『壹』 我要怎么查大数据
凭借你的手机号,身份证号就可以查询自己的大数据了。
目前,一般网贷版平台常用的有三种征权信数据库。
网贷数据库,百行征信,央行征信。
网贷数据库一般统计不上征信的网贷,基本上不上征信的网贷都会上传到网贷数据库。
百行征信统计一些P2P网贷平台的借款数据信息。
央行征信只统计正规网贷的借款数据信息。
普遍来说,如果想要查询网贷数据报告,那么只需要查询网贷数据与央行征信即可。
网贷数据能够直接查看一些P2P网贷平台的数据,
可以在微信查找:米米数据。
该数据库与2000多家网贷平台合作,查询的数据非常精准全面。
能够查看到用户的申请次数,网贷数据,网黑指数分,命中风险提示,法院起诉信息,仲裁案件信息,失信人信息等数据。
其中,用户可以凭借网黑指数分来判断自身是否为网贷黑名单用户。
网黑指数分标准为:0-100分,分数越低,信用越好。
『贰』 如何获取大数据
问题一:怎样获得大数据? 很多数据都是属于企业的商业秘密来的,你要做大数据的一些分析,需要获得海量的数据源,再此基础上进行挖掘,互联网有很多公开途径可以获得你想要的数据,通过工具可以快速获得,比如说象八爪鱼采集器这样的大数据工具,都可以帮你提高工作效率并获得海量的数据采集啊
问题二:怎么获取大数据 大数据从哪里来?自然是需要平时对旅游客群的数据资料累计最终才有的。
如果你们平时没有收集这些数据 那自然是没有的
问题三:怎么利用大数据,获取意向客户线索 大数据时代下大量的、持续的、动态的碎片信息是非常复杂的,已经无法单纯地通过人脑来快速地选取、分析、处理,并形成有效的客户线索。必须依托云计算的技术才能实现,因此,这样大量又精密的工作,众多企业纷纷借助CRM这款客户关系管理软件来实现。
CRM帮助企业获取客户线索的方法:
使用CRM可以按照统一的格式来管理从各种推广渠道获取的潜在客户信息,汇总后由专人进行筛选、分析、跟踪,并找出潜在客户的真正需求,以提供满足其需求的产品或服务,从而使潜在客户转变为真正为企业带来利润的成交客户,增加企业的收入。使用CRM可以和网站、电子邮件、短信等多种营销方式相结合,能够实现线上客户自动抓取,迅速扩大客户线索数量。
问题四:如何进行大数据分析及处理? 大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。大数据的技术数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类(Classification)、估计(Estimation)、预测(Predic胆ion)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化......>>
问题五:网络股票大数据怎么获取? 用“网络股市通”软件。
其最大特色是主打大数据信息服务,让原本属于大户的“大数据炒股”变成普通网民的随身APP。
问题六:通过什么渠道可以获取大数据 看你是想要哪方面的,现在除了互联网的大数据之外,其他的都必须要日积月累的
问题七:通过什么渠道可以获取大数据 有个同学说得挺对,问题倾向于要的是数据,而不是大数据。
大数据讲究是全面性(而非精准性、数据量大),全面是需要通过连接来达成的。如果通过某个app获得使用该app的用户的终端信息,如使用安卓的占比80%,使用iPhone的占比为20%, 如果该app是生活订餐的应用,你还可以拿到使用安卓的这80%的用户平时网上订餐倾向于的价位、地段、口味等等,当然你还会获取这些设备都是在什么地方上网,设备的具体机型你也知道。但是这些数据不断多么多,都不够全面。如果将这部分用户的手机号或设备号与电子商务类网站数据进行连接,你会获取他们在电商网站上的消费数据,倾向于购买的品牌、价位、类目等等。每个系统可能都只存储了一部分信息,但是通过一个连接标示,就会慢慢勾勒出一个或一群某种特征的用户的较全面的画像。
问题八:如何从大数据中获取有价值的信息 同时,大数据对公共部门效益的提升也具有巨大的潜能。如果美国医疗机构能够有效地利用大数据驱动医疗效率和质量的提高,它们每年将能够创造超过3万亿美元的价值。其中三分之二是医疗支出的减少,占支出总额超过8%的份额。在欧洲发达国家, *** 管理部门利用大数据改进效率,能够节约超过14900亿美元,这还不包括利用大数据来减少欺诈,增加税收收入等方面的收益。
那么,CIO应该采取什么步骤、转变IT基础设施来充分利用大数据并最大化获得大数据的价值呢?我相信用管理创新的方式来处理大数据是一个很好的方法。创新管道(Innovation pipelines)为了最终财务价值的实现从概念到执行自始至终进行全方位思考。对待大数据也可以从相似的角度来考虑:将数据看做是一个信息管道(information pipeline),从数据采集、数据访问、数据可用性到数据分析(4A模型)。CIO需要在这四个层面上更改他们的信息基础设施,并运用生命周期的方式将大数据和智能计算技术结合起来。
