『壹』 如何利用好大数据挖掘潜在用户
就目前而言,现在的大数据技术为绝大部分的业务提供了许多功能,同时还提高了效率和收入。当然除了这些以外,大数据分析还为公司的潜在客户和现有客户提供了许多好处。这些优点让很多公司对于大数据技术十分向往,那么怎么能够利用好大数据呢?一般来说参与寻找内部、收集最大的数据量、和大数据公司进行合作。
一,参与寻找内部
要想找到潜在用户,可以利用大数据技术从订单历史、客户服务信息、业务订单管理系统来挖掘数据,数据分析师可以通过对数据进行分析出最忠实购物者的全方位视图来找到自己需要的参数。
通过挖掘数据拥有大量的属性,这些属性能够体现出客户的价值。可能会确定不同业务的各种市场的销售程度,即他们花的资金很少,并且会花费大量时间与客户服务代表合作。有了这些知识,就能够精准的寻找出自己需要的内容。
二、收集最大数据量
大家都知道,我们在与客服交流的过程总可以说是在了解客户,如果收集到客户尽可能多的信息,将会非常有帮助。而与别的品牌互动,退货和交换以及之前的购买历史记录中获得更多的数据,如果最大限度地利用客户的个人详细信息也是对于大数据分析带来很大的帮助。这有助于全面了解客户群并减除差距。
如果数据中存在缺失可能导致丢失有价值的信息,从而误导客户体验的全貌。所以说,在大数据分析之前一定要确保捕获可能对客户的行为和体验产生影响的所有内容。在分析完成之前,所有有关客户群的任何内容非常重要。此过程可以说明以前可能不容易获得或未见到的见解和模式,这些知识有助于解决客户的特定偏好和需求。愿意接受客户的所作所为,而不是他们正在思考的事情。对于我们的分析一定要保持客观的视角看待问题。
同样重要的事情就是,这种分析是一个持续的过程。客户的偏好和需求将不断变化,并受到包括新兴产品、当前趋势和各种其他重要因素在内的所有情况的影响。但是,在需求方面保持更高级并不容易,这一过程可确保对未来和现有客户始终保持高度重视。
三、与大数据公司合作
在获得了数据以后,如果能够最大限度地利用大数据来了解客户并定位理想客户仅仅只是一个开始。对于品牌来说,不仅可以确定其最佳购物者,还可以针对该公司的其他成员扩大其购物群的忠诚度。不过,当今企业面临的一大挑战是缺乏资源来启动大数据计划。除了保存和使用这些数据的理想基础设施外,组织还必须有能力去检查这些数据,当然还必须最大限度地利用这些洞察力。这是与大数据公司的合作关系的关键部分。而大数据公司的大数据专家不仅可以确保组织能够访问所有理想的大数据,还可以帮助分析它,以获得高价值的性能指标,预测和见解,从而提高品牌的价值。
对于上面提到的问题,想必大家看了这篇文章以后已经知道了怎么利用好大数据找到潜在用户了吧,一般来说,参与寻找内部、收集最大的数据量、和大数据公司进行合作才能找到潜在用户,希望这篇文章能够给大家带来帮助。
『贰』 如何利用大数据实现精细化运营
通常企业可以从以下三个方面流程实现大数据的应用全面整合管理:
营销管理
是从营销活动的策划到营销活动的执行和监控,到营销费用的核销审批,到营销效果的分析和评估。大数据时代,互联网的信息不对称让网上信息种类繁杂,各行各业每时每刻都在产生着无数的碎片信息,传统行业需要投入巨大的人工成本去进行营销,而百会CRM可以通过对关键词的的搜索再把信息进行审查,过滤掉无用的线索。提高营销管理的效率。
销售管理
众所周知,销售人员是决定企业经营情况的重要环节。随着企业扩张,销售团队壮大,如何学习和应用最佳销售人员的管理经验和行为方式成为关键问题。而百会CRM系统可以实现良好的销售行为的细分精准化。百会CRM用系统化的管理,精细化管理营销的活动,同时可以根据系统筛选出目标客户,精准地定位在目标客户上,根据区分不同营销对象来规划市场活动和推动营销层次。同时完成营销活动的评价机制。降低企业运营成本,提高工作效率,扩展市场份额和增加销量。
服务管理
服务管理是企业模块中很容易被忽视的一块,特别是售后服务,但是售后服务给企业带来的附加价值是很大的,很多企业都没有意识到这点。百会CRM的应用可以建立多种客户沟通渠道,及时收集客户反馈意见以及需求,完善客户服务请求处理流程,提高响应速度以及服务质量,并对销售执行过程进行有效监控和评估。
『叁』 如何使用大数据技术为企业创造更大的价值
大家好,我是Lake,专注大数据技术、互联网科技见解、程序员经验分享
