① 数据科学与大数据技术专业怎么样学成之后可以从事的职业有哪些
随着电子技术和信息科学的发展,近两年每个网民都有机会在社交媒体发出自己的声音,留下海量的信息。人类生产信息的速度可谓风驰电掣,每两年就会增长一倍,近两年产生的数据总量相当于人类有史以来所有数据量的总和。科研领域、企业运营及日常生活中的数字、文字、图像、音频都是数据,大数据的处理速度快、价值密度低、商业价值高。拥有海量数据的国家或企业如果能合理地解释运用这些数据,就会增强自身的竞争力。大数据专业就在这样的背景下应运而生,很多学校看到该领域的前景,竞相申请设立数据科学与大数据技术专业。今天小编将带你深入了解数据科学与大数据技术专业。
扎实的数学功底
由课程设置可以看出本专业对学生的数学基础有一定要求,通识课部分就设置了三门数学课,学科基础课依然有离散数学,数字逻辑与数学系统。建议想报考的同学提前观看一些入门课程,客观评估自己的数学能力。盲目报考无益于个人发展,会造成挂科过多、学习压力过大、就业困难等不良后果。
有耐心有毅力
大数据专业和计算机专业比较像,是注重实践的专业。学生需要独立编写程序,对程序进行修改与调试,需要注意每一个细节才能顺利查错并运行程序。有耐心有毅力的学生显然更能坐的住,心浮气躁的学生则需要一番磨练才能成功。
自主学习能力强
一般情况下,大数据专业无法向学生传授大数据核心技术之外的知识技能,如果学生需要进入全新领域去实习就业,就必须要迅速掌握新领域的相关知识。假如学生到金融行业从事数据挖掘工作,就必须对金融产品及用户有所了解。
该专业毕业生的发展工作
毕业生就业主要集中在一线城市,毕业于985院校的毕业生常常被各大企业一抢而空,就业行业以互联网、金融、通信、教育、文化娱乐、电子商务等行业为主。薪资待遇令人羡慕,即使是刚毕业的学生,平均月薪就在12000-15000之间,工作3-5年比较有经验的人可以拿到20-35k的月薪。
考研
主要方向有:计算机科学与技术、计算机系统结构、计算机软件与理论、计算机应用技术、科学与信息技术(清华、北大、复旦、北京航空航天大学等少数学校开设)。
留学
该专业留学首推美国。国外的大学设置了数据科学专业,数据科学就是从数据中提取信息知识,是数据挖掘与预测分析的延伸,亦是发掘知识与数据的过程。所以,数据科学专业不仅包含了大数据也包含了数据分析。推荐学校有:哥伦比亚大学、加州大学伯克利分校、斯坦福大学、麻省理工学院、卡耐基梅隆大学等。
② 大数据和数字化转型
企业致力于收集和存储大量数据,但通常只分析其中的一小部分。他们发现数据是新的货币,因为数据中隐藏着很多价值。他们正在利用数据科学和大数据分析工具从其“数据宝库”中提取价值。这有助于他们进行数字化转型。一些组织在这方面取得了巨大的成功,并不断创新、获得市场份额、增加价值(例如Amazon、谷歌、Facebook等公司),而其他公司也在努力效仿。
麦肯锡全球研究院于2011年5月发表了一篇开创性论文,名为“大数据:创新,竞争和生产力的下一个前沿”,使得大数据和分析开始引起人们的关注。根据谷歌公司的趋势分析(它提高了人们对关键词的搜索兴趣),大数据和分析热潮在2016年6月达到了顶峰。而云计算一直持续受到人们的高度关注,因为越来越多的企业继续实施云计算技术,以提高业务灵活性、运营弹性、改进性能,以及更高的效率。
数字化转型需要在组织层面上发挥作用,并将成为一种永久的运营方式。
人们可能会想知道,在大数据和分析达到发展顶峰之后将会变成什么样子。只要所公布的客户调查、供应商利益、分析师报告、收入来源等资料具有价值,那么企业都将采用大数据和分析来获取。调研机构Gartner公司2016年进行的一项调查报告表明,在过去五年中,企业对大数据和分析的投资一直在不断增长,但对其未来投资的兴趣似乎有所下降。这可能是由于这些投资获得实际收益的一种停顿。而Gartner公司的另一份调查报告显示,只有大约12%的大数据项目取得了可衡量的成果。然而,社交媒体、物联网(IoT)、智能手机、移动设备、游戏装备、可穿戴设备、传感器、无人机、远程监控器、精密医疗、精准农业、智能城市、智能建筑、自动驾驶汽车、远程控制车辆等技术将产生大量需要收集、汇总和分析的数据,以做出有用且有价值的决策。
而使用传统方法和系统来人工分析数据是不可能的。来自大数据和分析的潜在价值每年达到数十亿美元。这被认为是一个保守的估计。因为麦肯锡公司2011年进行的调查报告仅仅占据了大数据潜在价值的一小部分。只有基于位置的数据的采用率和价值捕获率高达50%-60%,其次是美国零售业,达到30%-40%,制造业占20%-30%,美国医疗保健行业为10%-20%,欧盟公共部门为10%-20%。因此,大数据和分析的兴趣和投资在几乎所有行业都会增加,以捕捉大数据中隐藏的价值。预计在未来几年中企业对云计算的大数据会持续产生兴趣。
数据安全
随着越来越多的数据被收集、汇总、分析,并用于做出影响人们生活的决策,数据安全性成为人们最为关切的问题。数据治理需要处理从不同来源收集的数据高峰以及管理这些数据元素所涉及的风险的中心阶段。美国联邦、州、市和地方政府机构以及其他非营利性公共服务组织需要符合严格的保密性、完整性和可用性(CIA)规则,并且还要提供良好的治理、满足合规要求和管理风险(GCR)。
