⑴ 大数据分析对国网公司的好处优势有哪些
满足复工复产用电需求,保障区内外清洁能源消纳。
满足复工复产用电需求,根据负荷和用电量数据分析结果,国网华东分部统筹全网电力资源,在复工初期提前安排大量备用开机机组。通过准确分析用电需求走势,华东电网周均开机容量2月底迅速提升到复工初期水平的4倍,达到1000万千瓦以上,满足了复工复产用电需求。
保障区内外清洁能源消纳,面对负荷低位时期的新能源发电消纳挑战,国网华东分部应用大数据做好分析,在复工初期精准控制开机节奏。充分应用抽蓄机组双向调节,在腰荷时段光伏大发期间加大抽水力度,发挥燃机日内启停调峰优势,深挖潜力,增加新能源电力消纳空间。
⑵ 国家电网大数据应用 增强企业核心竞争力
国家电网大数据应用 增强企业核心竞争力
从构想到实践,从论证到试点,国家电网公司大数据应用已经驶向快车道。
在国家电网公司2014年工作会议上,公司党组明确提出,要强化数据分析,提升数据应用水平和商业价值。去年年底,国家电网公司在总结以往研究经验的基础上,正式启动了企业级大数据平台的设计研发和试点建设工作。经过近一年时间的试点实践,目前,大数据已经广泛应用于电网运行、经营管理以及优质服务三大领域,并取得显著成效。
大数据作为重要的战略资源已经在全球范围达成共识。2011年,一些国际组织便发布报告看好大数据;2012年开始,英国、法国、美国等国家相继启动了大数据发展规划。国内,以大数据为主导的信息化浪潮来势凶猛。去年3月,大数据被写入政府工作报告;今年8月,国务院印发《促进大数据发展行动纲要》,特别强调通过大数据的发展,提升创业创新活力和社会治理水平;今年10月,十八届五中全会提出,实施国家大数据战略。如今,在城市建设、金融、电子商务、公共服务等领域,大数据的应用随处可见,并正在改变着各行各业。一个大数据的时代已然来临。
机会在敲门
抓住了机遇,等于成功了一半。对于大数据而言,也是如此。
近年来,移动互联网异军突起,加快了信息化向经济社会各个领域的延伸,形成了独特的产业竞争优势。中国信息通信研究院近期发布的《2015年中国大数据发展调查报告》预测,今年中国大数据市场规模将达到115.9亿元,增速达38%;预计2016年至2018年中国大数据市场规模还将维持40%左右的高速增长。
在前不久结束的云栖大会上,阿里巴巴集团董事局主席马云说,在未来,计算能力将会成为一种生产能力,而数据将会成为最大的生产资料,会成为像水、电、石油一样的公共资源。马云认为,人类已进入DT(大数据)时代,数据取代了石油成为最核心的资源。
国家电网公司信息通信部主任王继业认为,不可否认,大数据会逐步为人类创造更多的价值,而对于电网企业来说,研究和应用大数据是提质增效和推动电网发展方式、公司发展方式转变的迫切要求。
公司“三集五大”体系和坚强智能电网建设,积累了体量大、类型多、价值高、速度快等典型大数据特征的运营数据,具备了推广大数据应用的基础条件。
来自国网智能电网研究院的数据显示,截至去年年底,公司管理结构化数据49.75TB,非结构化数据213TB,营销基础数据130TB,用电信息采集数据达43TB,且公司信息化数据平均每天以10TB的速度增长。
“公司的生产管理和营销系统已达到几百PB级数据规模,开展大数据关键技术的研究、验证和应用,构建新型电网企业运营体系,有助于增强价值创造力和核心竞争力。”国网江苏省电力公司副总工程师王海林强调说。
国网江苏电力作为公司大数据应用的试点单位之一,在今年夏天便尝到了大数据的“甜头”。
国网江苏电力以用户信息采集数据为样本,开展负荷预测工作。王海林说:“今年4月份,我们用大数据预测8月6日将迎来今年最大负荷值8440万千瓦,实际上在8月5日出现了最高负荷值8480万千瓦,预测准确率99.53%。”
作为国网公司大数据研究和实施的主要牵头部门的负责人,王继业对这样一个预测结果感到格外高兴。“预测之初我们心里也是有疑问的,毕竟没有经验可以借鉴,但最后结果这么精准,证明我们具备和掌握了大数据在负荷预测方面的理论基础以及数据分析挖掘的能力。”