作为一名大数据工程师,我来说下我的想法。如何使用大数据技术为企业创造更大的价值?这里有两个注重点,一个是大数据技术,一个是为企业创造价值。目前大数据在不同的应用场景,可以分为很多不同种类的技术,比如数据的离线计算有 Hadoop、Spark,存储方面有HBASE、HDFS、MongoDB、JanusGraph,消息中间件有 Kafka、MetaQ,实时计算有Storm、Flink、Spark Streaming等等。这么多大数据技术,怎么样为企业创造出更大的价值呢,我认为有一下几点:
保证线上业务稳定性
目前很多企业最底层都用到大数据相关技术,如何保证线上业务稳定成为大数据技术最重要的一件事情。线上业务不稳定会直接影响到消费者的使用,尤其是涉及到交易相关的业务更是重中之重。线上业务的稳定性不能受到大数据集群抖动而产生影响,打个比方,线上订单交易链路在最底层使用到了HBase 数据库,但HBase集群突然 Down掉之后,那么线上用户突然不能够进行下单和支付了,这对于公司来说,直接就影响到公司的交易额和利润,这种情况是公司绝对无法容忍的。
所以你能够保证公司所使用大数据技术集群资源越稳定,那么对于线上业务的稳定运行就越有保证,通过对大数据集群稳定性进行保障,进一步提升消费者的使用体感,这就是你的价值。
更好的降低大数据集群机器资源消耗
更好的降低公司大数据集群机器的资源消耗,提升公司集群资源的使用率,进一步压榨机器的性能也为公司带来了价值。公司每台机器,说实话,都需要从外进行采购,这消耗的就是公司的资金。如果你能在现有的机器上,满足更多的业务,而不只是单纯的购买机器水平扩展来满足业务,这样会进一步帮助公司节约资金。公司的最终目的也是为了盈利,你帮公司降低了机器的购买,这也是为公司节约了一笔很大的成本。
大数据技术创新
大数据技术发展到了一定程度,就需要自己通过技术创新,来满足公司一些更为复杂的业务场景。通过技术创新,带动业务发展。比如图数据库的出现,使得公司能够使用图数据库来构建用户的社交网络图,通过构建的社交网络图可以快速了解到用户的关注、用户的粉丝、和用户兴趣相同的用户有哪些。哪些用户是信息传播关键点等等,通过大数据技术的创新,知道更多潜藏在大数据底层的商业信息价值,从而帮助公司上层更好的做战略规划。同时,也可以通过技术创新,变革整个公司的技术架构,使用新的技术来满足未来公司战略的发展,最直接的例子,就是阿里云。
总结 总体来说,大数据如何为公司创造更大的价值,我认为可以从提升大数据集群的稳定性入手,更好的保证公司线上业务的稳定和运行。其次,可以更好的压榨和节约公司的大数据集群相关的机器资源,从而减少公司机器方面的采购成本。最后,就是通过大数据技术创新,通过技术来驱动业务的发展,当然这也是最难的一点,如果你能做到通过某种大数据技术的创新使得公司战略方面业务的成功,那么你的价值对于公司来说,将是无法估量的。
『肆』 如何用大数据做好企业运营
大数据对企业来说有什么用?对于这个连IT界都众说纷纭的事情,要让希望使用大数据产品和服务的企业主们来说,更是一头雾水。大数据是工具,那么它究竟对企业会有什么作用呢?了解了大数据的作用,才能让大数据更好的服务自身。其实,从传统企业的运行流程来看,大数据主要能够在了解用户、锁定资源、规划生产、做好运营、开展服务等方面,帮上企业的忙。
下面,我们来看一下到底大数据到底能帮什么忙:
1、帮企业了解用户
大数据通过相关性分析,将客户、用户和产品进行有机串联,对用户的产品偏好,客户的关系偏好进行个性化定位,生产出用户驱动型的产品,提供客户导向性的服务。
从大数据技术方面来看,用数据来指引企业的成长,将不再单单是一句口号。据网络副总裁曾良表示,从挖掘的角度来看,他们通过对每天60亿的检索请求数
据分析,可以发现检索某一品牌的受众行为特征,进而反馈给企业的品牌、产品研发部门,能更准确地了解目标用户,并推出与调性相匹配的产品。
通过运用大数据,不仅可以从数据中发掘出适应企业发展环境的社会和商业形态,用数据对用户和客户对待产品的态度,进行挖掘和洞察,准确发现并解读客户及用户的诸多新需求和行为特征,这必将颠覆传统企业在用户调研过程中,过分依赖主观臆断的市场分析模式。
2、帮企业锁定资源
通过大数据技术,可以实现企业对所需资源的精准锁定,在企业在运营过程中,所需要的每一种资源的挖掘方式、具体情况和储量分布等,企业都可以进行搜集