人们一个常见的误解是,组织需要从不同来源收集的大量结构化和非结构化数据,包括外部来源(需要验证和风险评估)来开始分析。企业不需要大量数据来启动分析项目。可以从已有的“黄金标准数据”开始,并考虑单独使用这些数据或将其与其他内部数据集结合使用,以解决业务问题作为向决策者购买的概念证明的可能性。企业可以尝试和分析以前没有查看的不同变量,以确定相关性、因果关系和预测因素,谨慎发现,并避免重合。这是行业领域知识和专业知识发挥作用的地方。利用可用且经济实惠的计算能力、存储和网络容量,企业可以轻松地分析更多数据,以查看隐藏在数据中的模式和概率。基于业务需求,分析可用于描述性、诊断性、预测性、规定性的目的。物联网、传感器、操作技术、设备维护、精密医疗、电网、航运、物流、执法和精准农业正在越来越多地利用上述不同类型的分析来处理一个或多个业务问题,或根据需要来提供解决方案。
大数据的需求
大数据对不同的人意味着不同的事物。不同的IT分析师、商业领袖、顾问、学术研究人员、标准组织已经根据他们的观点定义了大数据,其中包括数量、速度、品种、准确性、复杂性等因素。虽然在大数据方面没有明确的共识,他们现有的能力在人员、过程和技术方面的处理能力太大了。就大数据和分析而言,人员是最难的部分。存在组织惯性、缺乏决策者的支持,以及难以找到正确理解分析的数据和业务领域的数据科学家等问题。同样,大数据分析师也很缺乏。世界各地的许多高校或认证机构都在提供数据科学和分析方面的新课程,以满足日益增长的需求。
由于大数据领域是新兴行业,很难找到适合的专家,因此所谓的“大数据专家或数据科学家”被金融交易、银行、信用评级机构,以及信用卡公司等大型金融组织所吸引。此外,谷歌、Facebook、LinkedIn、雅虎、微软、亚马逊等行业巨头也求贤若渴,因为他们为这些人才提供了丰厚的薪酬、股票期权,以及更好的发展前景。在争夺同样的人才方面,美国的联邦、州、市和地方政府以及非营利组织都处于劣势。但是,一些具有深谋远虑的政府组织已经成功招募了一些优秀的大数据科学家。
克服人才短缺的挑战
为了克服数据科学家短缺的挑战,许多企业正在建立一个数据科学团队,其中包括具有大数据分析方面知识和专业知识的人员,以及行业专家,例如IT和业务领域。他们可以一起补充彼此的专业知识,互相协作并提出业务问题的解决方案。一个成功的大数据分析团队的一个重要特征是能够用商业术语讲述故事,并实现数据可视化,而这些数据可视化只需要很少的解释。这是一项非常特殊的技能,需要销售技能来完成交易。这些能力有助于建立数据科学团队或大数据和分析团队的可信度,以获得高级管理人员的支持,并将分析从一个业务领域扩展到另一个业务领域,并最终扩展到整个组织或企业。这些人员则是“翻译者”,他们可以从数据分析中获得结果,并将其置于商业术语中,以便企业能够理解和适应。数字化转型需要在组织层面上发挥作用,并成为一种永久的运营方式。大数据和分析是私营或公共企业数字化转型的一个组成部分。因此,许多组织开始了数字化转型之旅,通过分析释放隐藏在大数据中的价值。今后将会有更多的组织效仿跟随。
③ 大数据趋势与专业图书馆
数据被称作信息化时代的石油,其重要性不言而喻。“大数据”通常被认为是一种数据量很大、数据形式多样化的非结构化数据。从产业角度,常常把这些数据与采集它们的工具、平台、分析系统一起称为“大数据”。在大数据时代,顺应大数据趋势,实现传统业务的转移,是带给国内专业图书馆的一个契机。
1.大数据与科学研究
2011年,麦肯锡研究院在《大数据:创新、竞争和生产率的下一个前沿》的报告中提出“大数据”时代已经到来。2012年3月,奥巴马政府发布了“大数据研究和发展计划”;2012年6月,联合国专门发布了大数据发展战略。这是联合国第一次就某一技术问题发布报告。“大数据”成为2012年热门词汇和研究热点之一。除了国家和研究机构,全球主要的大型IT商业公司均对大数据技术投入巨资,目的是利用大数据为国家治理、企业决策乃至个人生活提供服务。目前,科学研究正在进入一个崭新的阶段。在信息与网络技术迅速发展的推动下,大量从宏观到微观,从自然到社会的观察、感知、计算、仿真、模拟、传播等设施和活动产生出大量科学数据,形成被称为“大数据”的新的科学基础设施。数据不再仅仅是科学研究的结果,而且是科学研究活动的基础。科学家不仅通过对广泛的数据实时、动态地监测与分析来解决难以解决或不可触及的科学问题,更是把数据作为科学研究的对象和工具,基于数据来思考、设计和实施科学研究。以数据考察为基础,联合理论、实验和模拟为一体的数据密集计算的范式,成为与经验范式、理论范式和模拟范式并列的第四范式。数据被一起捕获或者由模拟器生成,处理后存储在计算机中,科研人员使用数据管理和统计学方法分析数据库和文档,据此产生创新思维和成果。这种科研模式被称为数据密集型范式,简称数据范式,是一种新的科研模式。
2.大数据与现有数据库技术的对比
大数据具有数据持续增加、体量巨大(Volume)、数据类型和来源多样(Variety)、速度快(Velocity)等特点。
3.大数据与新型数字图书馆