同样,国网客户服务中心也感受到了大数据的威力。目前,客服中心日均处理话务请求量35万余件。为进一步提高人工服务接通率,减少客户的等待时间,客服中心依托大数据技术,建立了“实时话务展现及预测”“基于故障事件用户感知度的主动服务”等场景应用,工作效率显著提升。例如,通过应用实时话务展现及预测场景,人工服务接通率提升了8%左右,服务效率和效果进一步得到优化。
大数据的优势不仅仅体现在服务公司内部,在支持新能源接入、提高新能源发电功率和电力负荷预测的精度、提升新能源协调控制水平和综合能源服务能力等方面也大有作为。
王继业认为,大数据是智能电网的核心,而智能电网又是全球能源互联网发展的重要组成部分。随着大数据深入应用,将促使公司的决策从“业务驱动”转变为“数据驱动”,进一步提升管理的效率和效益,同时,充分利用这些基于电网的数据,深入分析后将挖掘许多高附加值的服务,有利于电网安全检测与控制,客户用电行为分析与客户细分,电力企业精细化运营管理等,提升公司管理效益、经济效益以及社会效益。
“不论从外部环境而言还是企业自身发展需要,大数据不是用不用的问题,而是顺势潮流,必须要用。”王继业感慨道。他说,自己从事电力通信行业20多年,行业变化如此之大,今天和过去已经不可同日而语。“数据表面看是信息,但提炼分析后就能找出相关联的规律,再借助各种工具分析规律就变成了决策。大数据的内容很丰富,可以利用的领域很多,它是一个巨大的市场,抓住了大数据就意味着占据了大市场。”
准备好了吗
纵观全球大势,大数据浪潮席卷而来。作为世界上最伟大的科技成果之一,大数据已经成为推进产业变革和重塑产业竞争力的重要力量。顺势而为、乘势而上,无疑是大数据时代下最核心的命题。
国网公司的大数据具有量大、分布广、类型多等特点,背后反映的是电网运行方式、电力生产方式以及客户消费习惯等信息,这些珍贵的数据如果能挖掘分析好也就释放了大数据真正的价值。例如,用大数据分析新增用电客户数量与地区经济发展之间的关系;从电力消费情况看宏观经济趋势等。
中国电力科学研究院技术战略研究中心高级工程师邓春宇认为,大数据好比是一个金矿,但是,想挖出金子也并非易事,“做大数据是非常考验智慧的”。
数据存储无疑是挖掘大数据“金矿”的一个重要内容。存储是大数据的核心,特别是大数据时代对应用需求复杂,对存储的要求也更高。事实上,随着智能电网建设深入,信息采集点越来越多,在一些配电和数据中心的采集点达到百万甚至千万级。目前这些数据大多采用关系型数据库进行存储,随着智能化的不断提升,对数据库处理能力、存储空间、查询能力等方面的要求会更高。与此同时,随着公司信息化建设不断深入,业务系统产生的数据量呈爆发式增长,部分业务系统面临存储升级成本较高、系统响应速度较慢等问题。
针对这些问题,一方面公司对业务系统数据现状进行详细分析,针对数量庞大的历史数据,基于大数据平台开展历史数据归档,不断提升系统访问效率,节约系统存储成本;另一方面,针对业务系统架构进行分析,在可能引起系统访问瓶颈的地方引入大数据技术加以解决。
安全性则是挖掘电网大数据价值的另一个不容忽视的方面。电网的大数据由于涉及众多电力用户的隐私,且地域覆盖范围极广,安全问题较为突出。王继业表示,公司的大数据将按照分级管理的原则,同步规划、同步设计、同步投入运行,并根据数据的重要性以及共享程度,确定哪些是可以开放的,哪些是需要逻辑强隔离使用,从而保证在云基础上数据系统的安全性。
此外,国网能源研究院管理咨询研究所高级研究员孙艺新认为,在安全保障的情况下,利用好大数据还要以电力能源价值链延伸为主线,实现业务价值链向电网外部延伸。一方面,在电力供给、需求、客户负荷特征等数据分析基础上,注重对用户的数据挖掘与价值发现。利用大数据技术,在需求侧管理、家庭能源管理、节能服务、智能家居、95598客户服务等业务中拉近公司与用户的距离,挖掘用户行为的特点;另一方面,由支撑内部管理转向提供外部服务,将数据资产作为一项产品或服务进行变现。
王继业认为,大数据应用有需要继续深化的方面,包括怎样实现内部与内部、内部与外部之间的数据融合,减少壁垒;如何建立一支具备信息化、电力、数据分析能力的复合型人才队伍等。作为一项新生事物,大数据处于不同的发展阶段研究思考的内容也不同。“只有发现问题才有助于解决问题,引导我们走向正确的路径。”