分析,形成基于企业的资源分布可视图,就如同“电子地图”一般,将原先只是虚拟存在的各种优势点,进行“点对点”的数据化、图像化展现,让企业的管理者可
以更直观地面对自己的企业,更好地利用各种已有和潜在资源。如果没有大数据,将很难发现曾经认为是完全无关行为间的相互关联性,就如同外媒曾经提到的“啤
酒”与“尿片”之间的关联营销一样,如果美元大数据这将是一种几乎不可能的事情。
3、帮企业规划生产
大数据不仅改变了数据的组合方式,而且影响到企业产品和服务的生产和提供。通过用数据来规划生产架构和流程,不仅能够帮助他们发掘传统数据中无法得知的价值组合方式,而且能给对组合产生的细节问题,提供相关性的、一对一的解决方案,为企业开展生产提供保障。
过去的所谓商业智能,往往大多是“事后诸葛亮”,而大数据则让企业可预测未来的走向,帮助企业做到“未雨绸缪”。大数据的虚拟化特征,还将大大降低企业的经营风险,能够在生产或服务尚未展开之前就给出相关确定性答案,让生产和服务做到有的放矢。
在这方面,不得不提到的就是最近火爆的《纸牌屋》,它的剧集为什么会受到全球欢迎?有很大一部分原因就跟它前期依据大数据技术和思维方式所做的准备。
据称,《纸牌屋》的数据库包含了3000万用户的收视选择、400万条评论、300万次主题搜索。下一季剧情拍什么、谁来拍、谁来演、怎么播,都由数千万
观众的客观喜好统计决定。
4、帮企业做好运营
过去某一品牌要做市场预测,大多靠自身资源、公共关系和以往的案例来进行分析和判断,得出的结论往往也比较模糊,很少能得到各自行业内的足够重视。通
过大数据的相关性分析,根据不同品牌市场数据之间的交叉、重合,企业的运营方向将会变得直观而且容易识别,在品牌推广、区位选择、战略规划方面将做到更有
把握地面对。
对于大数据对企业运营的导航左右,梦芭莎集团董事长佘晓成深有感触,他不禁感慨“大数据让我们能够及时调整运营策略,现在的库存每季售罄率从80%提升到95%,实行30天缺货销售,能把30天缺货控制在每天订单的10%左右,比以前有3倍的提升。”
5、帮企业开展服务
通过大数据计算对社交信息数据、客户互动数据等,可以帮助企业进行品牌信息的水平化设计和碎片化扩散。经济学家Richard H.
Thaler曾经提出一种观点,“个人观点的微小变化都可以演变为所有人的群体行为模式的重大变革。”在这一重大变革的背景之下,对微小的信息流,企业都
必须重视,而客户服务为应对这种情况,也需要像空气一样分布在一些细枝末节之中。企业可以借助社交媒体中公开的海量数据,通过大数据信息交叉验证技术、分
析数据内容之间的关联度等,进而面向社会化用户开展精细化服务,提供更多便利、产生更大价值。
『伍』 大数据分析怎么做最好
数据分析是基于商业目的,有目的的进行收集、整理、加工和分析数据,提炼有价信息的一个过程。
其过程概括起来主要包括:明确分析目的与框架、数据收集、数据处理、数据分析、数据展现和撰写报告等6个阶段。
一、明确分析目的与框架
一个分析项目,你的数据对象是谁?商业目的是什么?要解决什么业务问题?数据分析师对这些都要了然于心。
基于商业的理解,整理分析框架和分析思路。例如,减少新客户的流失、优化活动效果、提高客户响应率等等。不同的项目对数据的要求,使用的分析手段也是不一样的。
二、数据收集
数据收集是按照确定的数据分析和框架内容,有目的的收集、整合相关数据的一个过程,它是数据分析的一个基础。
三、数据处理
数据处理是指对收集到的数据进行加工、整理,以便开展数据分析,它是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,也在一定程度上取决于数据仓库的搭建和数据质量的保证。
数据处理主要包括数据清洗、数据转化等处理方法。
四、数据分析
数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律,为商业目提供决策参考。
到了这个阶段,要能驾驭数据、开展数据分析,就要涉及到工具和方法的使用。其一要熟悉常规数据分析方法,最基本的要了解例如方差、回归、因子、聚类、分类、时间序列等多元和数据分析方法的原理、使用范围、优缺点和结果的解释;其二是熟悉1+1种数据分析工具,Excel是最常见,一般的数据分析我们可以通过Excel完成,后而要熟悉一个专业的分析软件,如数据分析工具SPSS/SAS/R/Matlab/Tableau/QlikView/大数据魔镜(国产)等,便于进行一些专业的统计分析、数据建模等。