图书馆在科学文献(纸质或是电子)的组织与服务方面积累了丰富的经验,已成为科研活动和学术交流体系中的有力支撑。随着学术信息交流方式的变化,既有数据档案库,也有文献档案库,而数据则进入数据档案库中。因此,数据图书馆将成为未来数字图书馆的一部分。存储在各类数据库和文档系统中的科学数据,以及以业界标准化关系数据库所产生的元数据体系,将构成一种新型的、分布式的和整合式的数字图书馆。这种数字图书馆既包括传统数字图书馆的各类处理、管理、检索服务等功能,又包括数据转换、可视化和数据挖掘服务等新型数据服务功能。
4.大数据在专业研究领域中的应用
生物医学领域是大数据的先行者,这主要得益于美国国家医学图书馆基于科学数据建立的超级计算和数据处理平台。这些平台支持基础科学和应用科学的知识发现和数据关联,以及分析基础上的模拟仿真研究,为科研和政府决策提供服务。2007年,吉姆格雷扩展了其对数据密集型科学的看法,提出7个重要行动领域之一就是同国家医学图书馆支持生物科学一样,建立更多数字图书馆以支持其他科学。生物医学领域的数据量在飞速增长。欧洲分子生物实验室核酸序列数据库EMBL-Bank收到数据的速度每年递增200%;人类基因组计划2008年生产数据1万亿碱基对,2009年速率又翻一番;在生物医学文献编目中已经有1800万医学文章,每年增加接近百万篇。
美国国立医学图书馆的Entrez系统是美国国立医学图书馆建立的生命科学搜索引擎,它真正实现了数据和文献的交互性操作。用户可以在阅读论文的同时打开基因数据,跟随基因找到这个疾病,再回到文章(微软的WWT也实现了数据与文献的融合)。融合和交互操作可通过统一的链接、统一的标签和ID号实现。医学、生物学、心理学等学科领域的大型实验设备的实验型数据、人类基因数据中,有些由于观测和实验的不可重复性,有些由于时间、设备和经济等条件的限制,数据获取难度大,因此,数据的长期有效保存、科学管理、有条件共享和促进利用是极有意义和价值的一项工作。把全世界的数据都集成在一起,形成巨型的动态数据集,将诞生一个全球化的数据库。
5.国内专业图书馆的实践
专业图书馆的思考在实践方面,国内已经建立了一系列的科学数据平台,如科技部支持建设的科学数据共享工程等,但图书馆人员参与很少。在新的交流体系形成之际,专业图书馆应该深刻思考和研究支撑科研创造的信息服务环境;思考科研成果融合数据之后,形成的原始数据、派生数据和科学文献融为一体的新的信息环境下,如何提供信息和数据服务;研究数据科研基础设施建设和运行过程中信息机构的职责、作用和角色。从大量的数据中分析其潜在的价值将成为大数据时代图书馆的一大主要业务,并且提供这些业务的水平将决定着大数据时代图书馆的发展水平和方向。专业图书馆尤其要分析研究数据科学家的知识结构、基本素养、基本技能,并将此纳入培养计划加以实施,为未来社会提供所需人才。
④ 大数据的应用案例以及未来发展趋势
赶超发达国家的重要机遇
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度,不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。信息爆炸的学科如天文学和基因学,创造出来大数据这个概念,如今,这个概念几乎应用到了所有人类智力与发展的领域中。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器、智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据,大数据时代已经到来。
当前全球和我国大数据都呈现了井喷式爆发性增长,大数据已经渗透到各个行业和业务职能领域,成为重要的生产因素,大数据的演进与生产力的提高有着直接的关系。其发展特点,一是数据量呈现指数级增长。二是不同行业的大数据内容和开发应用特点各有不同,如证券、投资服务以及银行等金融服务领域拥有最高的平均数字化数据存储量,通信和媒体公司、公共事业公司以及政府等组织也有规模显著的数字化数据存储,这些行业更加具有通过大数据来创造价值的潜力。三是可以预见到大数据高速增长的现有趋势将继续推动数据增长,例如在各部门和地区之间,企业正在加快收集数据的步伐,推动了传统的事务数据库的增长;医疗卫生等面向消费者的行业中,多媒体的广泛使用刺激了大数据的增长;社交媒体的广泛普及以及物联网中应用的不断创新都进一步推动了大数据不断增长……这些相互交叉的动力刺激了数据的增长,并将继续推动数据池的迅速扩张。
发展大数据及其相关服务业将成为新兴经济体特别是我国在战略性新兴产业领域发挥后发优势赶超发达国家的重要机遇。只要条件具备,发展中经济体能够利用大数据发挥巨大的潜力。例如,亚洲地区移动手机用户最多,终端设备最多,其中中国设备数量最多,个人位置数据在亚洲已经领先。此外,在IT资产方面,尽管一些新兴市场组织落后于发达市场,但发展中经济体可以用最新技术跳跃式前进。大数据的应用不仅仅是商务,通过用户行为分析实现精准管理、科学决策和人性化服务是大数据的典型应用,大数据在各行各业特别是公共服务领域具有广阔的应用前景,包括消费行业、金融服务、食品安全、医疗卫生、军事、交通环保、电子商务、气象等。发展大数据产业机遇可贵潜力巨大。从经济和产业发展维度看大数据及相关产业发展的潜力,我国独特的位势和经济社会高速稳定发展,给大数据及其应用带来了巨大的发展空间。大数据在我国各领域和不同行业的应用潜力巨大、机遇重大。大数据的核心技术进展和大数据应用有可能带来我国新兴战略性产业发展的新机遇。