经过反复研究探索和试点,目前,公司大数据的价值正逐渐凸显。例如,公司采用大数据技术,对线损、电量等经营指标进行在线监测和分析。目前,已在部分省(自治区、直辖市)公司进行应用。另外,在今年春节前后30天时间,公司对部分省(自治区、直辖市)公司、333个地市公司共2.75亿用电客户、145亿条用电信息等数据,应用大数据分析方法,分别从用电类别、电网负荷、优质服务等角度,对春节用电情况进行了分析,形成11余万条分析结果。“通过大数据整合人口、经济、用电等数据,可以准确反应区域经济发展和用电客户的消费习惯,将极大地丰富电力增值服务内容。”孙艺新表示。
大幕已经开启
“目前,公司大数据研究和试点工作已经取得阶段性成果,但这并不意味着公司大数据的研究应用画上了圆满的句号,相反,大数据正处于进行时,未来我们要做的工作还有很多。”王继业强调。
9月14日,公司发布信息通信新技术推动智能电网和“一强三优”现代公司创新发展行动计划,强调要加快构建各专业共享的企业级大数据平台,积极开展大数据应用场景设计,用好大数据,充分发挥数据价值。
立足公司的发展战略,未来公司大数据的运用前景光明。“当前,中央提出实施国家大数据战略,公司又正处于构建全球能源互联网的新征程中,信息化的任务繁重。利用好大数据,挖掘大数据的价值,推进大数据在公司系统的广泛应用,是构建全球能源互联网的重要保证。”王继业说。
目前,公司已经建成了覆盖总部和省公司统一的大数据平台。随着国网山东、上海、江苏、浙江、安徽、福建、四川电力和客服中心等试点单位的企业级大数据平台上线试运行。电网业务数据在总量和种类上都已初具规模,接下来的关键就是要做好大数据的各项分析。
当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。
随着信息化建设推进以及新能源发展,下阶段各专业会涌现更多大数据应用需求,包括公司大数据和其他行业数据的关联性、与经济社会发展之间的关系等。公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,从而实现立足数据提供运维服务,创造数据增值价值,进一步推动电网发展方式和公司发展方式转变,为公司构建全球能源互联网,推动实施国家大数据战略,提供更有力、更长远的支撑。
以上是小编为大家分享的关于国家电网大数据应用 增强企业核心竞争力的相关内容,更多信息可以关注环球青藤分享更多干货
⑶ 浅析电力行业如何拥抱大数据
浅析电力行业如何拥抱大数据
未来社会发展将会是大数据的时代,数据的意义已经不仅仅是记录,而是一种能源,一种潜力巨大、影响深远的能源。2015年8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,特别强调通过大数据的发展,提升创业创新活力和社会治理水平。大数据正在改变着各行各业,同样,大数据在电力行业也得到广泛的应用。
电力行业如何拥抱大数据 打破数据壁垒
近年来,在电力领域大数据已经得到了广泛关注,国内的一些专业机构和高校开展了电力大数据理论和技术研究,我国电力行业也在积极开展大数据研究的应用开发,电网企业、发电企业在电力系统各专业领域开展大数据应用实践,国家电网公司启动了多项智能电网大数据应用研究项目。
智能电网是解决能源安全和环境污染问题的根本途径,是电力系统的必然发展方向;全球能源互联网则是智能电网的高级阶段,“互联网+智慧能源”进一步丰富了智能电网的内涵;这些新概念均与大数据密切相关,大数据为智能电网的发展和运营提供了全景性视角和综合性分析方法。就物理性质而言,智能电网是能源电力系统与信息通信系统的高度融合;就其规划发展和运营而言,智能电网离不开人的参与,且受到社会环境的影响,所以智能电网也可被看作是一个由内、外部数据构成的大数据系统。内部数据由智能电网本身的系统产生,外部数据包括可反映经济、社会、政策、气候、用户特征、地理环境等影响电网规划和运行的数据。在智能电网的发展过程中,大数据必将发挥越来越重要的作用。
但是从目前来看,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。
