需要高质量的数据源,而目前设备长时间运行的性能得不到保证,数据质量不高限制了智能交通业务高水平的扩展应用。现代化的交通诱导和交通信号控制需要实时准确的交通流量数据以供交通状态判断以及短时交通预测使用。而由于目前系统健壮性不足,难以自行判断数据质量,从而使得交通诱导和信号控制系统不能发挥预期效用,从而影响了整体智能交通系统的投资价值。
问题五:信息安全问题
由于智能交通兼具交通工具带来的移动特性和通信传输所使用的无线通信两方面的特点,它也就集成了无线网和移动网两大类型网络的安全问题。然而,当前针对智能交通的研究还只是偏重于其功能的实现,忽略了其信息安全问题。实际上,无论是从信息的收集、信息的传输、信息的处理各个环节,智能交通都存在严重的信息泄露、伪造、网络攻击、容忍性等安全问题,亟须受到人们的关注和重视。
结语:未来伴随着移动互联网、大数据、车联网等技术越来越多地渗透到智能交通,将会使我们的出行越来越便捷、高效、舒适。对于管理部门来讲,通过智能交通设施大数据分析预测出行规律和趋势,科学安排各项保障工作,为全社会提供更好的公共交通服务。
以上是小编为大家分享的关于大数据之于智能交通意义重大仍面临五大难题的相关内容,更多信息可以关注环球青藤分享更多干货