五、数据展现
一般情况下,数据分析的结果都是通过图、表的方式来呈现,俗话说:字不如表,表不如图。。借助数据展现手段,能更直观的让数据分析师表述想要呈现的信息、观点和建议。。
常用的图表包括饼图、折线图、柱形图/条形图、散点图、雷达图等、金字塔图、矩阵图、漏斗图、帕雷托图等。
六、撰写报告
最后阶段,就是撰写数据分析报告,这是对整个数据分析成果的一个呈现。通过分析报告,把数据分析的目的、过程、结果及方案完整呈现出来,以供商业目的提供参考。
一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
另外,数据分析报告需要有明确的结论、建议和解决方案,不仅仅是找出问题,后者是更重要的,否则称不上好的分析,同时也失去了报告的意义,数据的初衷就是为解决一个商业目的才进行的分析,不能舍本求末。
『陆』 如何运用好大数据
1、获取全网用户数据
仅有企业数据,即使规模再大,也只是孤岛数据。还要互联网数据统合,才能准确掌握用户站内站外的全方位的行为,使得数据在营销中体现应有的价值。
2、让数据看的懂
采集来的原始数据难以读懂,因此还需要进行集中化、结构化、标准化处理,让“天书”转变为看得懂的信息。
3、分析用户特征及偏好
将第方标签与第三方那个标签相结合,按不同的评估唯独和模型算法,通过聚类方式将具有相同特征的用户化成不同属性的用户族群,对用户的静态信息、动态信心、实时信息分别描述,形成网站用户分群画像系统。
4、制定渠道和创意策略
根据目标群体的特征和分析结果,在计划实施前,对投放策略进行评估和优化。如宣和更适合的用户群体,匹配适当的媒体,制定性价比及效率更好的渠道组合,根据用户特征制定内容策略,从而提升用户人群的转化率。
『柒』 如何充分利用好大数据
就目前而言,几乎所有行业:医疗保健,制造业,金融业,零售业都在发生数字变化,而且这个名单还在继续。如果用好大数据可以预测好未来的发展,那么大家知道不知道如何充分的利用好大数据呢?这就需要建构一个新的结构,以及做好协作工作。
现在人工智能是很普及的,机器人亦是如此,在不久的将来,随着销售和客户服务的自动化,未来的发展重心将更高的价值放在人与人之间的互动上,当然,人们还会保持对提出服务的期望。这样才能够让自己的需求得到充分的满足。如果利用分析的强大功能去进行大数据分析,那么企业将能够对这些海量数据进行分析并分类,机器就会以惊人的速度从中学习。这样就能够获得极佳的发展方向。从而推动科技的发展。
用好大数据必须建构一个新结构
大数据的分析需要一个新的结构,虽然公司将拥有了比以往更多的数据,但是要想进行大数据的分析,就需要重新考虑企业的结构,现如今,随着公司适应技术不断变化,转型的速度将推动现代企业模式的发展。企业必须开始以反向思维的方式运转,不能够继续使用新的企业结构。
当然,企业还应该培养分析文化,这是最重要的一件事情,企业培养分析文化就需要舍弃传统的决策层次结构。这句是要求企业中的每个人都能够做出基于事实的决策的能力。如果询问一线员工,包括销售人员和生产车间员工,他们使用哪些数据做出决策。通过这些问题才能够让未来的发展路线变得更加通透。
对于那些扁平化企业结构并消除决策障碍的公司将变得更加敏捷,因此使得这类公司更具有竞争力。我们需要全面拆除企业结构中的某些局部结构,这种转变能够使企业运作发生了巨大变化。使得企业有一个比较民主的氛围。
大数据的适应需要做好协作工作
传统的层次是公司的常态,但是并不是公司必须改变的唯一方面。对于扁平化的企业结构需要合作水平必须提高,必须培养共享协作的文化。这样才能够让公司更具有凝聚力。企业还应选择具有多学科背景的管理工作人员,并要求他们查看不相关的业务并借鉴想法。这将有助于鼓励合作并吸收新的和创新的想法。
要想发展这种文化的作用,需要确定如何平衡个人贡献与团队合作。如果每个团队成员没有平等的贡献,那么过于紧密地合作可能会导致个人的灵感流失。就个人而言,专业人士需要在个人安静的时间来完成工作。考虑到这些要素,理想的企业模式将能够加快决策速度,减少层级的监督,并产生一种重视个人贡献的协作工作环境。这样才能够让人们更加团结。
看完上述的内容,想必大家已经知道了如何充分利用好大数据了吧,大数据的使用需要建构一个新结构和做好协作工作,这样才能够充分使用大数据,才能够对未来做好精准预测。