导航:首页 > 网络数据 > 中国古代大数据案例

中国古代大数据案例

发布时间:2023-09-12 11:56:49

① 关于大数据应用有什么例子

② 大数据有哪些具体的应用案例_大数据应用的典型案例

大数据有具体的应用案例还是很多的,比如:

1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

2.Tipp24AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态银颂的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。

3.沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。

4.快餐业的培搏键视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。

5.Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。

6.PredPolInc.。PredPol公司通过与洛杉矶和圣配巧克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。

7.TescoPLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。

8.AmericanExpress(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。

③ 大数据案例分析:中国的大数据在哪里

大数据案例分析:中国的大数据在哪里

近几年,大数据这个词突然变得很火,不仅纳入阿里巴巴、谷歌等互联网公司的战略规划中,同时也在我国国务院和其他国家的政府报告中多次提及,大数据无疑成为当今互联网世界中的新宠儿。那么大数据到底为什么这么火呢,难道它真的是从金星来?

现今的我们正处于时代转型中,让你意想不到的事情时常发生,就像富士、柯达胶卷这样的百年企业会被时代所淘汰,由于科技的发展与互联网的日益强大,数据将逐步取代旧事物,创造出新事物。这是一个不可遏制的发展趋势,也是人类进步的标志。

随着当下全球数据的增长已经到了一个高峰,数据的存储单位不断扩大,由此大数据的概念被重视,如何处理海量的繁杂数据就是这个时代转型的关键所在。

只是,大数据给大多数人的感觉是,专业性强,操作繁琐,完全属于“高大上”的技术。普通人应该怎么理解大数据?普通人又该怎么玩大数据呢?今天,本文就给大家分析一下,大数据到底是个什么鬼?

1、大数据引领生活

从硅谷到北京,大数据的话题正在被传播。随着智能手机以及“可佩带”计算设备的出现,我们的行为、位置,甚至身体生理数据等每一点变化都成为了可被记录和分析的数据。信息社会所带来的好处是显而易见的:每个人口袋里都揣着一部手机,每台办公桌上都放有一台电脑,每间办公室内都拥有一个大型局域网。但是,信息本身的用处却并没有如此引人注目。半个世纪以来,随着计算机技术全面融合社会生活,信息爆炸已经积累到了一个开始引发变革的程度,它不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。

大数据时代的生活令人神往,你对客观世界的认识更进一步,所做的决策也不再仅仅依赖主观判断。甚至对于你的一个习惯动作,你的一次消费行为,你的一份就诊记录,都在被巨大的数字网络串联起来。移动互联网风潮汹涌。大数据正悄悄包围着我们。甚至连着世界经济格局也在酝酿着巨大变革!

互联网时代,尤其是社交网络、电子商务与移动通信把人类社会带入了一个“PB”(1024TB)为单位的结构与非结构数据信息的新时代。通过云计算对大数据进行分析、预测,会使得决策更为精准,释放出更多数据的隐藏价值。数据,这个21世纪人类探索的新边疆,正在被云计算发现、征服。

2、大数据的经典案例

数据正在成为巨大的经济资产,成为新世纪的矿产与石油,将带来全新的创业方向,商业模式和投资机会。然而大数据真正的应用核心是预测。以前单纯依靠人类判断力的领域都会被计算机系统所改变甚至取代,运用大数据的处理与分析,为我们的生活创造出前所未有的可量化的维度。对我们而言,危险不再是隐私的泄露,而是被预知的可能性。下面跟大家分享两个非常经典的案例:

①中石油

客户挑战

▼销售情况无法检测

-销售队伍人员庞大,部门经理无法从庞大的销售数据了解到销售代表的销售业绩与KPI

-从宏观角度发现问题时,无法精确定位发生问题的原因

-无法从各个角度对整体的销售数据进行切片分析,拥有数据却非掌握数据

▼无法根据市场走势制定营销策略

-只能根据粗浅的数据进行感性的市场判断与决策,风险很大

-无法以数字化的方法对市场表现进行精确衡量,无法发现量价平衡的问题

-无法对市场下一步动向进行精确预测

解决方案

▼解决方案之全维度数据分析与挖掘

-时间、空间、维度、指标标准化,与业务强相关-联动分析、钻取分析、细节展示,多角度帮助深入挖掘问题,辅助决策-将智能分析结果通过QQ、微信、邮件、ERP写入等相关的方式通知用户,智能辅助决策


▼解决方案之综合市场指数

-算法独特的市场综合指数,数字化运营,不再拍脑袋决策-科学严谨的挖掘算法,精确衡量市场走势数据挖掘技术,预测未来

最终效果-销售代表业绩及潜力明晰

▼-销售代表业绩及潜力明晰、销售数据实时掌控整个销售团队中,成功获取:

1)销售代表的综合业绩最好者2)销售总额最高者3)毛利率额最高者4)具有潜力的销售代表

▼-数据化掌控,制定营销策略,总经理可以完成

1)从任意部门到各个大区、销售代表和代理商的下钻和上选分析2)实现多层次多维度数据的查询3)从庞大的数据中挖掘重点客户和潜在客户,从而制定营销策略

②沃尔玛的搜索

这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。

任何事情的发生,都会有蛛丝马迹的前兆表露出来。如果人们不去关注一支股票行情走势,就不会去买卖这支股票;如果人们不去询问某件商品的价格,也很难产生购买行为;如果没有闷热的天气,似乎就没有透心凉的大雨。关于地震前种种异象,更是被许多书籍、文章大肆渲染。

假定有一种技术可以记录下所有这些先兆,人们就获得了未卜先知的能力。利用大数据技术,能够广泛采集各种各样的数据类型,并进行统计分析,从而预测未来,大数据影响之深远,波及之广泛,远非一般的信息技术可比。大数据预测应该被利用到生活的方方面面,尤其是在预测地震,泥石流等等,拥有先进技术的目的,就应该是人类造福,它的意义也应该在此;否则,所以的创造都是无用功。

大数据的利用,可以重新定位生产商与供应商的关系;可以通过商品本身收集数据并传回制造商进行研究与开发;可以通过用户交互提高服务;当文字变成数据,不仅人可以用之阅读,机器也可用之分析……充分说明,第一,个人也好,公司也好,都需要与时俱进;第二,大数据的多样性有待于更全面的开发,更好地服务于人们的生活。

大数据时代开启了一场寻宝游戏,而人们对于数据的看法以及对于有因果关系向相关关系转化时释放出的潜在价值的态度,正是主宰这场游戏的关键。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

以上是小编为大家分享的关于大数据案例分析:中国的大数据在哪里的相关内容,更多信息可以关注环球青藤分享更多干货

④ 国内的数据挖掘,大数据应用的案例有哪些

1. 亚马逊的“信息公抄司”:果全球哪家袭公司从大数据发掘出了最大价值,截至目前,答案可能非亚马逊莫属。亚马逊也要处理海量数据,这些交易数据的直接价值更大。
作为一家“信息公司”,亚马逊不仅从每个用户的购买行为中获得信息,还将每个用户在其网站上的所有行为都记录下来

2. 谷歌的意图:果说有一家科技公司准确定义了“大数据”概念的话,那一定是谷歌。根据搜索研究公司comScore的数据,仅2012年3月一个月的时间,谷歌处理的搜索词条数量就高达122亿条。谷歌的体量和规模,使它拥有比其他大多数企业更多的应用大数据的途径。
3.塔吉特的“数据关联挖掘”:用先进的统计方法,商家可以通过用户的购买历史记录分析来建立模型,预测未来的购买行为,进而设计促销活动和个性服务避免用户流失到其他竞争对手那边。

