导航:首页 > 网络数据 > 大数据金融阿里应用

大数据金融阿里应用

发布时间:2023-09-17 23:16:52

1. 大数据金融-第一章 大数据金融概论

1.大数据与小数据

2.大数据的内涵
(1) 数据类型方面

(2) 技术方法方面

(3) 分析应用方面

3.大数据的特征

多样性:随着互联网的发展和传感器种类的增多,诸如网页、图片、音频、视频、微博类的未加工的半结构化和非结构化数据越来越多,以数量激增、类型繁多的非结构化数据为主。非结构化数据相对于结构化数据而言更加复杂,数据存储和处理的难度增大。

时效性:大数据的时效性是指在数据量特别大的情况下,能够在一定的时间和范围内得到及时处理,这是大数据区别于传统数据挖掘最显著的特征。只有对大数据做到实时创建、实时存储、实时处理和实时分析,才能及时有效的获得高价值的信息。

价值型:包含很多深度的价值,大数据分析挖掘和利用将带来巨大的商业价值。

4.大数据与传统数据的区别

5.大数据的产生背景

1.按照大数据结构分类

2. 按照大数据获取处理方式分类

3.按照其他方式分类

1.销售机会增多

0. 商业大数据的来源

1. 客户

2. 市场

3. 商品

4. 供应链

0. 数据来源

2. 市场与精准营销

3. 客户关系管理

4. 企业运营管理

5. 数据商业化

0. 数据来源

2. 付款定价

3. 研发

4. 新的商业模式

5. 公共健康

1. 营销

2. 服务

3. 运营

4. 风控

大数据金融是指运用 大数据技术和大数据平台 开展 金融活动和金融服务 ,对金融行业 积累的大数据以及外部数据 进行云计算等信息化处理,结合传统金融,开展资金融通、创新金融服务。

1. 呈现方式网络
大量的金融产品和服务通过网络呈现。

2. 风险管理有所调整
风险管理理念 ——财务分析(第一还款来源)、可抵押财产或其他保证(第二还款来源)重要性将有所降低。
风险定价方式 ——更注重将交易行为的真实性、信用的可信度通过数据来呈现。
对客户的评价 ——全方位、立体的/活生生的。
风险管理的主要手段 ——基于数据挖掘对客户进行识别和分类。

3. 信息不对称降低
4. 金融业务效率提高
在合适的时间、合适的地点,把合适的产品以合适的方式提供给合适的消费者。

5. 金融企业服务边界扩大
由于效率提升,其经营成本必然随之下降,最适合扩大经营规模。
金融从业人员个体服务对象会更多。

6. 产品是可控的、可受的
通过网络化呈现的金融产品,对消费者而言,其收益或成本、产品的流动性是可以接受的,其风险是可控的。

7. 普惠金融
大数据金融的高效率性及扩展的服务边界,使金融服务的对象和范围也大大扩展,金融服务也更接地气。

1. 放贷快捷,精准营销个性化服务
立足长期大量的信用及资金流的大数据基础之上,在任何时点都可以通过计算得出信用评分,并采用网上支付方式,实时根据贷款需要及其信用评分等数据进行放贷。

2. 客户群体大,运营成本低
大数据金融是以大数据云计算为基础,以大数据自动计算为主,不需要大量人工,成本较低,整合了碎片化的需求和供给,服务领域拓展至更多的中小企业和中小客户。

3. 科学决策,有效风控
根据交易借贷行为的违约率等相关指标估计信用评分,运用分布式计算做出风险评估模型,解决信用分配、风险评估、授权实施以及欺诈识别等问题,有效地降低了不良贷款率。

基于 电商平台基础 上形成的网上交易信息与网上支付形成的金融大数据,利用云计算等先进技术对数据进行处理分析而形成的信用或订单融资模式。
典型代表有 阿里小贷 ,基于对电商平台的 交易数据、社交网络的用户交易与交互信息和购物行为习惯 等的大数据通过 云计算 来实时计算得分和分析处理,形成网络商户在电商平台中的累积信用数据,通过电商所构建的网络信用评级体系和金融风险计算模型及风险控制体系,来实时向网络商户发放订单贷款或者信用贷款,例如,阿里小贷可实现数分钟之内发放贷款。

企业利用自身所处的 产业链上下游 (原料商、制造商、分销商、零售商),充分整合供应链资源和客户资源,提供金融服务而形成的金融模式。

京东商城、苏宁易购是供应链金融的典型代表。

在供应链金融模式当中, 电商平台只是作为信息中介提供大数据金融 ,并不承担融资风险及防范风险等。—— 渠道商为核心企业。

2. 如何用大数据分析金融数据

任何数据分析的前提是首先要理解业务模型,从你的金融数据是怎么产内生的,包括哪些容指标哪些数据,你的分析是要为什么业务服务的,也就是你的目的。比如你分析金融数据的目的是要找出最有价值的金融产品,还是最有价值的客户,还是寻找最有效的成本节约途径等

在弄清楚你的分析目的,和理解清楚你的业务模式等之后,再考虑你需要采用哪些数据,采用什么方法来进行分析,这才涉及到如何进行具体的分析过程。

从整个大数据分析来看,前期的业务理解和数据整理大概要耗费一大半的精力和时间,弄清楚前期,后期的分析则会很快。

3. 阿里,腾讯和百度的互联网大数据应用有何不同

阿里,腾讯和网络的互联网大数据应用有何不同

网络、阿里巴巴和腾讯三大互联网企业都拥有大数据,三大互联网巨头的数据都用来优化自己业务的运营效果,从这个层面看,其数据价值应用场景比较类似。但由于其业务和商业模式的不同决定了三者数据资产的不同,也决定了三者未来大数据策略的不同,尤其是基于大数据的开放和合作角度看,网络和阿里巴巴相对更加开放。对于重视大数据开放和合作的互联网企业,他们最为期待的是借着大数据开放的策略,与更多的传统行业交换更多的数据,从而更好的丰富其在线下数据,形成线上和线下数据的协同,从中拓展新的商业模式,如智能硬件和大数据健康。