大数据4A模型
4A模型中的4A具体如下:
数据访问(Access):涵盖了实时地及通过各种数据库管理系统来安全地访问数据,包括结构化数据和非结构化数据。就数据访问来说,在你实施越来越多的大数据项目之前,优化你的存储策略是非常重要的。通过评估你当前的数据存储技术并改进、加强你的数据存储能力,你可以最大限度地利用现有的存储投资。EMC曾指出,当前每两年数据量会增长一倍以上。数据管理成本是一个需要着重考虑的问题。
数据可用性(Availability):涵盖了基于云或者传统机制的数据存储、归档、备份、灾难恢复等。
数据分析(Analysis):涵盖了通过智能计算、IT装置以及模式识别、事件关联分析、实时及预测分析等分析技术进行数据分析。CIO可以从他们IT部门自身以及在更广泛的范围内寻求大数据的价值。
用信息管道(information pipeline)的方式来思考企业的数据,从原始数据中产出高价值回报,CIO可以使企业获得竞争优势、财务回报。通过对数据的完整生命周期进行策略性思考并对4A模型中的每一层面都做出详细的部署计划,企业必定会从大数据中获得巨大收益。 望采纳
问题九:如何获取互联网网大数据 一般用网络蜘蛛抓取。这个需要掌握一门网络编程语言,例如python
问题十:如何从网络中获取大量数据 可以使用网络抓包,抓取网络中的信息,推荐工具fiddler
『叁』 大数据分析中的数据来源渠道有哪些
在分析上市公司会计报表反映其财务及经营成果和现金流量情况的真实程度时,我们首先版需要收集大量的公权开信息资料。
这些信息资料可以分为两大类:
一类是上市公司历年公布的年度报告、中期报告、季度报告、董事会公告和其他公告;另一类是政府部分公布的统计数据和报告。
这些信息资料的主要来源是报刊杂志和因特网。
『肆』 企业如何选择适合自己的大数据平台
这个的话我就不太清楚了,因为我们公司选择的数据平台都是经经过其他的人员然后选择的,再加上我也不是那一方面的人才,所以说我也不太了解。
『伍』 大数据挖掘的渠道有哪些那些方法比较精准
大数据挖掘是指多渠道的客户信息收集,常用的方法有以下:
qq群挖掘(根据你的产品建立出多个关键词去查找相应精准的群从群成员里面挖掘)。
qq公众号(建立一个qq公众号平台,每天发有意义或者客户感兴趣的内容去吸引qq用户的关注)。
qq空间访客挖掘(当客户知道你是在某个行业的领域进你空间是不排除对你的产品感兴趣的,相对的访客我们可以提取出来)。
微信公众号(确立一个公众号,每天或者规定的时间段发布杂志、漫画、笑话、生活健康常识等内容吸引用户的关注和传播)。
漂流瓶(qq和微信都可以使用漂流瓶,但是常用的是微信的漂流瓶,发出心情,产生互动,挖掘新客户)。
自媒体平台的挖掘,比如微博、网络贴吧、社区等等。
精准客户的挖掘可以从以下渠道去挖掘:
1.转介绍法:就是让忠实你品牌的客户去感化他身边的人,从而套取信息,在实施相应的营销手段,道理很简单朋友说的话总比广告强很多。
2.了解客户的品牌,销售渠道,产量,从而找出客户的不足与缺陷,最后给客户找出解决的方法,再进行邀约谈话。
『陆』 什么是数据收集的两大重要渠道
数据收集的重要渠道,
主要是三个。
分别是物联网系统、Web系统和传统信息系统,所以数据采集主要的渠道就是这三个。
物联网的发展是导致大数据产生的重要原因之一,物联网的数据占据了整个大数据百分之九十以上的份额,所以说没有物联网就没有大数据。物联网的数据大部分是非结构化数据和半结构化数据,采集的方式通常有两种,一种是报文,另一种是文件。在采集物联网数据的时候往往需要制定一个采集的策略,重点有两方面,一个是采集的频率(时间),另一个是采集的维度(参数)。
Web系统是另一个重要的数据采集渠道,随着Web2.0的发展,整个Web系统涵盖了大量的价值化数据,而且这些数据与物联网的数据不同,Web系统的数据往往是结构化数据,而且数据的价值密度比较高,所以通常科技公司都非常注重Web系统的数据采集过程。目前针对Web系统的数据采集通常通过网络爬虫来实现,可以通过Python或者Java语言来完成爬虫的编写,通过在爬虫上增加一些智能化的操作,爬虫也可以模拟人工来进行一些数据爬取过程。
传统信息系统也是大数据的一个数据来源,虽然传统信息系统的数据占比较小,但是由于传统信息系统的数据结构清晰,同时具有较高的可靠性,所以传统信息系统的数据往往也是价值密度最高的。传统信息系统的数据采集往往与业务流程关联紧密,信息系统的数据采集工具也发展很迅速,未来行业大数据的价值将随着产业互联网的发展进一步得到体现。