⑤ 举例说明大数据在哪些方面发挥着重要作用

政府合理利用大数据,引导决策的将是基于实证的事实,政府会更有预见性、更加负责、更加开放。中国古代治国就已经有重数据的思想,如商鞅提出,“强国知十三数……欲强国,不知国十三数,地虽利,民虽众,国愈弱至削”。大数据时代,循“数”治国将更加有效。小数据时代,政府做决策更多依凭经验和局部数据,难免头痛医头、脚痛医脚。比如,交通堵塞就多修路。大数据时代,政府做决策能够从粗放型转向集约型。路堵了,利用大数据分析,可以得知哪一时间、哪一地段最容易堵,或在这一地段附近多修路,或提前预警引导居民合理安排出行,实现对交通流的最佳配置和控制,改善交通。
对于商家来说,大数据使精准营销成为可能。一个有趣的故事,是沃尔玛超市的“啤酒、尿布”现象。沃尔玛超市分析销售数据时发现,顾客消费单上和尿布一起出现次数最多的商品,竟然是啤酒。跟踪调查后发现,有不少年轻爸爸会在买尿布时,顺便买些啤酒喝。沃尔玛发现这一规律后,搭配促销啤酒、尿布,销量大幅增加。大数据时代,每个人都会“自发地”提供数据。我们的各种行为,如点击网页、使用手机、刷卡消费、观看电视、坐地铁出行、驾驶汽车,都会生成数据并被记录下来,我们的性别、职业、喜好、消费能力等信息,都会被商家从中挖掘出来,以分析商机。
大数据也将使个人受益。从生物学、医学上讲,以前生物学家只是通过对单个或几个基因的操控来观察其对生物体的影响,很难发现整体的关联。现在由于技术的发展,可以分析很多,如遗传信息、全体基因的表达量信息、蛋白质族谱信息、全基因组甲基化信息、表观遗传信息等。同时还有个人健康指标、病历、药物反应等数据。如果真能达成生物学上多维多向数据的有机融合,就能够把个人完整地描述出来,从而实现精准医疗的目的。
大数据时代,审核数据的真实性也有了更有效的手段。大数据的特征之一是多样性,不同来源、不同维度的数据之间存在一定的关联度,可以交叉验证。例如,某地的工业产值虚报了一倍,但用电量和能耗却没有达到相应的规模。这就是数据异常,很容易被系统识别出来。发现异常后,相关部门再进行复核,就能更有针对性地防止、打击数据造假。
数据是一种资源,但数据又跟煤、石油等物质性资源不一样。物质性资源不可再生,你用多了,别人就用少了,因而很难共享。数据可以重复使用、不断产生新的价值。大数据资源的使用是非恶性竞争的,共享的前提下,更能够制造双赢。从另一个角度来说,数据如果不被融合、联系在一起,也不能称之为大数据。

⑥ 大数据的历史

一、大数据的陷阱作文

李娜再度夺得大满贯,超越了张德培的华人大满贯纪录,非举国体制下的奇迹造就了举国的愉悦。

在总结李娜成功因素的时候,也再次看到了这样的言论:是大数据起到了重要的作用。但这次李娜夺冠,最靠谱的解释就是李娜在卡洛斯的帮助下大大提升了心理层面的战斗力。

在技术层面领先的前提下,李娜在整场比赛中克服了节奏问题,她具备了一颗冠军的心脏。2012年9月6日,代表亚洲网球至高水平的中国选手李娜在美国迎战名将小威廉姆斯。

当时,IBM公司在综合了美网过去8年的全部比赛数据之后,为参赛球员制定了“Keys to the march”的比赛制胜策略。李娜一方获得赢球的关键包括3个指标:1.一发得分率超过69%;2.4-9拍相持中得分利率要超过48%:3.发球局30-30或40-40时得分率要超过67%。

比赛结果是,李娜溃败。比赛结束后,IBM高调地宣布李娜仅仅完成了三项制胜策略中的项,而小威廉姆斯则完成了自己三项制胜策略中的两项。

于是,很多人就顺着IBM的思路问,李娜为什么不照着BM的策略去打球?其实,当当事人的主观愿望不积极的时候,大数据对他们来说不过是噪音而已。同样,数据也会因为主观意愿具有欺骗性。