BAT的互联网大数据应用有何不同

从数据类型看,腾讯数据最为全面,这与其互联网业务全面相关,其最为突出的是社交数据和游戏数据,其中:社交数据最为核心的是关系链数据、用户间的互动数据、用户产生的文字、图片和视频内容;游戏数据主要包括大型网游数据、网页游戏数据和手机游戏数据,游戏数据中最为核心的是游戏的活跃行为数据和付费行为数据,腾讯的数据最大的特点是基于社交的各种用户行为和娱乐数据。阿里最为突出的是电商数据,尤其是用户在淘宝和天猫上的商品浏览、搜索、点击、收藏和购买等数据,其数据最大特点是从浏览到支付形成的用户漏斗式转化数据。网络的数据以用户搜索的关键词、爬虫抓取的网页、图片和视频数据为主,网络的数据特点是通过搜索关键词更直接反映用户兴趣和需求,网络的数据以非结构化数据更多。
网络、阿里巴巴和腾讯的数据应用场景
网络、阿里巴巴和腾讯的数据应用场景都有共同的体系,该体系一共分为七层,代表了企业不同层面的数据价值应用场景,形成了企业运营的数据价值金字塔:
(1)数据基础平台层。金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果,这一层的技术目标是实现数据的有效存储、计算和质量管理;业务目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(如性别、年龄等)、行为以及兴趣爱好等,以达到全面的了解用户(客户)的目的;
(2)业务运营监控层。这一层首要的是搭建业务运营的关键数据体系,在此基础上通过智能化模型开发出来的数据产品,监控关键数据的异动,通过各种分析模型等可以快速定位数据异动的原因,辅助运营决策;
(3)用户/客户体验优化层。这一层主要是通过数据来监控和优化用户/客户的体验问题。这里面既运用了结构化的数据来监控,也运用非结构化的数据(如文本)来监控体验的问题。前者更多的是应用各种用户(客户)体验监测的模型或者工具来实现,后者更多的是通过监测微博、论坛和企业内部的客户反馈系统的文本来发现负面的口碑,以及时的优化产品或服务;
(4)精细化运营和营销层。这一层主要通过数据驱动业务精细化运营和营销。主要可以分为四方面:第一,构建基于用户的数据提取和运营工具,以方便运营和营销人员通过人群定向把客户提取出来,从而对客户进行营销或运营活动;第二方面,通过数据挖掘的手段提升客户对活动的响应;第三,通过数据挖掘的手段进行客户生命周期管理;第四,主要是用个性化推荐算法基于用户不同的兴趣和需求推荐不同的商品或者产品,以实现推广资源效率和效果最大化,如淘宝商品的个性化推荐;
(5)数据对外服务和市场传播层面。数据对外服务一般为服务该互联网企业的客户或用户,如网络通过提供网络舆情、网络代言人、网络指数等服务其广告主客户;淘宝通过数据魔方、淘宝情报和在云端等产品服务其客户;腾讯通过腾讯分析和腾讯云分析等服务其开放商客户。在市场传播层面,主要通过有趣的数据信息图谱和数据可视化产品来实现(如淘宝指数、网络指数、网络春节迁徙地图)。
(6)经营分析层面。主要通过分析师对大数据进行统计,形成经验分析周报、月报和季度报告等,对用户经营情况和收入完成等情况进行分析,发现问题,优化经营策略。
(7)战略分析层面。这方面既要结合内部的大数据形成决策层的数据视图,也要结合外部数据尤其是各种竞争情报监控数据、国外趋势研究数据来辅助决策层进行战略分析。
虽然网络、阿里巴巴和腾讯在企业运营的数据价值的应用体系上有共同的特点,但由于企业的商业模式以及数据资产不同,他们在整体的大数据发展策略也有显著的不同。
网络大数据策略
网络大数据最重要的是来源是通过爬虫搜集的100多个国家的近万亿网页数据,数据量是在EB级的规模。网络的数据非常多样化,其收集的数据既有为非结构化的或者半结构化的数据,包括网页数据、视频和图片等数据,也有结构化的数据,如用户的点击行为数据,广告客户的付费行为数据等。
网络大数据主要服务三类人群:一类是互联网网民,通过大数据和自然语言处理技术让网民的搜索更加准确;第二类是广告主,通过大数据让广告主的广告和搜索关键词的匹配度更高,或者和网民正在看的网页内容匹配度更高;第三类是,也是在重点推进的网络大数据引擎,重点是服务传统行业拥有一定规模数据的企业。
网络大数据引擎代表了互联网企业数据服务能力开放和合作的趋势,网络大数据引擎由以下三方面构成:
开放云:网络的大规模分布式计算和超大规模存储云,开放云大数据开放的是基础设施和硬件能力。过去的网络云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。据网络相关人员称,网络开放云还拥有CPU利用率高、弹性高、成本低等特点。网络是全球首家大规模商用ARM服务器的公司,而ARM架构的特征是能耗小和存储密度大,同时网络还是首家将GPU(图形处理器)应用在机器学习领域的公司,实现了能耗节省的目的。
数据工厂:数据工厂为网络将海量数据组织起来的软件能力,与数据库软件的作用类似,不同的是数据工厂是被用作处理TB级甚至更大的数据。网络数据工厂支持超大规模异构数据查询,支持SQL-like以及更复杂的查询语句,支持各种查询业务场景。同时网络数据工厂还将承载对于TB级别大表的并发查询和扫描,大查询、低并发时每秒可达百GB。
网络大脑:网络大脑将网络此前在人工智能方面的能力开放出来,主要是大规模机器学习能力和深度学习能力。此前它们被应用在语音、图像、文本识别,以及自然语言和语义理解方面,并通过网络Inside等平台开放给了智能硬件。现在这些能力将被用来对大数据进行智能化的分析、学习、处理、利用,并对外开放。
网络将基础设施能力、软件系统能力以及智能算法技术打包在一起,通过大数据引擎开放出来之后,拥有大数据的行业可以将自己的数据接入到这个引擎进行处理。从架构来看,企业或组织也可以只选择三件套中的一种来使用,例如数据存放在自己的云,但要运用网络大脑的一些智能算法或者数据存放在网络云,自己写算法。
网络大数据引擎的作用
我们可以从两方面来具体看网络大数据引擎的作用:
(1)对于 *** 机构:如交通部门有车联网、物联网、路网监控、船联网、码头车站监控等地方的大数据,如果这些数据与网络的搜索记录、全网数据、LBS数据结合,在利用网络大数据引擎的大数据能力,则可以实现智能路径规划和运力管理;卫生部门拥有流感法定报告数据、全国流感样病例哨点监测和病原学监测数据,如果和网络的搜索记录及全网数据结合,便可进行流感预测、疫苗接种指导。
(2)对于企业:很多企业也拥有海量大数据,不过很多企业的大数据处理和挖掘能力比较弱,如果应用网络大数据引擎,则可以对海量数据进行可靠低成本的存储,进行智能化的由浅入深的价值挖掘。如在2014年4月的网络技术开放日上,中国平安便介绍了如何利用网络的大数据能力加强消费者理解和预测,细分客户群制定个性化产品和营销方案。
阿里巴巴大数据策略
阿里巴巴大数据整体发展方向是以激活生产力为目的的DT(data technology,数据技术驱动)数据时代发展。阿里巴巴大数据未来将由“基于云计算的数据开放+大数据工具化应用”组成:
(1)基于云计算的数据开放。云计算使中小企业可以在阿里云上获得数据存储、数据处理服务,也可以构建自己的数据应用。云计算是数据开放的基础,云计算可以为全球的数据开发者提供数据工作平台,阿里分布式的存储平台和在这个平台上的算法工具,可以更好的为数据开发者所用;同时,阿里巴巴还需要做好数据的脱敏,把数据的商业定义,每个标签打得足够清晰,能够让全球的数据开发者在阿里巴巴平台展开数据思维,让数据为 *** 所用、消费者所用以及行业所用。阿里的大数据开放之后,线上线下的数据能够串联起来,所有人都是数据提供方,也是数据的使用者。
(2)在大数据应用上,马云已经在整个数据应用上确定了两个方针:
第一个方针:从IT到DT(数据技术),DT就是点燃整个数据和激发整个数据的力量,被管理所用,被社会所用,被销售所用,为制造业所用,为消费者信用所用。前文已经分析道,阿里巴巴的数据资产是以电商为主,其中,淘宝和天猫每天会产生丰富多样的数据,阿里巴巴已经沉淀了包括交易、金融、生活服务等多种类型的数据。这些数据能够帮助阿里巴巴进行数据化运营(如下图)。
另外一个其最为重要的应用是金融领域——小微金融。在小微金融企业融资领域。由于银行无法掌握小微企业真实的经营数据,不仅导致很多企业无法拿到贷款,还因为数据类型的不足导致整个判断流程过长,阿里已经通过其电商数据中的交易、信用、SNS等多种数据来决定是否可以发放贷款以及放贷的额度。
第二个方针:让阿里巴巴的数据、让阿里巴巴的工具能够成为中国商业的基础设施。阿里巴巴已经开始在转型,阿里将由自己直接面对消费者变成支持网商面对消费者,阿里会根据其已有的运营和数据经验,开发更多的工具,帮助网商成长,让网商们更懂得用最好的工具、服务去服务好消费者。正如马云所言“我相信没有一个网商不希望拥有自己的客户,没有一个网商不希望知道客户对自己的体验到底好还是坏,如何持久的拥有这些客户,我们觉得一个国家的经济,应该让给企业家群体去做,我们觉得淘宝网商未来的经济,是应该留给网商们去决定,而不是我们去做决定”。
腾讯大数据策略
腾讯的大数据目前更多的是为腾讯企业内部运营服务,相对于阿里和网络,数据开放程度并不高。因此,对于腾讯我们主要重点介绍腾讯大数据在服务企业内部的应用场景和服务。
腾讯90%以上的数据已经实现集中化管理,数据集中在数据平台部,有超过100多个产品的数据已经集中管理起来,而且是集中存储在腾讯自研数据仓库(TDW)。腾讯大数据从数据应用的不同环节可以分为四个层面,包括数据分析、数据挖掘、数据管理和数据可视化:
(1)数据分析层有四个产品:自助分析、用户画像、实时多维度分析和异动智能定位工具。自助分析可以帮助非技术人员通过简单的条件配置实现数据的统计和展示功能;用户画像则是对某一群用户或者某一业务的用户实现自动化的人群画像;实时多维度分析工具则是可以对某一指标可以实现实时的多个维度的切分,方便分析人员从不同角度对某一指标进行多维度分析;异动智能定位工具则实现数据异动问题的智能化定位。
(2)数据挖掘层面的产品应用有:精准广告系统、用户个性化推荐引擎和客户生命周期管理。精准广告系统如广点通,是基于腾讯大社交平台的海量数据为基础,通过精准推荐算法,以智能定向推广位导向实现广告精准投放;用户个性化推荐引擎根据每位用户的兴趣和喜好,通过个性化推荐算法(协同过滤、基于内容推荐、图算法、贝叶斯等),实现产品的个性化推荐需求;客户生命周期管理系统,则是基于大数据,根据用户/客户的所处的不同生命周期进行数据挖掘,建立预测、预警和用户特征模型,以根据用户/客户所处的不同生命周期特点进行精细化运营和营销。
(3)在数据管理层面则有:TDW(腾讯数据仓库)、TDBank(数据银行)、元数据管理平台和任务调度系统和数据监控。这一层面主要是实现数据的高效集中存储、数据的业务指标定义管理、数据质量管理、计算任务的及时调度和计算以及数据问题的监控和告警。
(4)在数据可视化层面有:自助报表工具、腾讯罗盘、腾讯分析和腾讯云分析等工具。自助报表工具可以自助化的实现结构相对简单和逻辑相对简单的报表。腾讯罗盘分为内部版和外部版,内部版则是服务于腾讯内部用户(产品经理、运营人员和技术人员等)的高效报表工具,外部版则是服务于腾讯合作伙伴如开发商的报表工具。腾讯分析是网站分析工具,帮助网站主进行网站的全方位分析。腾讯云分析则是帮助应用开发商决策和运营优化的分析工具。
总的来看,网络、阿里巴巴和腾讯三大互联网企业都拥有大数据,三大互联网巨头的数据都用来优化自己业务的运营效果,从这个层面看,其数据价值应用场景比较类似。但由于其业务和商业模式的不同决定了三者数据资产的不同,也决定了三者未来大数据策略的不同,尤其是基于大数据的开放和合作角度看,网络和阿里巴巴相对更加开放。对于重视大数据开放和合作的互联网企业,他们最为期待的是借着大数据开放的策略,与更多的传统行业交换更多的数据,从而更好的丰富其在线下数据,形成线上和线下数据的协同,从中拓展新的商业模式,如智能硬件和大数据健康。