业内称电力行业拥抱大数据,急需推动电力企业间的数据开放共享,建设电力行业统一的元数据和主数据管理平台,建立统一的电力数据模型和行业级电力数据中心,开发电力数据分析挖掘的模型库和规则库,挖掘电力大数据价值,面向行业内外提供内容增值服务。
协调发展智慧电力、智能电网和智慧城市。电力大数据是智慧城市的基石,紧密围绕智能电力系统的发展开展电力大数据的应用实践。以重塑电力核心价值、转变电力发展方式为主线,未来必将实现智能电网与互联网的深度融合:将与城市的电、热、气、水和交通系统实现交互,把电能与供热、供水、供气以及交通系统进行互联互通,形成城市互联网,通过城市互联网技术来进行整合,比如给家庭、社区、工业园区、企事业单位、医院、学校提供一揽子能源解决方案,解决它的水、电、气、油甚至包括污水处理、垃圾处理、暖气供应、冷气供应,整个能源资源的成套解决方案,是人性化、智能化甚至量身定制的解决方案。
案例分析:电力行业如何拥抱大数据
以电力大数据的先行者——AutoGrid为例
1、正确姿势
AutoGrid的核心为其能源数据云平台——EnergyDataPlatform(EDP),创造了电力系统全面的、动态的图景。
类似于高级搜索引擎或天气预报算法,AutoGrid的能源数据平台挖掘电网产生的结构化和非结构化数据的财富,进行数据集成,并建立其使用模式,建立定价和消费之间的相关性,并分析数以万计的变量之间的相互关系。通过该能源数据平台EDP,公共事业单位可以提前预测数周,或只是分,秒的电量消耗。大型工业电力用户可以优化他们的生产计划和作业,以避开用电高峰。同时,电力供应商可使用该能源数据平台EDP来决定可再生资源,如太阳能,风能的并网,最大限度地减少这些能源间歇性对电网的影响。
DROMS(,需求响应优化及管理系统)为AutoGrid的需求响应管理工具。DROMS从已存在的AMI系统、有线网关、建筑管理系统以及数据采集与监控(SCADA)系统获得实时数据,结合配电系统的物理特性,基于机器智能,分析产生对单一负载的精确预测,在需求响应要求产生之前介入,迅速生成针对某一需求响应的应对策略。除此之外,对甩负荷要求及价格信号亦能有及时准确的反应。
2、优化需求管理
当需求侧管理日益成为电力运营的一个重要部分时,电力大数据的应用也变得日益重要。通过电力大数据的采集、分析及应用,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。
AutoGrid的客户覆盖发电端、输电端、配电端、用户,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。AutoGrid的能源数据云平台EDP,收集并处理其客户接入智能电网的智能电表、建筑管理系统、电压调节器和温控器等设备的数据,面向其用电客户提供DROMS,获取能量消耗情况,预测用电量,结合电价信息实现需求侧响应,生成需求侧管理项目的分析报告,提升客户全生命周期的价值收益;面向电网运营者提供DROMS,可提供需求响应应对策略,预测发电情况和电网动态负荷,预测电网运行故障,改善客户平均停电时间和系统运营时间,从而实现电网优化调度,减少非技术性损失,降低运营成本。
来自于ARPA-E项目的支持,AutoGrid还开发了一套软件来监测电力在电网中的流动,帮助公用事业公司更好地满足实时电力需求。在需求高峰期,公共事业公司可以让精打细算的消费者知道他们在能源领域是如何花费的或要求具有环保意识的消费者主动减少自己的能源消耗。从而公共事业公司可以更好地快速有效地管理对电网的需求和供给的波动。
由于在需求响应的突出表现,AutoGrid被美国NavigantResearch列为2014年度需求响应领军企业。
3、建立能耗图景
基于EDP和DROMS,AutoGrid可以为客户提供一个大规模的、动态的、不间断的、供能范围内的整体能耗图景。利用该能耗图景,公共事业公司可以可以实时“看”到本地区的能耗,以更好的进行电力控制。当数据不断被累积,AutoGrid就能提供秒前、分钟前甚至周前的用电预测,可以帮助电力企业客户实现不影响舒适度和生产率情况下的优化排产计划。因此,AutoGrid提供的不仅是能量消耗动态图,它提供的还是需求侧响应的应对方案。