我们很多时候都会被误导,认为大数据的作用是让历史提示未来。其实不然。

在网球这样的领域里,历史数据甚至常常会成为陷阱。有意思的是,在另一场女子网球比赛中,一位球员做到了IBM为其制定的三项指标中的两个,她却失败了。

而胜利的一方,只完成了一个指标。

二、大数据时代发展历程是什么

可按照时间点划分大数据的发展历程。

大数据时代发展的具体历程如下:2005年Hadoop项目诞生。 Hadoop其最初只是雅虎公司用来解决网页搜索问题的一个项目,后来因其技术的高效性,被Apache Software Foundation公司引入并成为开源应用。

Hadoop本身不是一个产品,而是由多个软件产品组成的一个生态系统,这些软件产品共同实现全面功能和灵活的大数据分析。从技术上看,Hadoop由两项关键服务构成:采用Hadoop分布式文件系统(HDFS)的可靠数据存储服务,以及利用一种叫做MapRece技术的高性能并行数据处理服务。

这两项服务的共同目标是,提供一个使对结构化和复杂数据的快速、可靠分析变为现实的基础。2008年末,“大数据”得到部分美国知名计算机科学研究人员的认可,业界组织计算社区联盟 (puting munity Consortium),发表了一份有影响力的白皮书《大数据计算:在商务、科学和社会领域创建革命性突破》。

它使人们的思维不仅局限于数据处理的机器,并提出:大数据真正重要的是新用途和新见解,而非数据本身。此组织可以说是最早提出大数据概念的机构。

2009年印度 *** 建立了用于身份识别管理的生物识别数据库,联合国全球脉冲项目已研究了对如何利用手机和社交网站的数据源来分析预测从螺旋价格到疾病爆发之类的问题。同年,美国 *** 通过启动://Data.gov网站的方式进一步开放了数据的大门,这个网站向公众提供各种各样的 *** 数据。

该网站的超过4.45万量数据集被用于保证一些网站和智能手机应用程序来跟踪从航班到产品召回再到特定区域内失业率的信息,这一行动激发了从肯尼亚到英国范围内的 *** 们相继推出类似举措。2009年,欧洲一些领先的研究型图书馆和科技信息研究机构建立了伙伴关系致力于改善在互联网上获取科学数据的简易性。

2010年2月,肯尼斯ž库克尔在《经济学人》上发表了长达14页的大数据专题报告《数据,无所不在的数据》。库克尔在报告中提到:“世界上有着无法想象的巨量数字信息,并以极快的速度增长。

从经济界到科学界,从 *** 部门到艺术领域,很多方面都已经感受到了这种巨量信息的影响。科学家和计算机工程师已经为这个现象创造了一个新词汇:“大数据”。

库克尔也因此成为最早洞见大数据时代趋势的数据科学家之一。2011年2月,IBM的沃森超级计算机每秒可扫描并分析4TB(约2亿页文字量)的数据量,并在美国著名智力竞赛电视节目《危险边缘》“Jeopardy”上击败两名人类选手而夺冠。

后来 *** 认为这一刻为一个“大数据计算的胜利。” 相继在同年5月,全球知名咨询公司麦肯锡(McKinsey&pany)肯锡全球研究院(MGI)发布了一份报告——《大数据:创新、竞争和生产力的下一个新领域》,大数据开始备受关注,这也是专业机构第一次全方面的介绍和展望大数据。

报告指出,大数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。

报告还提到,“大数据”源于数据生产和收集的能力和速度的大幅提升——由于越来越多的人、设备和传感器通过数字网络连接起来,产生、传送、分享和访问数据的能力也得到彻底变革。2011年12 月,工信部发布的物联网十二五规划上,把信息处理技术作为4 项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。