信息服务业发展的重要推力
研究表明,大数据是继传统IT之后下一个提高生产率的技术前沿和信息服务业发展的重要推动力。大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
例如医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;公共管理领域,能够利用大数据有效推动税收工作开展,提高教育部门和就业部门的服务效率;零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内找到更合适的产品以满足自身的需求,提高附加值。数据已经成为可以与物质资产和人力资产相提并论的重要的生产要素,伴随着信息化发展,企业将收集更多的信息,从而带来数据呈现指数级的增长。大数据在同时为商业和消费者创造价值方面有巨大的发展潜力。
大数据应用能够发挥重要的经济作用,不但有利于私人商业活动,更有利于国民经济和公民。数据可以为世界经济创造重要价值,提高企业和公共部门的生产率与竞争力,并为消费者创造大量的经济剩余。例如,能够富有创造性而有效地利用大数据来提高效率和质量。麦卡锡公司研究报告指出,预计美国医疗行业每年通过数据获得的潜在价值可超过3000亿美元,能够使得美国医疗卫生支出降低超过8%,充分利用大数据的零售商有可能将其经营利润提高60%以上。通过利用大数据实现政府行政管理方面的运作效率提高。估计欧洲发达经济体可以节省开支超过1000亿欧元,其中尚不包括可以用来减少欺诈、错误以及税差的影响作用。可以预见的是,随着人们存储、汇聚和组合数据然后利用其结果进行深入分析的能力超过以往,随着越来越尖端技术的软件与不断提高的计算能力相结合,从数据中提取洞见的能力也在显著提高。
大数据及其开发利用能够催生新的产业形态,拓展成为战略性新兴产业的重要组成部分。大数据的生产、整合、开发利用具有广泛的高附加值,可以形成和应用于各行业的关键发现,大数据的有效利用可以创造巨大的潜在价值,许多行业和承担业务职能的组织可以利用大数据提高人力、物力资源的分配和协调能力,减少浪费,增加透明度,并促进新想法和新见解的产生。其价值一是提高透明度,让利益相关方能够更加容易地及时获取信息,例如在公安部门,让原本相互分离的部门之间更加容易地获取相关数据,就可大大降低搜索和处理时间;在制造业,整合来自研发、工程和制造部门的数据以便实现并行工程,可以显著缩短产品上市时间并提高质量。二是可以通过实验来发现需求、暴露可变因素并提高业绩。随着组织创造并存储更多数字形式的交易数据,并以实时或接近实时的方式收集更多准确而详细的绩效数据,组织能够通过安排对比实验,运用数据分析获取更好的决策,例如在线零售商,通过将流量和销售结合的试验论证决定价格调整和促销活动的制定。三是更加精准地组织市场,根据客户需求细分人群。利用大数据使组织能够对人群进行非常具体的细分,以便精确地定制产品和服务以满足用户需求。例如在公共部门如公共劳动力机构,利用大数据为不同的求职者提供工作培训服务,确保采用最有效和最高效的干预措施使不同的人重返工作岗位。四是可以协助决策者更加科学地进行决策。大数据的自动处理能够更好地为决策者提供更加精准恰当的决策支持,通过对大数据的自动处理来替换或支持人为决策。有些组织已经在通过分析来自客户、雇员甚至嵌入产品中的传感器的整个数据集而做出更有效的决策。五是能够创新商业模式、产品和服务。例如在医疗保健领域,通过分析病人的临床和行为数据已经创造了瞄准最适当群体的预防保健项目。例如互联网公司收集大量的在线行为数据,创新速度非常快。
应组织实施大数据产业专项
发展大数据及其相关服务业具有重要意义,有望使各个行业产生更多收益。随着我国经济和社会信息化的高速发展,不仅信息产业自身获取了巨大的数据池,各个行业都存在利用大数据获取价值的潜力。大数据促使信息化建设模式大转变,结构化数据向非结构化数据演进,使得未来IT投资重点不再是建系统为核心,而是围绕大数据为核心。政府和企业决策者应对大数据发展研究制定发展战略和策略给予高度重视。
大数据真正的问题是大数据应用,让大数据更有意义。目前大数据管理多从架构和并行等方面考虑,解决高并发数据存取的性能要求及数据存储的横向扩展,但对非结构化数据的内容理解仍缺乏实质性的突破和进展,这是实现大数据资源化、知识化、普适化的核心。非结构化海量信息的智能化处理包括自然语言理解、多媒体内容理解、机器学习等。例如2012年3月29日白宫发布美国政府的大数据计划:通过提高从大型复杂的数据集中提取知识和观点的能力,承诺帮助加快在科学与工程中的步伐,加强国家安全,并改变教学研究。
由此,我们提出组织实施大数据产业专项的初步设想。一是围绕拓展新兴信息服务业态,组织实施以大数据示范、加工、处理、整合和深加工的信息资源与内容服务业示范工程,面向重点行业和重点民生领域包括金融证券、医疗卫生、税务海关、交通运输、社会保障、电子商务等领域,开展大数据重大应用示范,提升基于大数据的公共服务能力;二是加快推动北斗导航核心技术研发和产业化,推动北斗导航与移动通信、地理信息、卫星遥感、移动互联网等融合发展,支持位置信息服务市场拓展,完善北斗导航基础设施,推进服务模式和产品创新,在重点区域和领域开展示范应用;三是大力发展地理信息产业,拓宽地理信息服务市场,推进大数据技术和服务模式融合创新,支持大数据服务创新和商业模式创新;四是组织实施基于大数据的信息内容加工服务业典型示范工程,包括关键技术产品产业化和大数据生产、转换、加工、投送平台及专用工具的产业化项目,为丰富信息消费内容产品供给提供支撑;五是组织实施自主可控的大数据关键技术产品产业化项目,主要包括商业智能、数据仓库、数据集市、元数据、可视化技术等。