bat的互联网大数据应用有何不同

这个得从BAT各自的基因来分析。网络主要是以搜索产品,所以大数据对于网络来说主要用于搜索方面,使搜索更加的精准和匹配;阿里巴巴以电子商务为主,所以大数据对于阿里巴巴来说会主要用户商品方面;腾讯主要是社交,所以大数据对于腾讯来说可能更多的应用于社会网络分析。大数据的主要用途为预测,所以BAT对于大数据的共同点都是为了通过对用户的分析,进行更加准确的服务和营销。

看网络,阿里与腾讯是如何利用互联网大数据应用

阿里有数据魔方,为卖家提供收费服务。

网络里,“互联网”和“所有空间”有何不同?

“互联网”

“所有空间”
互联网 就是指Inter上所有的信息
对网络来说
主要就是中文信息
所有空间
就是指网络中的所有用户
建了网络空间
(博客+相册+留言板)
显然搜索后者
是不包括网络空间 以外的博客的

如何获取并应用互联网大数据

大数据是大量、高速、多变的信息,它需要新型的处理方式去促成更强的决策能力、洞察力与最佳化处理。大数据为企业获得更为深刻、全面的洞察能力提供了前所未有的空间与潜力。
借助大数据及相关技术,我们可针对不同行为特征的客户进行针对性营销,甚至能从“将一个产品推荐给一些合适的客户”到“将一些合适的产品推荐给一个客户”,得以更聚焦客户,进行个性化精准营销。
大数据时代下的精准营销是指通过大数据获取对象的喜好,行为偏好,对不同对象进行不同营销。大数据精准营销的核心可以概括为几大关键词:用户、需求、识别、体验。
亿美软通推出数据云服务,延续亿美的客户服务、客户营销、客户管理的公司经营理念,通过庞大的消费数据资源,为客户提供数据验证,精准营销等数据级服务。简单说就是为企业提供数据验证和数据筛选业务。
-

互联网大数据培训应用前景如何?

不用担心,学好了就会有好的前景。{变量9}

大数据和小数据有何不同?

1.大数据重预测,小数据重解释;2.大数据重发现,而小数据重实证;3.大数据重相关,小数据重因果;4.大数据重全体,小数据重抽样;5.大数据重感知,小数据重精确。

企业数据中心和互联网数据中心有何不同

DCCI互联网数据中心(DCCI DATA CENTER OF CHINA INTERNET,简称DCCI),互联网监测研究权威机构&数据平台,互动营销之测量、分析、优化服务提供者。以Panel软件、代码嵌入、海量数据挖掘、语义信息处理等多种领先技术手段为基础,进行网站、用...

互联网数据中心:是idc 他是主要存放网络数据的(网站+数据+下载站点等)囊括比较广泛,任何的正规企业或者是中小型站长都是可以进行选择的。
企业数据中心:它的更加具有针对性,它可以隶属于互联网数据中心的一部分的。