2012年1月份,瑞士达沃斯召开的世界经济论坛上,大数据是主题之一,会上发布的报告《大数据,大影响》(Big Data, Big Impact) 宣称,数据已经成为一种新的经济资产类别,就像货币或黄金一样。2012年3月,美国奥巴马 *** 在白宫网站发布了《大数据研究和发展倡议》,这一倡议标志着大数据已经成为重要的时代特征。

2012年3月22日,奥巴马 *** 宣布2亿美元投资大数据领域,是大数据技术从商业行为上升到国家科技战略的分水岭,在次日的电话会议中, *** 对数据的定义“未来的新石油”,大数据技术领域的竞争,事关国家安全和未来。并表示,国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力;国家数字 *** 体现对数据的占有和控制。

数字 *** 将是继边防、海防、空防之后,另一个大国博弈的空间。2012年4月,美国软件公司Splunk于19日在纳斯达克成功上市,成为第一家上市的大数据处理公司。

鉴于美国经济持续低靡、股市持续震荡的大背景,Splunk首日的突出交易表现尤其令人们印象深刻,首日即暴涨了一倍多。Splunk是一家领先的提供大数据监测和分析服务的软件提供商,成立于2003年。

Splunk成功上市促进了资本市场对大数据的关注,同时也促使IT厂商加快大数据布局。2012年7月,联合国在纽约发布了一份关于大数据政务的白皮书,总结了各国 *** 如何利用大数据更好地服务和保护人民。

这份白皮书举例说明在一个数据生态系统中,个人、公共部门和私人部门各自的角色、动机和需求:例如通过对价格关注和更好服务的渴望,个人提供数据和众包信息,并对隐。

三、大数据时代的产生背景

进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。

它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。 数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。

正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。”

四、大数据时代是什么意思

大数据时代:最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。

大数据提出的背景:进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。

数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。

哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。” (6)中国古代大数据案例扩展阅读 大数据影响 现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。 在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。

有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。

这些数据的规模是如此庞大,以至于不能用G或T来衡量。大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量)。

发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万…… 截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB) EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。

而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所有话的数据量大约是5EB。IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。

而到了2020年,全世界所产生的数据规模将达到今天的44倍。 每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。

然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。这样的趋势会持续下去。

我们现在还处于所谓“物联网”的最初级阶段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴”科技将能互相连接与沟通。科技的进步已经使创造、捕捉和管理信息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美元。

大数据的精髓 大数据带给我们的三个颠覆性观念转变:是全部数据,而不是随机采样;是大体方向,而不是精确制导;是相关关系,而不是因果关系。A.不是随机样本,而是全体数据:在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(随机采样,以前我们通常把这看成是理所应当的限制,但高性能的数字技术让我们意识到,这其实是一种人为限制); B.不是精确性,而是混杂性:研究数据如此之多,以至于我们不再热衷于追求精确度;之前需要分析的数据很少,所以我们必须尽可能精确地量化我们的记录,随着规模的扩大,对精确度的痴迷将减弱;拥有了大数据,我们不再需要对一个现象刨根问底,只要掌握了大体的发展方向即可。

适当忽略微观层面上的精确度,会让我们在宏观层面拥有更好的洞察力; C.不是因果关系,而是相关关系:我们不再热衷于找因果关系,寻找因果关系是人类长久以来的习惯,在大。

五、为什么大数据如此重要

大数据是一种现代云基础架构,它包含了多种与其他人连接和共享信息的方法。它推动了“物联网”的发展,如通过社交网站连接人、通过共享朋友或网络来寻找人们之间互相认识的可能性。大数据的背后运行着人工智能,而它对于大多数人而言是完全透明的,人们不知道背后有这样的技术。大数据位于人们日常使用的智能手机之后,然后人们通过它给移动互联网贡献信息,即使他们并没有意识到这一点。

为什么大数据如此重要?