⑤ 大数据技术是否有可能拯救计划经济
最早提出大数据概念的学科是天文学和基因学,这两个学科从诞生之日起就依赖于基于海量数据的分析方法。大数据可以说是计算机和互联网结合的产物,计算机实现了数据的数字化;互联网实现了数据的网络化;两者结合才赋予了大数据生命力!随着互联网如同空气、水、电一样无处不在地渗透入我们的工作和生活,加上移动互联网、物联网、可穿戴联网设备的普及,新的数据正在以指数级别的加速度产生。据说目前世界上90%的数据是互联网出现以后迅速产生的。不过,抛开数据的海量化生产和存储这种表面现象,我们更加要关注的是由数据量变带来的质变,这种质变表现在以下3个方面:1)数据思维大数据时代带给我们的是一种全新的思维方式,思维方式的改变在下一代成为社会生产中流砥柱的时候就会带来产业的颠覆性变革!-分析全面的数据而非随机抽样;-重视数据的复杂性,弱化精确性;-关注数据的相关性,而非因果关系。历来的商业变革都是由思维方式的转变开始的,旧的经济体制和传统的商业理念面临新的商业思维逻辑的时候,如果大脑不能与时俱进,吸收并转变为顺应潮流的新思维,通过新思维重新组织企业组织的战略、结构、文化和各种策略,那么貌似强大的体魄反而变成了企业前进的累赘。这种新思维颠覆巨头的案例最先发生在信息技术的传统领域,然后渗透到传统的商业领域:黑莓(Blackberry)、摩托罗拉、诺基亚、柯达、雅虎。。。案例比比皆是!当然,这些企业的没落并不是因为没有数据思维,但他们都是被新互联网思维淘汰的昔日巨人。数据思维是最新的思想,其影响力还没有发展到导致巨头轰然倒塌。但是,如果不给予足够的重视,下一波没落王国的名单中,可能就会有你!2)数据资产大数据时代,我们需要更加全面的数据来提高分析(预测)的准确度,因此我们就需要廉价、便捷、自动的数据生产工具。除了我们在互联网虚拟世界使用浏览器、软件有意或者无意留下的各种个人信息数据之外,我们正在用手机、智能手表、智能手环、智能项链等各种可穿戴数码产品生产数据;我们家里的路由器、电视机、空调、冰箱、饮水机、吸尘器、智能玩具等也开始越来越智能并且具备了联网功能,这些家用电器在更好地服务我们的同时,也在生产大量的数据;甚至我们出去逛街,商户的路由器,运营商的WLAN和3G,无处不在的摄像头电子眼,百货大楼的自助屏幕,银行的ATM,加油站以及遍布各个便利店的刷卡机都在收集和生产数据。在互联网领域,我们喜欢说入口这个词,入口对应的直接意义是流量,而流量在互联网领域就意味着金钱,这种流量变现可能是广告,可能是游戏,也可能是电商。在大数据时代,入口这个词还有更深刻的意义,那就是数据生产的源头,用户通过某个APP或者硬件产品满足某种需求的同事,也会留下一系列相关的数据,这些数据的合理使用可以让拥有这部分数据的企业获得更大的商业利益!所以,在大数据时代,意识到数据也是资产的公司都已经开始在各个数据生产的源头进行布局,可能是一个解决刚兴需求的WEB网站,也可能是一个单纯的工具APP,还可能是一个可穿戴的数码产品!3)数据变现有了数据资产,就要通过分析来挖掘资产的价值,然后变现为用户价值、股东价值甚至社会价值。大数据分析的核心目的就是预测,在海量数据的基础上,通过机器学习相关的各种技术和数学建模来预测事情发生的可能性并采取相应措施。预测股价、预测机票价格、预测流感等等。预测事情发生的可能性继续往下延伸,就可以通过适当的干预,来引导事情向着期望的方向发展。比如亚马逊和所有的电商一样,都会基于对用户的喜好及消费能力分析来推荐商品,引导用户提高消费金额;Google等互联网巨头也会通过各种技术手段来试图向不同的用户展现不同的广告,并称之为精准营销,由此来提高点击率(公司收入);网游公司也会在运营工程中通过玩家行为数据的分析来及时调整游戏关卡及计费点等设计。满意请采纳。
⑥ 当今时代的大数据阈值是多少呢
当今时代的大数据阈值是数百个TB。
大数据是近两年继Web2.0、云计算、物联网之后的一个新词汇,其引发了信息科技领域越来越多的关注。2011年,麦肯锡在研究报告《大数据:下一个创新、竞争和生产率前沿》中首次提出“大数据”的概念,之后《纽约时报》、《华尔街日报》等都对其进行了专栏介绍。随着2012年奥巴马政府宣布投资2亿美元启动“大数据研究与发展计划”,大数据正式上升为与历史上的互联网、超级计算同等重要的国家战略。“我们的确正在起航,在庞大的新数据来源的支持下,量化的前进步伐将会踏遍学术、商业和政府领域,没有一个领域可以不被触及。”大数据时代的到来,给档案馆也带来了极大的冲击。
⑦ 如何应对大数据时代的变革机遇挑战
大数据搭着信息时代的快车来到了我们的面前,数据的价值逐渐为人们所重视,同时也让数据分析师的身价倍增。而随着大数据分析工具等大数据应用技术的出现,未来的数据分析师又将遇到怎样的挑战和机遇呢?