4. 移动互联时代 大数据的应用价值

移动互联时代 大数据的应用价值
随着大数据的发展,企业也越来越重视数据相关的开发和应用,从而获取更多的市场机会。一方面,大数据能够明显提升企业数据的准确性和及时性;此外还能够降低企业的交易摩擦成本;更为关键的是,大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平,降低了企业经营的风险。
一、大数据助企业挖掘市场机会探寻细分市场
大数据能够帮助企业分析大量数据而进一步挖掘市场机会和细分市场,然后对每个群体量体裁衣般的采取独特的行动。获得好的产品概念和创意,关键在于我们到底如何去搜集消费者相关的信息,如何获得趋势,挖掘出人们头脑中未来会可能消费的产品概念。用创新的方法解构消费者的生活方式,剖析消费者的生活密码,才能让吻合消费者未来生活方式的产品研发不再成为问题,如果你了解了消费者的密码,就知道其潜藏在背后的真正需求。大数据分析是发现新客户群体、确定最优供应商、创新产品、理解销售季节性等问题的最好方法。
在数字革命的背景下,对企业营销者的挑战是从如何找到企业产品需求的人到如何找到这些人在不同时间和空间中的需求;从过去以单一或分散的方式去形成和这群人的沟通信息和沟通方式,到现在如何和这群人即时沟通、即时响应、即时解决他们的需求,同时在产品和消费者的买卖关系以外,建立更深层次的伙伴间的互信、双赢和可信赖的关系。
大数据进行高密度分析,能够明显提升企业数据的准确性和及时性;大数据能够帮助企业分析大量数据而进一步挖掘细分市场的机会,最终能够缩短企业产品研发时间、提升企业在商业模式、产品和服务上的创新力,大幅提升企业的商业决策水平。因此,大数据有利于企业发掘和开拓新的市场机会;有利于企业将各种资源合理利用到目标市场;有利于制定精准的经销策略;有利于调整市场的营销策略,大大降低企业经营的风险。
企业利用用户在互联网上的访问行为偏好能为每个用户勾勒出一副“数字剪影”,为具有相似特征的用户组提供精确服务满足用户需求,甚至为每个客户量身定制。这一变革将大大缩减企业产品与最终用户的沟通成本。例如:一家航空公司对从未乘过飞机的人很感兴趣(细分标准是顾客的体验)。而从未乘过飞机的人又可以细分为害怕飞机的人,对乘飞机无所谓的人以及对乘飞机持肯定态度的人(细分标准是态度)。在持肯定态度的人中,又包括高收入有能力乘飞机的人(细分标准是收入能力)。于是这家航空公司就把力量集中在开拓那些对乘飞机持肯定态度,只是还没有乘过飞机的高收入群体。通过对这些人进行量身定制、精准营销取得了很好的效果。
二、大数据提高决策能力
当前,企业管理者还是更多依赖个人经验和直觉做决策,而不是基于数据。在信息有限、获取成本高昂,而且没有被数字化的时代,让身居高位的人做决策是情有可原的,但是大数据时代,就必须要让数据说话。
大数据能够有效的帮助各个行业用户做出更为准确的商业决策,从而实现更大的商业价值,它从诞生开始就是站在决策的角度出发。虽然不同行业的业务不同,所产生的数据及其所支撑的管理形态也千差万别,但从数据的获取,数据的整合,数据的加工,数据的综合应用,数据的服务和推广,数据处理的生命线流程来分析,所有行业的模式是一致的。
这种基于大数据决策的特点是:一是量变到质变,由于数据被广泛挖掘,决策所依据的信息完整性越来越高,有信息的理性决策在迅速扩大,拍脑袋的盲目决策在急剧缩小。二是决策技术含量、知识含量大幅度提高。由于云计算出现,人类没有被海量数据所淹没,能够高效率驾御海量数据,生产有价值的决策信息。三是大数据决策催生了很多过去难以想象的重大解决方案。如某些药物的疗效和毒副作用,无法通过技术和简单样本验证,需要几十年海量病历数据分析得出结果;做宏观经济计量模型,需要获得所有企业、居民以及政府的决策和行为海量数据,才能得出减税政策最佳方案;反腐倡廉,人类几千年历史都没解决,最近通过微博和人肉搜索,贪官在大数据的海洋中无处可藏,人们看到根治的希望等等。
如果在不同行业的业务和管理层之间,增加数据资源体系,通过数据资源体系的数据加工,把今天的数据和历史数据对接,把现在的数据和领导和企业机构关心的指标关联起来,把面向业务的数据转换成面向管理的数据,辅助于领导层的决策,真正实现了从数据到知识的转变,这样的数据资源体系是非常适合管理和决策使用的。
在宏观层面,大数据使经济决策部门可以更敏锐地把握经济走向,制定并实施科学的经济政策;而在微观方面,大数据可以提高企业经营决策水平和效率,推动创新,给企业、行业领域带来价值。
三、大数据创新企业管理模式,挖掘管理潜力
当下,有多少企业还会要求员工像士兵一样无条件服从上级的指示?还在通过大量的中层管理者来承担管理下属和传递信息的职责?还在禁止员工之间谈论薪酬等信息?《华尔街日报》曾有一篇文章就说,NO。这一切已经过时了,严格控制,内部猜测和小道消息无疑更会降低企业效率。一个管理学者曾经将企业内部关系比喻为成本和消耗中心,如果内部都难以协作或者有效降低管理成本和消耗,你又如何指望在今天瞬息万变的市场和竞争环境下生存、创新和发展呢?
我们试着想想,当购物、教育、医疗都已经要求在大数据、移动网络支持下的个性化的时代,创新已经成为企业的生命之源,我们还有什么理由还要求企业员工遵循工业时代的规则,强调那种命令式集中管理、封闭的层级体系和决策体制吗?当个体的人都可以通过佩戴各种传感器,搜集各种来自身体的信号来判断健康状态,那样企业也同样需要配备这样的传感系统,来实时判断其健康状态的变化情况。
今天信息时代机器的性能,更多决定于芯片,大脑的存储和处理能力,程序的有效性。因而管理从注重系统大小、完善和配合,到注重人,或者脑力的运用,信息流程和创造性,以及职工个性满足、创造力的激发。
在企业管理的核心因素中,大数据技术与其高度契合。管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以标称大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
大数据时代,数据在各行各业渗透着,并渐渐成为企业的战略资产。数据分析挖掘不仅本身能帮企业降低成本:比如库存或物流,改善产品和决策流程,寻找到并更好的维护客户,还可以通过挖掘业务流程各环节的中间数据和结果数据,发现流程中的瓶颈因素,找到改善流程效率,降低成本的关键点,从而优化流程,提高服务水平。大数据成果在各相关部门传递分享,还可以提高整个管理链条和产业链条的投入回报率。
四、大数据变革商业模式催生产品和服务的创新
在大数据时代,以利用数据价值为核心,新型商业模式正在不断涌现。能够把握市场机遇、迅速实现大数据商业模式创新的企业,将在IT发展史上书写出新的传奇。
大数据让企业能够创造新产品和服务,改善现有产品和服务,以及发明全新的业务模式。回顾IT历史,似乎每一轮IT概念和技术的变革,都伴随着新商业模式的产生。如个人电脑时代微软凭借操作系统获取了巨大财富,互联网时代谷歌抓住了互联网广告的机遇,移动互联网时代苹果则通过终端产品的销售和应用商店获取了高额利润。
纵观国内,以金融业务模式为例,阿里金融基于海量的客户信用数据和行为数据,建立了网络数据模型和一套信用体系,打破了传统的金融模式,使贷款不再需要抵押品和担保,而仅依赖于数据,使企业能够迅速获得所需要的资金。阿里金融的大数据应用和业务创新,变革了传统的商业模式,对传统银行业带来了挑战。