第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

总结

在大数据时代到来的时候,要用大数据的思维去发掘大数据的潜在价值。大数据的意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。从前我们所了解的数据是冷冰冰的、死气沉沉的,被存到冷备份默默地等着人拿出来用,我们对待数据的感觉十分消极,要先想清楚其用处才开始分析应用。现在,数据时代来临了,人们正在试图点燃数据,使其变热,赋予生命。所谓“活数据”,是动态的数据,流通的数据,因互动而产生,因产生而互动,是自然演化的数据,要用大数据的思维去考虑这些数据怎样才能带来效益。未来大数据的发展前景非常好,与大数据相关的职业比如数据挖掘师,数据分析师等必定会有广阔的发展空间。

六、如何实现大数据量数据库的历史数据归档

这个问题是这样的:

首先你要明确你的插入是正常业务需求么?如果是,那么只能接受这样的数据插入量。

其次你说数据库存不下了 那么你可以让你的数据库上限变大 这个你可以在数据库里面设置的 里面有个数据库文件属性 maxsize

最后有个方法可以使用,如果你的历史数据不会对目前业务造成很大影响 可以考虑归档处理 定时将不用的数据移入历史表 或者另外一个数据库。

注意平时对数据库的维护 定期整理索引碎片

⑦ 什么是大数据,大数据的典型案例有哪些

随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:

“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。

⑧ 大数据应用案例有哪些

案例如下:

1、交通大数据畅通出行

交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。近年来,我国的智能交通已实现了快速发展,许多技术手段都达到了国际领先水平。交通的大数据应用主要在两个方面,一方面可以利用大数据传感器数据来了解车辆通行密度,合理进行道路规划包括单行线路规划。另一方面可以利用大活数据来实现即时信号灯调度,提高已有线路运行能力。

2、教育大数据因材施教

在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。利用数据来诊断处在辍学危险期的学生、探索教育开支与学生学习成绩提升的关系、探索学生缺课与成绩的关系。

3、环保大数据对抗PM2.5

在美国NOAA(国家海洋暨大气总署)其实早就在使用大数据业务。每天通过卫星、船只、飞机、浮标、传感器等收集超过35亿份观察数据。收集完毕后,NOAA会汇总大气数据,海洋数据,以及地质数据,进行直接测定,绘制出复杂的高保真预测模型,将其提供给NWS(国家气象局)做出气象预报的参考数据。


大数据特点

1、大容量

例如,IDC最近的报告预测到2020年,世界数据量将扩大50倍.目前,大数据的规模仍然是不断变化的指标,单一数据集的规模范围从数十TB到数PB不同.简单来说,存储1PB数据需要2万台配备50GB硬盘的PC.此外,各种意想不到的来源可以产生数据。

2、多样性

数据多样性的增加主要是由于网络日志、社交媒体、网络检索、手机通话记录、传感器网络等数据类型。

3、高速

高速描述的是数据创建和移动的速度.在高速网络时代,通过实现软件性能优化的高速计算机处理器和服务器,创建实时数据流已成为流行趋势.企业不仅要知道如何快速创建数据,还要知道如何快速处理、分析和返回用户,以满足他们的实时需求。

阅读全文

与中国古代大数据案例相关的资料

热点内容
线下活动数据分析有哪些 浏览:314
助听器插片式编程线如何连接 浏览:293
怎么删除系统休眠文件 浏览:914
搜索文件内容中包含的文字并替换 浏览:542
微信相册程序图标 浏览:714
win8怎么显示文件格式 浏览:547
文件服务器中毒 浏览:721
如何修改网站访问次数 浏览:518
mdfldf是什么文件 浏览:569
文件在桌面怎么删除干净 浏览:439
马兰士67cd机版本 浏览:542
javaweb爬虫程序 浏览:537
word中千位分隔符 浏览:392
迷你编程七天任务的地图怎么过 浏览:844
word2003格式不对 浏览:86
百度云怎么编辑文件在哪里 浏览:304
起名app数据哪里来的 浏览:888
微信怎么去泡妞 浏览:52
百度广告html代码 浏览:244
qq浏览器转换完成后的文件在哪里 浏览:623

友情链接