以上是小编为大家分享的关于浅析电力行业如何拥抱大数据的相关内容,更多信息可以关注环球青藤分享更多干货
⑷ 大数据背景管理信息系统有哪些
大数据背景管理信息系统有腾讯纯孝分析、阿里云大数据、国家电网智能化管理信息系统。
1、腾讯分析:腾讯分析是腾讯公司推出的一款大数据分析工具,主要用于对社交媒体、电子商务、游戏等业务数据进行分析和挖掘,以帮助企业做出更好的决策。
2、阿里云大数据:阿里云大数据是阿里云推出的一整套大数据解决方案,包括数据存储、计算、分析和可视化等各个环节,能够满足企业在大数据管理和应用方面的需求。
3、国家电网智能化管理信息系统:国家电网智能化管理信息系统是丛裤液中国国家电网公司推出的一款大渗物数据管理和决策支持系统,主要用于电力系统的数据采集、存储、分析和决策支持。
⑸ 专栏 | 电力大数据应用模式与前景分析
本期,C君非常荣幸地邀请到了国家电网能源研究所的孙艺新老师。能源行业作为国民经济与社会发展的基础,不可避免地正在受到大数据的深刻影响。在下文中,孙艺新老师结合案例,系统分析了国外几种电力大数据应用案例,并分析了未来的应用前景,可供读者参考借鉴。
本文原载于《中国电力企业管理》,转载请联系作者获得授权。
大数据对打通业务壁垒、发现商业价值具有重要支撑作用,已为互联网、金融等拥有海量数据的企业在市场开拓、产品研发、客户服务等方面发挥了重要作用。电力大数据则是从能源领域为人们重新开启了认识世界、改造世界的大门。
电力大数据
人类从远古进化到现代,能源的每一次进步都带来了生产力的巨大飞跃。如今,能源革命与信息技术革命发生交汇,智能电网、新能源的快速发展与移动终端、物联网、云计算的迅速普及,将为各个产业带来巨大的商业价值。电力大数据不仅是大数据技术在电力行业的深入应用,也是电力生产、消费及相关技术革命与大数据理念的深度融合,将加速推进电力及能源产业发展及商业模式创新。
从商业模式创新来看,电力大数据的内涵包括以下三个方面:一是打破电力发、输、配、售不同阶段的数据壁垒,数据范围涵盖电力生产运营全过程;二是注重电力领域综合分析预测,对不同类型能源消耗、用电行为特征、电力供需形势、用电企业经营趋势等问题进行综合预判,能够显著提高电力生产消费预测的准确性与及时性;三是注重能源领域商业模式创新,充分挖掘能源数据价值,从信息服务、数据分析等方面为智慧城市、智能电网、智能家居等领域提供新的盈利模式。
电力大数据拓宽了电力行业乃至能源产业的广度与深度,给传统企业带来机遇与挑战。一方面,电力大数据能够对电力供给侧、需求侧进行有机整合与“跨界”应用,为创新商业模式与管理模式提供了机遇;另一方面,电力大数据使传统电力行业的边界变得模糊,使其自然垄断地位与路径依赖优势受到不同程度的颠覆与挑战。
国外电力大数据应用模式
目前,电力大数据理念尚处于逐步发展过程。从国外主要实践案例来看,已初步形成了三类应用模式。
以电力为中心的能源数据综合服务平台
该模式通过建立一个分析与应用平台,集成能源供给、消费、相关技术的各类数据,为包括政府、企业、学校、居民等不同类型参与方提供大数据分析和信息服务。该模式中,电网企业具有资金、技术、数据资源等方面优势,具备成为综合服务平台提供方的条件。
典型案例是美国德克萨斯州奥斯丁市实施的以电力为核心的智慧城市项目(见图1)。该项目以智能电网设备为基础,采集了包括智能家电、电动汽车、太阳能光伏等类型详细用电数据以及燃气、供水数据,形成一个能源数据的综合服务平台。
图1奥斯丁智慧城市项目商业模式示意图
该项目已在节能环保、新技术推广、研发测试等方面发挥了重要的平台服务支撑作用。一是在消费者能源管理方面,为居民能源消费、住宅节能、交通出行等提供优化建议,促进节能环保。例如,识别环保住宅的能耗降低比例可达27%;对居民太阳能电池板安装朝向进行优化,可使发电量增加49%等。二是为企业提供电动汽车、智能家电等产品开发与技术测试服务。例如,将电力数据与汽车里程、分时电价、油价数据结合,可提供电动汽车性能分析、充电站布局优化,并根据用户习惯确定最佳充电时间等服务。
为智能化节能产品研发提供支撑