还有,大数据技术可以有效的帮助企业整合、挖掘、分析其所掌握的庞大数据信息,构建系统化的数据体系,从而完善企业自身的结构和管理机制;同时,伴随消费者个性化需求的增长,大数据在各个领域的应用开始逐步显现,已经开始并正在改变着大多数企业的发展途径及商业模式。如大数据可以完善基于柔性制造技术的个性化定制生产路径,推动制造业企业的升级改造;依托大数据技术可以建立现代物流体系,其效率远超传统物流企业;利用大数据技术可多维度评价企业信用,提高金融业资金使用率,改变传统金融企业的运营模式等。
过去,小企业想把商品卖到国外要经过国内出口商、国外进口商、批发商、商场,最终才能到达用户手中,而现在,通过大数据平台可以直接从工厂送达到用户手中,交易成本只是过去的十分之一。以我们熟悉的网购平台淘宝为例,每天有数以万计的交易在淘宝上进行,与此同时相应的交易时间、商品价格、购买数量会被记录,更重要的是,这些信息可以与买方和卖方的年龄、性别、地址、甚至兴趣爱好等个人特征信息相匹配。运用匹配的数据,淘宝可以进行更优化的店铺排名和用户推荐;商家可以根据以往的销售信息和淘宝指数进行指导产品供应、生产和设计,经营活动成本和收益实现了可视化,大大降低了风险,赚取更多的钱;而与此同时,更多的消费者也能以更优惠的价格买到了更心仪的产品。
维克托曾预言2020年,大数据时代就会真正来临。在那个时候,最经常会用到的应用就是个性化生活所需要的,尤其是智能手机的应用。
五、大数据让每个人更加有个性
对个体而言,大数据可以为个人提供个性化的医疗服务。比如,我们的身体功能可能会通过手机、移动网络进行监控,一旦有什么感染,或身体有什么不适,我们都可以通过手机得到警示,接着信息会和手机库进行对接或者咨询相关专家,从而获得正确的用药和其他治疗。
过去我们去看病,医生只能对我们的当下身体情况做出判断,而在大数据的帮助下,将来的诊疗可以对一个患者的累计历史数据进行分析,并结合遗传变异、对特定疾病的易感性和对特殊药物的反应等关系,实现个性化的医疗。还可以在患者发生疾病症状前,提供早期的检测和诊断。早期发现和治疗可以显著降低肺癌给卫生系统造成的负担,因为早期的手术费用是后期治疗费用的一半。
还有,在传统的教育模式下,分数就是一切,一个班上几十个人,使用同样的教材,同一个老师上课,课后布置同样的作业。然而,学生是千差万别的,在这个模式下,不可能真正做到“因材施教”。
如一个学生考了90分,这个分数仅仅是一个数字,它能代表什么呢?90分背后是家庭背景、努力程度、学习态度、智力水平等,把它们和90分联系在一起,这就成了数据。大数据因其数据来源的广度,有能力去关注每一个个体学生的微观表现:如他在什么时候开始看书,在什么样的讲课方式下效果最好,在什么时候学习什么科目效果最好,在不同类型的题目上停留多久等等。当然,这些数据对其他个体都没有意义,是高度个性化表现特征的体现。同时,这些数据的产生完全是过程性的:课堂的过程,作业的情况,师生或同学的互动情景……而最有价值的是,这些数据完全是在学生不自知的情况下被观察、收集的,只需要一定的观测技术与设备的辅助,而不影响学生任何的日常学习与生活,因此它的采集也非常的自然、真实。
在大数据的支持下,教育将呈现另外的特征:弹性学制、个性化辅导、社区和家庭学习、每个人的成功……大数据支撑下的教育,就是要根据每一个人的特点,释放每一个人本来就有的学习能力和天分。
此外,维克托还建议中国政府要进一步补录数据库。政府以前提供财政补贴,现在可以提供数据库,打造创意服务。在美国就有完全基于政府提供的数据库,如为企业提供机场、高速公路的数据,提供航班可能发生延误的概率,这种服务这可以帮助个人、消费者更好地预测行程,这种类型的创新,就得益于公共的大数据。
六、智慧驱动下的和谐社会
美国作为全球大数据领域的先行者,在运用大数据手段提升社会治理水平、维护社会和谐稳定方面已先行实践并取得显着成效。
近年来,在国内,“智慧城市”建设也在如火如荼的开展。截止去年底,我国的国家智慧城市试点已达193个,而公开宣布建设智慧城市的城市超过400个。智慧城市的概念包含了智能安防、智能电网、智慧交通、智慧医疗、智慧环保等多领域的应用,而这些都要依托于大数据,可以说大数据是“智慧”的源泉。
在治安领域,大数据已用于信息的监控管理与实时分析、犯罪模式分析与犯罪趋势预测,北京、临沂等市已经开始实践利用大数据技术进行研判分析,打击犯罪。
在交通领域,大数据可通过对公交地铁刷卡、停车收费站、视频摄像头等信息的收集,分析预测出行交通规律,指导公交线路的设计、调整车辆派遣密度,进行车流指挥控制,及时做到梳理拥堵,合理缓解城市交通负担。
在医疗领域,部分省市正在实施病历档案的数字化,配合临床医疗数据与病人体征数据的收集分析,可以用于远程诊疗、医疗研发,甚至可以结合保险数据分析用于商业及公共政策制定等等。
伴随着智慧城市建设的火热进行,政府大数据应用已进入实质性的建设阶段,有效拉动了大数据的市场需求,带动了当地大数据产业的发展,大数据在各个领域的应用价值已得到初显。
七、大数据如何预言未来?
著名的玛雅预言,尽管背后有着一定的天文知识基础,但除催生了一部很火的电影《2012》外,其实很多人的生活尚未受到太大的影响。现在基于人类地球上的各种能源存量,以及大气受污染、冰川融化的程度,我们获取真的可以推算出按照目前这种工业生产、生活的方式,人类在地球上可以存活的年数。《第三次工业革命》中对这方面有很深入的解释,基于精准预测,发现现有模式是死路一条后,人类就可以进行一些改变,这其实就是一种系统优化。
这种结合之前情景研究,不断进行系统优化的过程,将赋予系统生命力,而大数据就是其中的血液和神经系统。通过对大数据的深入挖掘,我们将会了解系统的不同机体是如何相互协调运作的,同样也可以通过对他们的了解去控制机体的下一个操作,甚至长远的维护和优化。从这个角度讲,基于网络的大数据可以看作是人类社会的神经中枢,因为有了网络和大数据人类社会才开始灵活起来,而不像以前那么死板。基于大数据,个体之间相互连接有了基础,相互的交互过程得到了简化,各种交易的成本减少很多。厂家等服务提供方可以基于大数据研发出更符合消费者需求的服务,机构内部的管理也更为细致,有了血液和神经系统的社会才真的拥有生命活力。
结语
透过以上这些行业典型的大数据应用案例和场景,不难悟出大数据的典型的核心价值。大数据是看待现实的新角度,不仅改变了市场营销、生产制造,同时也改变了商业模式。数据本身就是价值来源,这也就意味着新的商业机会,没有哪一个行业能对大数据产生免疫能力,适应大数据才能在这场变革中继续生存下去。
当下,正处于数据大爆发的时代,如何获取这些数据并对这些数据进行有效分析就显得尤为重要。各种企业机构之间的竞争非常残酷。如何基于以往的运行数据,对未来的运行模式进行预测,从而提前进行准备或者加以利用、调整,对很多企业机构其实是一种生死存亡的问题。这样一种情况同样适用于国家级别。正因为这一点,目前无论是在企业级别还是国家级别都开始研究、部署大数据。
可见,大数据应用已经凸显出了巨大的商业价值,触角已延伸到零售、金融、教育、医疗、体育、制造、影视、政府等各行各业。你可能会问这些具体价值实现的推动者有哪些呢?就是所谓的大数据综合服务提供商,从实践情况看,主要包括大数据解决方案提供商、大数据处理服务提供商和数据资源提供商三个角色,分别向大数据的应用者提供大数据服务、解决方案和数据资源。
未来大数据还将彻底改变人类的思考模式、生活习惯和商业法则,将引发社会发展的深刻变革,同时也是未来最重要的国家战略之一。