工具抢了人的饭碗?
很多大数据分析工具的设计起点非常高,定位了数据分析过程中所需要的大部分功能。很多工具的功能涵盖了从数据前期整合、收集到挖掘、分析乃至末端的数据可视化的整个数据分析过程,功能不可谓不强大。
但如果仅凭这些就认定大数据分析工具能取代数据分析师,未免有些杞人忧天了。恰恰相反,大数据分析工具不是数据分析师的竞争者,而是协助者。工具本来就是为人服务的,数据分析师的专业素养让其能很好的发挥大数据分析工具的性能,二者相辅相成,是友非敌。
企业的支持
虽然大数据的概念已经普及,但是很多企业还是留存有一些传统的观念。很多企业虽然重金聘用了数据分析师甚至是组建了数据分析师团队,但是却并没有建立完善的数据价值体系。对数据分析工作缺乏理解与支持。
相对于数据管理,数据分析工的工作重心还应该放在“挖掘数据价值”上。企业与数据分析师直接缺少职能的沟通,将直接影响企业对数据分析师工作性质的定位;同时,企业应该建立数据库并部署大数据分析工具,为了能更好地对接用户,也为企业和数据分析师留有足够的空间。
从幕后到台前的转变
以往的业务人员经常要磨破嘴皮才能得到别人的认同,而现在许多企业正在考虑让数据分析师带着数据分析结果去谈业务。打算以“让数据说话,以数据服人”去赢得客户的信任。而主要的实施过程,是靠数据可视化技术来实现的。
数据可视化技术让数据能以图表和视频的方式直观地展示在人们面前,而数据分析师作为数据的管理者和挖掘者,是最适合不过的讲解人了。这样就要求数据分析师不仅要有扎实的数据分析能力,还要能提取数据精髓,并将之演讲出来以获得他人的认同。从幕后转到台前,这里面会需要许多技能,数据分析师的工作性质也将发生改变。
在大数据时代,数据分析师所扮演的角色不可能是一成不变的。而只有顺应时代的潮流,响应时代的需要,数据分析师这个行业才能继续生存并发展。其实,大数据分析工具,数据可视化这些技术的出现固然使行业受到了影响与挑战,但对于数据分析师来说,未尝不是一次摆脱传统束缚的机遇!
⑧ 涂子沛大数据读后感1800字
进入2012年大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新,人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者消费浪潮的到来。“大数据”的运用在各个领域发挥着前所未有的重要作用,渗透到了当今每一个行业和业务职能领域,成为重要的生产因素,并对人类的数据驾驭能力提出了更新的挑战。
一、传统的信息格局被打破
不是我不明白,这世界变化快。2000年还是一张软盘打天下的时代,短短十多年光景,硬盘的存储容量已从4GB、16GB、32GB迅速攀升到1TB(相当于1024GB的容量)。原来仅有1.44MB的软盘在当时感觉存储容量还是蛮大的,到现在硬盘容量蹿升至1TB了,反而感觉存储空间捉襟见肘,到底是哪里出现了问题呢?1965年英特尔的创始人之一戈登摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加一倍,换句话说,计算机硬件的处理速度和存储能力,一到两年将提升一倍。这一定律,得到验证。
大数据!一语惊醒梦中人,大数据时代已经悄然来临。随着社交网络的逐渐成熟,移动宽带迅速提升,云计算、互联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度迅速攀升。那么什么是大数据呢,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。
二、管理法则:质量是数据时代的根本
数据能满足其既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途(引致数据库专家杰克.奥尔森)。
随着网络的出现,政府开始在网上发布信息和数据,对政府而言,是一个很大的挑战,因为数据一经政府发布,往往被视为权威,对社会的各个领域都可能产生重大的影响。任何一份通过网络发布的信息,面对的都不是一定特定群体,而是全体国民,如果政府发布数据的质量不可靠,将受到频繁的、大范围的质疑,特别是一些可以会影响到公共政策和行业管制标准的数据,将引起巨大的争议。
例如:单位奶制品中蛋白质含量、菌落总数应该是多少 ?饮用水里能混杂多少含量的微量元素?新鲜蔬菜能带有多少指标的杀虫剂残留?工厂排放的废气、汽车的尾气以及车间的通风条件都要符合怎样的标准等等,这些标准,都是数据。随着社会的发民、科学的进步,这些标准越来越多越来越细,每一个都和国民生活和经济发展息息相关。所以政府在网上发布数据,必须慎之又慎,保证质量。
三、大数据在各领域中的价值表现
1、数据竞争:企业赢利之道