该模式主要将电力大数据、信息通信与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式方案。以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等发挥作用。该模式中,电网企业不一定具备产品研发优势,但利用电力数据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。
该模式的典型案例是美国NEST公司研发的智能恒温器产品的商业模式(见图2)。该产品可以通过记录用户的室内温度数据、智能识别用户习惯,并将室温调整到最舒适状态。
图2NEST产品商业模式示意图
产品制造商、电力企业、用户三方形成共赢:作为产品制造商的NEST公司免费获得合作企业提供的部分电力数据,借此完善预测算法,并通过多种方式(恒温器设备、互联网、分析报告)展示分析结果;电力企业在智能恒温器支持下,改进需求侧管理,节约发电装机与调峰成本;用户使用产品自动控制房间温度,并节省用电费用。据报道,售价250美元的NEST恒温器每年可在电费和供热开支方面为家庭节省173美元,一年时间已节省了2.25亿千瓦时的能量,相当于2900万美元费用。
面向企业内部的管理决策支撑
电力大数据对能源企业自身同样具有重要价值。通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,可充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。对于电网企业,该模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。
该模式的典型案例是法国电力公司智能电表大数据应用(见图3)。法国电力在筹建大数据研究团队初期,选择用户负荷曲线为突破口,将电网运行数据与气象、电力消费数据、用电合同信息等进行实时分析,以更为准确地预测电力需求侧变化,并识别不同客户群的特点,通过优化需求侧管理,改进投资管理与设备检修管理,提升运营效率效益。其中通过优化需求侧管理,使电网日负荷率提高至85%左右,相当于减少发电容量1900万千瓦。
图3 法国电力大数据支撑内部决策应用示意图
电力大数据应用前景
未来电力大数据的应用前景主要是在已有模式的基础上,进一步发挥“粘合剂”与“助推剂”作用,推动能源产业探索建立具有“平台”特征的完整能源生态系统。“粘合剂”主要是指对其他企业的吸引力以及形成平台模式后的协同效应,“助推剂”主要是指对能源产业生产、消费革命以及企业发展转型的推动作用。
参照电商领域中的阿里集团,该公司成立以来逐渐形成了“数据”与“平台”良性发展的商业模式,收入主要来源于向卖家提供的互联网营销服务和从交易额中抽取的佣金。一方面,阿里通过淘宝、支付宝、余额宝等产品构建了完整的商业生态系统,吸引用户参与到平台中,并采集整理用户大数据;另一方面,阿里通过用户大数据的分析与挖掘,在电子商务、金融、交通、娱乐等不同领域中建立竞争优势,不断巩固壮大其商业生态系统。2013年,阿里集团的中国零售平台交易额达2480亿美元,营业收入493亿元,利润率高达45%。
电力大数据下的能源生态系统将为能源企业及相关产业提供一个数据采集、整理、分析、应用、共享、交易等为一体的平台,为参与方提供信息咨询、节能环保、产品研发、管理支撑等服务,为消费者提供节能降费服务及相关产品。可应用的领域包括智慧城市、智能电网、新能源、电动汽车。智能楼宇、智能家电、智能家居、移动终端等一系列相关产业。
电力企业在以电力大数据为基础的生态系统中占据主导地位,具有十分重要的作用。一方面,新一轮电力市场改革下,电力企业可以摆脱传统的盈利模式,通过挖掘大数据资源增强企业竞争力;另一方面,电力企业通过吸引社会资本及不同主体的参与,共建互利合作的商业环境,发挥电力大数据在智慧城市、智能家居中的重要支撑作用,提升相关企业的科技创新与可持续发展能力。
积极布局推进电力大数据应用