5. 阿里巴巴运用大数据包括哪些

  1. 大数据计算服务(MaxCompute,原ODPS)

  2. Data IDE(原BASE)

  3. 数据集成(原CDP云道)

  4. 大数据基础服务包括 Maxcompute 分析型数据库等

  5. 大数据分析于展现包括 Date V Quick BI 画像分析等

  6. 大数据应用 包括 推荐引擎 企业图谱

6. 大数据的应用领域在不断拓宽

大数据的应用领域在不断拓宽

1、数据已经成为可交易的重要资产

数据的价值在于能够产生业务价值,而产生业务价值的多少取决于数据带来的视野的宽度和深度,以及对明智决策的支持度。从这个角度将,在资源不限的理想情况下,越多的数据来源,越能够带来宽度和广度,从而得到越好的决策支持度。数据,毫无疑问已经成为了一种企业资产, 并且会成为越来越重要的资产,未来甚至可能进入资产负债表。

2015 年 4 月 15 日, 我国贵阳大数据交易所正式运营, 其交易的数据是基于底层数据,通过数据的清洗、分析、建模 、可视化后的结果, 大数据交易所本着以电子交易为主要形式,通过建立大叔局的网上交易系统,搭建交易平台。预计到 2020 年,大叔局交易所将形成日均 100 亿的数据交易金额, 发展到 1 万家与大数据有关的会员单位。

2. 云计算是大数据产业发展的助推器

云计算产业进入高速发展期。 云计算包括三个层次的服务:基础架构即服务( IaaS),平台即服务(PaaS)和软件即服务(SaaS)。来自 Oxford Economics 和 SAP 关于云计算采用的研究《The Cloud Grow Up》中提出, 69%的企业预计在未来三年内将会中度或者重度投资在云计算上,这意味着它们的核心业务功能将迁移到云上。 59%的企业认为他们使用了基于云计算的应用程序和平台系统,更好地管理和分析了数据,这反映了企业范围内进行数据分析和大数据计算日益增加的重要性。 Gartner 预测 2015 年全球云计算服务市场总收入将突破 1800 亿美元。 2015 年 2 月 , 国务院下发《关于促进云计算创新发展培育信息产业新业态的意见》提到:开展基于云计算的大数据应用示范,支持政府机构和企业创新大数据服务模式,政府部门要加大采购云计算服务的力度等一系列措施。云计算已经从概念走向实际应用, 已经进入高速发展期。

云计算降低了使用 IT 资源的门槛,为数据集中化创造了基础,极大的促进了大数据产业的发展。 云计算按需付费和资源共享的商业模式,大幅提高了 IT 基础设施的使用效率;IaaS 运营商不断降价,又极大满足中小企业对于技术基础设施的需求。未来企业将不用再购买服务器,直接购买终端,输送至数据中心,从而形成服务器集群产业链,满足了大数据存储和挖掘的需求。云计算中心基础设施的不断完善使得大型数据中心和 PaaS 类运行平台的趋于成熟,又为 SaaS 类应用业务市场的大规模启动创造了条件。 SaaS 应用的大规模使用降低了用户使用软件的成本,促进了企业信息化程度额提高,又进一步促进了数据集中化。

云端处理与移动互联网行业结合,将产生不计其数的交叉业务和个性化应用。而社交网络的广泛应用,又加速了信息的传播速度和范围,促进了数据的内生增长。物联网要求的海量存储和计算能力让廉价、高性能的云计算应用方案成为所有用户的自然选择。可以说,云计算的蓬勃发展,极大促进了移动互联网、社交网络和物联网的发展,使得更多数据被采集到云端,为大数据应用提供了数据基础;同时,云计算的高性能、低成本运算能力又为大数据分析提供了极佳的计算平台,极大的促进了大数据在各行业中的应用。 因此, 数据的爆炸式增长其背后的核心支撑是云计算产业的蓬勃发展。

3. 大数据的应用领域在不断拓宽

大数据实践包含多个维度, 按照行业划分,包括金融大数据、 医疗大数据、 交通大数据、运营商大数据、 互联网大数据、物流大数据等等, 每个行业根据其 IT 系统及互联网化的完善程度不同,其大数据发展的阶段各不相同。按照数据对象划分,包括互联网大数据、政府大数据、 企业大数据、 个人大数据, 目前,互联网大数据是已经开始得到有效利用的细分领域,而政府、企业和个人的大数据应用才刚刚开始, 是“互联网 +”背景下大数据应用的重要发展方向。

互联网大数据:互联网上的数据多样、积累迅速, 包括用户行为数据、用户消费数据、用户 社交数据、 用户地理位臵数据等, 互联网企业是大数据领域的先驱, 各家互联网企业依托自身的数据优势,早已开始利用大数据技术尝试用户 行为分析、精准营销、产品优化、 信用记录分析等用途。

阿里巴巴是互联网企业中大数据应用的典范。 阿里巴巴旗下的淘宝最早于 2005 年开发“淘数据”,并在半年后成立专门的大数据团队,相继开发了自用的“无量神针”、“类目360”, 以及针对卖家的“数据魔方”、“黄金策”、“淘宝指数”、“聚石塔”等数据产品,为卖家提供增值服务, 探索盈利模式。 此后,阿里巴巴的大数据体系日益成熟, 确立了平台 、金融和数据的三大业务核心,三者相辅相成,目前的阿里巴巴金融帝国就是建立在其电商平台 +大数据之上的隐性巨人。 例如, 阿里依托电商数据积累推出阿里小贷和蚂蚁信用,本质在于通过大数据技术构建征信体系 , 为整个阿里体系金融业务的进一步拓展打下了充分的基础。