企业以“低成本、高效率”的方式来开展公司的业务,而要做到“低成本、高效率”的运营以及决策正确,企业必须广泛推选以事实为基础的决策方法、大量使用数据分析来优化企业的各个运营环节,通过基于数据的优化和对接,把业务流程和决策过程当中存在的每一分潜在的价值都“挤”出来,从而节约成本,战胜对手,在市场上幸存。这种竞争,就是一种基于数据的竞争。
已经有越来越多令人信服的证据表明:只要实施正确的政策和激励,大数据将成为竞争的关键性基础,并成为下一波生产率提高、创新和为消费者创造价值的支柱。信息时代的竞争,不是劳动生产率的竞争,而是知识生产率的竞争。数据,是信息的载体、是知识的源泉,当然也就可以创造价值和利润,可以预见,基于知识的竞争,将集中表现为基于数据的竞争,这种数据竞争,将成为经济发展的必然。
2、通讯、电信、商务智能、互联网的逐步演变
近年来,随着大数据的迅猛增加,各个行业、政府部门都在尝试“用数据来决策”、“用数据来管理”、“用数据来创新”,在这个过程中,涌现了一大批既务实管用,又令人耳目一新的做法和应用。
回顾历史,我们从广播的年代到电视的年代再到本世纪初互联网的年代,从音频对话到可视电话,数据技术一直在我们的生活中扮演重要的角色,互联网出现之后,就交流和互动而言,广播和电视无疑相形见绌。
“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。
四、总结
涂先生从数据本身的革命、社会科学的革命、企业管理的革命、社会管理的革命四个方面深刻阐述了大数据的重要意义,以最前沿的视野、直接的解读和剖析为我们理清了《大数据》一书的脉络和精髓,为我们如何能更好地阅读、理解、领会《大数据》一书的精神实质提供了很好的帮助,让我们意识到:大数据的时代,是不可逃避的。
涂子沛大数据读后感二:读涂子沛的《大数据》有感
首先说下《大数据》这本书好的地方就是将大数据变化为一本科普读物,不是讲大数据的关键技术和具体实现,而更多的是围绕美国政府基于数据的管理历史线条展开,让大家更加容易理解大数据在政府执政和公共事务管理中发挥的作用,所以我看完后最大的感觉就是关注智慧城市的相关人员完全有必要阅读该书,会对以后在智慧城市的管理和建设中如何更好的理解大数据,应用大数据,发挥大数据本身的业务价值有更好的理解。
为何近几年出现大数据,最重要的还是随着信息技术和互联网,管理的精细化,全球化和社交圈扩大,数据呈现了指数级的增长。2009年美国的数据,离散制造业966PB,政府848PB,传媒行业715PB,这是麦肯锡2011年出版的一份报告《大数据:下一代创新,竞争和生产率的前沿》里面的一个估算。正是由于数据指数级的增长,对数据的开放,信息自由,数据的采集,数据的分析和处理,预测和决策提出了更高的要求。
信息自由,一为信息公开,二为信息发布。公开是政府和某一社会特定主体的关系,是点对点的;而信息发布是政府和社会的关系,是点对面的。信息自由法已经成为美国不可缺少的一个基本法案,只有信息自由才谈得上进一步的数据开放和数据共享。
我们信奉上帝,除了上帝任何人都要以数据说话。信息技术发展,数据指数级增长,已经彻底改变了政府,社会,商业群体的决策方法。需要的是形成一种数据驱动的决策方法,数据治国,需要基于实证的事实而非简单的`意识形态。而真正要让数据能够上升到决策层面,首先需要的就是数据大范围采集,数据抽样,数据测量和数据质量管理。另外数据驱动和事件驱动是两种模式,数据驱动强调的是历史和预测,而事件驱动强调的是实时和响应。大数据有一个维度专门是指速度和快速响应,更需要考虑事件驱动和数据驱动融合。
帝国法则,详细讲述了数据的收集法则,使用法则,发布法则和管理法则。数据能够满足既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途。数据质量的问题涉及到数据收集,使用,发布等所有过程的问题。数据质量管理要有标准,有流程,有救助机制。
从软件的开源到数据的开放,我们过渡到一个新的世界,可以讲数据开放式本身的另外一个重点。在这个新的世界里面,数据远远比软件更加重要。从2004年以来,美国一直在进行数据开放运动,联邦政府也专门家里了数据开放站DataGov,其主要目标就是通过数据开放,通过鼓励新的创意,让数据走出政府,得到更多的创新型应用。从而进一步巩固政府透明化,民主化和政府效能。
数据之争涉及到原始数据采集,数据质量,数据安全,数据粒度,数据价值,数据虚实多个维度。而DataGov不仅仅开放了原始数据,地理数据,还包含了数据分析工具的开放。数据开放为创新提供了无穷的燃料,因为创新型应用,数据的能量将逐层放大。
预测未来最好的方法,就是创造未来。而数据最大的价值仍然在预测上面,在解决了数据开放,数据采集,数据质量管理,数据处理后,最重要的作用就是基于数据进行科学的预测和决策。数据竞争将是企业赢之道,一些企业已经将他们商业活动的每个环节放在了数据收集,分析和行动的能力上。
涂子沛大数据读后感三:读涂子沛《大数据》有感