电力大数据对电力工业优化内外部资源、发展智能电网与构建全球能源互联网具有重要支撑作用,对电网企业创新商业模式、主导建立能源生态系统具有重要意义。电网企业需持续关注其发展动态,积极谋划布局。未来智能电网采集的数据将全面覆盖从主干网到配电网、区域用户和大用户微网,乃至家庭小用户局域网。在此背景下,传统数据存储、计算能力将产生瓶颈,必须运用大数据的采集、处理技术对当前SCADA系统、数据中心、分析预测系统进行全面升级与改造。
一是开展大数据应用的顶层设计工作。在企业集团层面建立大数据应用的组织协调机构,研究能源领域大数据与公司、电网发展的协同关系,并对其盈利模式、应用领域、合作机制及分工等全局性问题开展专项研究,在未来竞争领域中占据主动。
二是做好信息与技术储备工作。探索建立稳定、可靠的公司内外部数据获取渠道,以及数据共享机制;超前研究制定适用于大数据环境的技术处理方案,提升信息系统处理能力。
三是积极培育人才队伍,开展前期应用试点工作。在电网、产业、科研单位中组建大数据研发攻关团队,在安全、生产、经营等业务中开展应用试点探索。
⑹ 电力大数据的电力大数据技术
电力大数据技术满足电力数据飞速增长,满足各专业工作需要,满足提高电力工业发展需要,服务经济发展需要。电力大数据技术包括:高性能计算、数据挖掘、统计分析、数据可视化等。 数据挖掘技术是通过分析大量数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等等。 统计分析,常指对收集到的有关数据资料进行整理归类并进行解释的过程。 统计分析可分为描述统计和推断统计。
1、描述统计
描述统计是将研究中所得的数据加以整理、归类、简化或绘制成图表,以此描述和归纳数据的特征及变量之间的关系的一种最基本的统计方法。描述统计主要涉及数据的集中趋势、离散程度和相关强度,最常用的指标有平均数、标准差、相关系数等。
2、推断统计
推断统计指用概率形式来决断数据之间是否存在某种关系及用样本统计值来推测总体特征的一种重要的统计方法。推断统计包括总体参数估计和假设检验,最常用的方法有Z检验、T检验、卡方检验等 2012年7月10日,信通公司成功举办大数据开启智能电网新时代研讨会。本次研讨会作为公司大数据战略推进重要一环,总结公司大数据战略实施以来的重点工作,加深理解大数据对电力信息通信事业的意义,促进大数据生态环境建设,并展望公司及大数据未来发展方向。本次研讨会特别邀请了中国宽带资本基金董事长田溯宁博士、《证析》作者郑毅先生、浙江海盐供电局徐光年主任做专题演讲。
研讨会的成功举办,使大家进一步了解了大数据、信息通信技术在智能电网发展、未来科技发展的重要意义,同与会各位专家的交流也使大家开阔了视野、增长了知识。本次研讨会也标志了电力大数据战略将进入攻坚实战阶段,与会人员纷纷表示,要牢牢把握住电力信息通信引领智能电网飞速发展的宝贵机遇,以昂扬的斗志面对新的挑战! 2012电力行业信息化年会于2012年11月3-4日在北京举行。年会由中国电机工程学会电力信息化专业委员会、国网信息通信有限公司联合主办,南瑞集团国电通公司承办。国家电监会信息中心、国家电网公司信息化工作部、中国南方电网公司信息中心、中国电力建设集团公司信息中心、中国能源建设集团有限公司科技信息部以及各发电集团公司、各省电网公司信息部门等为会议的支持单位。
本次年会主题为“大数据与宽带中国”。“大数据”将给电力企业带来新一轮商业模式转变和价值创新,宽带中国战略更为电力信息化发展提速。来自国家电力监管委员会、国家电网公司、国网信息通信有限公司、辅业集团公司、发电集团公司、网省公司等单位的30多位专家和代表将围绕主题在年会上发言或演讲。
⑺ 大数据中心是干嘛的
大数据中心是国家电网数据管理的专业机构和数据共享、服务、创新闷察哪平台。以国家大数据中心为例,位于贵州的大数据库灾备中心机房内有一根网络虚拟专线。这条专线跨越北京与贵州之间的距离,实现了国家与贵州灾备中心数据的蚂码同步传输和异地备份。
中国大数据有八大节点和三大核心节点。中国网络的核心层由北京、上海、广州、沈阳、南京、武没肆汉、成都、西安等核心节点组成。
核心层的功能主要是提供与国际internet的互联,以及提供大区之间信息交换的通路。
核心节点之间为不完全网状结构。以北京、上海、广州为中心的三中心结构,其它核心节点分别以至少两条高速ATM链路与三个中心相连。