政府大数据:政府是数据资源最丰富的部门之一,大量的优质数据资源集中在政府手中,各个政府部门掌握着构成社会基础的原始数据,例如金融数据、交通数据、医疗数据、旅游数据、电力数据、住房数据、海关数据、违法犯罪数据、教育数据、环保数据等等。目前,政府数据存在几方面的问题:第一,数据积累偏静态,没有做到动态更新,导致有些数据过于陈旧;第二,数据孤岛现象严重,没有做到数据开放和共享。倘若能将这些数据进行有效的管理和分析,其商业价值和社会价值都是不可估量的。

政府加大智慧城市建设,数据价值挖掘正当时。目前,政府已经意识到数据的重要性,2012 年开始,政府就不断加大在智慧城市建设,包括智慧交通、智慧环保、智慧教育、智慧社区、 智能电网等各个与城市相关的细分领域。 2014 年 3 月,国务院印发的《国家新型城镇化规划 (2014-2020 年)》,明确要求推进智慧城市建设,统筹城市发展的物质资源、信息资源和智力资源利用,推动物联网、云计算、大数据等新一代信息技术创新应用。 2015 年 4 月 , 住建部公布第三批智慧城市试点城市,加上前两批,目前我国的智慧城市试点已经达到 297 个。 智慧城市建设将完善城市各个细分领域的信息化水平, 构建统一的数据平台,打破信息孤岛现象; 同时, 一些地方政府已经开始探索采用 PPP(Public-Private-Partnership) 的公私合营模式,逐渐开放部分数据, 让社会机构参与运营,挖掘数据价值。

以智慧交通为例, 通过信息化建设连接道路信息管理系统、交通信号系统、公共汽车系统、出租车系统、电子收费系统、 停车场系统等, 实现数据共享, 对于政府部门来说,通过实时挖掘为出行者和交通监管部门提供实时交通信息,有效缓解交通拥堵, 快速响应突发状况,为城市交通的良性运转提供科学的决策依据, 提高民生体验;对于参与企业来说, 可以在停车场、市民出行等领域提供增值服务,探索新商业模式。

企业大数据:在“互联网+” 时代,企业的互联网化将从传统的传播互联网化和销售互联网化, 走向供应链互联网化和经营逻辑互联网化, 运营模式已经开始发生巨大变化, 企业与供应商、 服务商、 渠道商、 客户 , 乃至终端用户 都可以通过信息技术建立密切的联系 。 如果说过去互联网的价值主要体现在与渠道和营销的整合上,那么这一次变革将是互联网与传统行业在价值链各个关键环节的深度融合。

一方面,对于供应链环节来说, 大数据可以直接应用于产品设计、 原材料采购、 产品制造、库存、物流、配送等各个供应链环节, 清晰地把握原材料采购量、 订单完成率、库存量及产品配送等情况, 优化供应链流程, 降低不必要的损耗。 另一方面,对于生产环节来说, 企业生产设备可以通过传感器和信息系统等实现机器与机器之间的相互连接,进而获取数据, 利用大数据技术进行存储、分析和可视化,最终得到“智能信息” 供决策者使用,调解生产过程以提高效率。 未来, 当信息技术发展到一定阶段,企业生产过程甚至可以根据消费者需求进行个性化定制, 实现柔性生产。

体育大数据:例如体育数据分析师通过从 OPTA( Opta Sports 是一家总部位于英国伦敦的体育数据提供商)提供的 2010 年世界杯以来 22904 场正式比赛的数据中,研究了梅西和其他 16574 名足球运动员与足球相关的所有数据准确发现了梅西两个性: 1、 与巴萨其他队友的数字相比,梅西有关防守行为的数字相当地少,其他方面也能体现“他不去争抢势均力敌的高球”等缺点; 2、 与在巴萨时梅西的表现指为 0.262 相比, 在阿根廷国家队里只有 0.199, 体现了 梅西在两支球队中所起作用的差异。

个人大数据:个人信息往往保存在第三方手里, 例如个人用户在互联网上留存、 在政府部门登记在案等各类信息,此类信息实际上也是互联网、政府和企业用于分析用户 行为的基础。此外,随着可穿戴设备等新事物的兴起,个人信息的采集方式越来越多样化,数据积累 也在不断完善, 例如,可以通过可穿戴设备或植入芯片等感知技术来采集身体数据、 健康数据、地理位臵信息、运动数据、 社会关系数据、饮食数据等。 未来, 可以想象的应用场景是,个人用户可以将个人数据授权给第三方机构以实现特定用途, 例如,高血压患者可以将个人血压数据、 身体机能数据、饮食数据等授权给健康管理机构使用,由他们监控和使用这些数据,进而为用户制定有效的健康维护方案。

以上是小编为大家分享的关于大数据的应用领域在不断拓宽的相关内容,更多信息可以关注环球青藤分享更多干货

阅读全文

与大数据金融阿里应用相关的资料

热点内容
文件在桌面怎么删除干净 浏览:439
马兰士67cd机版本 浏览:542
javaweb爬虫程序 浏览:537
word中千位分隔符 浏览:392
迷你编程七天任务的地图怎么过 浏览:844
word2003格式不对 浏览:86
百度云怎么编辑文件在哪里 浏览:304
起名app数据哪里来的 浏览:888
微信怎么去泡妞 浏览:52
百度广告html代码 浏览:244
qq浏览器转换完成后的文件在哪里 浏览:623
jsp中的session 浏览:621
压缩完了文件去哪里找 浏览:380
武装突袭3浩方联机版本 浏览:674
网络机顶盒移动网络 浏览:391
iphone手机百度云怎么保存到qq 浏览:148
数据库设计与实践读后感 浏览:112
js对象是什么 浏览:744
网页文件存pdf 浏览:567
文件夹正装 浏览:279

友情链接