7月的一天,我有幸拿到了涂子沛的《大数据》一书,几个月来认真翻阅了好几遍,并查阅了许多相关的文章,也让我产生了写下这篇读后感的冲动。
。
我们处于大数据时代
当今的时代是一个信息的时代,是一个数据爆炸的时代。信息是数据的内容,数据是信息的载体。随着电脑、网络的普及,搜索引擎技术的进步以及云时代的来临,上至国家下至个人,无不为数据所包围,信息无处不在、数据无处不在。难以想象离开数据、离开数据管理,我们这个社会将会是什么样子。
那么大数据时代到底有多大呢?我们知道计算机用二进制存储和处理数据,一位是指一个二进制数位——0或1,这是存储信息的逻辑单元。一个字节有8位,再往上是KB(1KB是210字节)、MB(1MB是220字节)、GB(1GB是230字节)、TB(1TB是240字节)、PB(1PB是250字节)、EB(1EB是260字节)、ZB(1ZB是270字节)、YB(1YB是280字节)。但这究竟是多大的数据呢,我们还是难以想象。有人统计过将1TB的数据全部打印出来,需要用5000万个四开门的书柜去储藏。这是多么庞大的一个数啊,而这只是1TB——240个字节。而仅全世界消费者一年产生的数据就有6000PB,全世界企业一年产生的数据有7000PB。截至2010年,人类产生的数据为1。2ZB,且数据每年以指数级增长,每两年我们拥有的数据将翻一番。
在大数据时代,数字电视、手机、移动互联网统治了我们。截至2012年,中国手机网民数突破4。2亿;2013年中国超过美国成为最大的智能手机市场;2013年2月微信用户数突破4亿,到9月,微信用户达到5亿,微信用户正在以每6个月增长1亿用户的速度增长;95%的智能手机用户睡前玩手机。
“棱镜门”事件主角爱德华斯诺登一时间成为全球关注的目标,网络时代何处安放我们的隐私?美国间谍卫星精度达到了5至10厘米,当今社会我们每个人近乎“透明”!
大数据时代给我们带来什么。
1965年,英特尔创始人之一戈登摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加1倍,也就是说,其性能将提升1倍。换句话说,计算机硬件的处理速度和存储能力,一到两年将提升1倍。这一定律揭示了信息技术进步的速度。
数据的爆炸是“三维”的,是立体的,这三个维度,主要表现在:同一类型的数据量在快速增长;数据增长速度在加快;数据的多样性,即新的数据来源和新的数据种类在不断增长。
任何一件事物,都有一个从量变到质变的过程。在当前这个数据爆炸的时代,数据带给我们什么呢?我想最重要的是带来了思维模式的转变。转变了我们一直以来以因果逻辑思维的模式,变成了相互关系的逻辑思维。举一个例子,在不久的将来我们完全可以通过数据分析,预判出一次地震的时间、地点、强度,但我们不是通过分析地壳运动而来的,而是通过相互关系的庞大的数据分析而来的。
2008年的冰灾,当时的广州火车站滞留了25万人,这个数据是通过当时在这个区域的手机使用数统计出来的,与后期的最终统计基本吻合。大数据使我们开始了一次全新的探索,而探索的意义不在于发现新大陆,而在于发现新视角。
大数据时代给企业带来了什么。
数据挖掘是一种知识产生的过程,从中产生创新、产生管理、产生推动社会变革的理论与实践。
沃尔玛公司是美国的一家世界性连锁企业,以营业额计算,为全球最大的公司。沃尔玛一年产生的数据有2500TB。沃尔玛公司通过对大量历史数据的分析发现,年轻爸爸去超市购买婴儿尿布会顺便买点啤酒犒劳自己。因此,沃尔玛推出了尿布与啤酒搭售的营销策略,使销售量增长。
纽约,美国最大的城市及第一大港,拥有810多万人口,其36%为外国移民,人口使用约170种语言。1990年,纽约市共发生了凶杀案2245宗,1995年下降到1171宗,2009年下降到466宗,创下50年最低。纽约是如何实现这个成绩的呢?原来纽约通过把20年的犯罪数据和交通数据整合,开发出了“数据驱动的警务管理”,发现交通事故高发地带,也是犯罪活动的高发地带,而且两者的高发时间段也同样吻合。这就将警察以往“亡羊补牢”的工作模式转变为“守株待兔”的工作模式,取得了巨大的成绩。
大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。任何一个组织,如果早一点着手大数据工作,都可以获得明显的竞争优势。用另一本类似著作《大数据时代》的作者维克托的一句话:“大数据是未来,是新的油田、金矿。”
当前我们的企业每天获得大量的生产、营销、办公数据,如何将数据分析应用其中是时代赋予我们的挑战。如何实现粗放型向精细化转变,大数据为我们的企业提升管理效率、提高服务水平提供了有利平台。
世界每天都在变,唯一不变的是变化。大数据将是传统行业的掘墓者,盛极一时的柯达倒闭了,微软收购了诺基亚……我们的企业处在这样一个变革的社会,应该何去何从,值得我们每一个人深思。