㈠ 大数据能为银行做什么
随着移动互联网、云计算、物联网和社交网络的广泛应用,人类社会已经迈入一个全新的“大数据”信息化时代。而银行信贷的未来,也离不开大数据。
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。从发展趋势来看,银行大数据应用总的可以分为四大方面:
第一方面:客户画像应用。
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于自身拥有的数据有时难以得出理想的结果甚至可能得出错误的结论。
比如,如果某位信用卡客户月均刷卡8次,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控
包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
第四方面:运营优化。
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
银行是经营信用的企业,数据的力量尤为关键和重要。在“大数据”时代,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。
大数据海量化、多样化、传输快速化和价值化等特征,将给商业银行市场竞争带来全新的挑战和机遇。数据时代,智者生存,未来的银行信贷,是从数据中赢得未来,是从风控中获得安稳。
㈡ 大数据或重构商业银行
大数据或重构商业银行
中国工程院院士、中国通信学会副会长邬贺铨将“大数据”描述为“没有办法在容许的时间内用常规软件工具对其内容进行抓取、管理和处理的数据结合。”他同时又指出,大数据本身的规模标准在不断变化中,以前叫海量数据,现在数据比海量数据还大量。
简言之,“大数据”的特征为:数据量极大,数据的种类繁多,数据增速加快,数据来源多样,数据必须经过处理,数据具有定向性。浩如烟海的“大数据”用处极大,完成了以往“不可能”完成的任务。
在美国总统科学技术顾问委员会提交给总统和国会的一篇名为《规划数字化的未来》的报告中,明确提到“如何收集、管理和分析数据正日渐成为网络技术研究的重中之重。以机器学习、数据挖掘为基础的高级数据分析技术,将促进从数据到知识的转化、从知识到行动的跨越。”
“大数据”时代与既往存在的数据区别是,由于数据量的不同,使得“大数据”的挖掘工作量迅猛增加;尤其是数据来源更广,通过交换、整合和研究,可以发现市场发展趋势,市场参与者的需求,让企业从中寻找适合自己的商机,商机在握,就能为企业创造新价值。相比“大数据”的作用,如果说现有的数据能提供对企业类似的帮助,仅是在边缘地带,“大数据”却能真正深入核心。为此,必须使用仿真和复杂的计算,计算速度要求极快,以适应超量、在限时内完成工作的要求。
当然,“大数据”由于人为制造、以讹传讹、操作失误等问题,同样会存在虚假数据。因此,为了最大限度保证数据的准确性,需要大量的数学模型,而且分析结论可直观获得。其中,多源数据的存在提高了结论的完整性。所谓多源数据,是指对同一事物,采集它多方面、多纬度、多形态的记录数据。特别是用于预测时,还要关注历史数据,将两者对比,以缩小过去与未来预测的映射差距。
另外,“大数据”的最终结果展示也应该引起我们足够重视。最近爆发的美国“棱镜门事件”,表面上看,是美国政府对情报的窃取。实际上折射出“大数据”如何展示、向谁展示的问题。特别是“大数据”能够在一定程度上探寻人的思想时,就更加突显其重要性。
三十年前,商业银行用传统的算盘核算、簿记记录各类数据,今天,则以计算机运行、电子数据采集为主,并由此形成了海量数据。
相对“大数据”,过往数据因为过于零散、连续性不足、源头单一、形式单调,无法表现客户的交易行为、交易偏好和交易习惯等个性特征,银行也无法知晓客户对银行产品喜欢或讨厌的具体原因,以及对银行产品和服务满意与否的信息。海量的“大数据”却可以弥补这些缺憾。
商业银行核心竞争力,外部体现在市场份额、市场对其综合评价;内部则是股东利益最大化,员工的满意度。要实现核心竞争力,源头是市场与客户。“大数据”恰恰可以为开拓两个源头发挥重要引领作用。《经济学人》在一篇报道中写到“过去,这些数据储存在不同的系统当中,如财务系统、人力资源系统和客户管理系统,老死不相往来。现在这些系统彼此相连,通过‘数据挖掘’的技术,可以获得一幅关于企业运营的完整图景,这被称为:一致的真相。”
可以预见,今后“大数据”对商业银行的作用主要表现在:第一,对客户的了解程度与过去彻底不同。“大数据”不但让银行把握客户现在,更可以了解客户的历史,通过数据的交换、映射对其进行短期、中期预测。
第二,与客户开展多渠道互动,全面评估商业银行自身的产品和服务在客户中的满意度。商业银行通过自身和公共信息归集渠道掌握的数据,进行分析,有助于改进和提高产品种类及服务质量,在第一时间争取主动。
第三,“大数据”成为商业银行竞争的主要手段之一,其完整性、准确性将决定商业银行的竞争结果。“大数据”在竞争中成为名副其实的“双刃剑”,竞争双方都可以利用掌握的数据来制订竞争策略。
第四,商业银行营销手段以“大数据”为依托,开展针对性的销售。
第五,商业银行风险管理出现巨大变化。商业银行风险管理模型离不开数据。“大数据”的数据多样性和丰富性,能弥补过去数据不够的缺陷,最终带来管理方法的飞跃。
第六,多样化金融型态与传统商业银行展开竞争。马云[微博]涉足准金融业务,是电商市场发展的必然结果。某种意义上也预示“大数据”时代中,新的、能够节约交易成本的方式将不断涌现。
在“大数据”时代,商业银行要积极做好应对工作。
首先,商业银行在日常经营中产生的大量数据是形成整个社会“大数据”的重要组成部分,因此,要对数据管控、数据处理和数据结果反映作出正确处置。
一是数据管控上要依照标准化采集,统一化处理,时效化完成,分级化查阅。坚持做到采集的数据准确,结果可视,使数据应用性大大提高;二是数据处理时一定要科学、依照规则,特别要杜绝以假乱真,以次充好现象;三是处理后的结果,要依照规定展示,并且严格按照国家法律法规进行使用,避免影响商业银行声誉风险事项产生。
其次,商业银行需要投入大量资源用于适应“大数据”技术的需要。对此,对资源的投入一定要有相当的前瞻性,并兼顾当前实际。争取在过渡期内,尽可能地实现资源利用最大化。
最后,商业银行要高度重视适应“大数据”技术的人力储备。美国就曾预计,为适应“大数据”时代到来,未来美国需要60万名拥有数据分析特长,又懂行业知识的复合型人才。这类人才仅仅经过大学培养远远不够,还需要丰富的实践经验。我国商业银行对此类人才的储备相当不足,抓紧人力资源准备更为迫切。
此外,“大数据”时代将带动整个社会交易方式的变化,对诸如商业银行大多不需要体验型服务的行业冲击更大,从业人员和物理型网点一样将趋于减少。一增一减矛盾日益明显,要战略上着眼,早做布局。
商业银行对系统建设要高屋建瓴。今后商业银行的产品和资金提供主要由数据流来实现。同样,服务的虚拟化趋势,会让更多的服务由网络来承担。这一方面需要商业银行借助于社会网络,另一方面其自身的系统建设也必须与此匹配,强大的系统是商业银行未来经营管理的利器。
同样,商业银行要注重利用社交媒体的数据,拓展渠道获取客户信息。学会使用各类媒体,不但为客户服务,而且为优化商业银行自身形象服务。积极参与网络工具形成的各种运作方式,并研究在运作方式中融入商业银行工作目标。真正使媒体、网络工具成为维系、拓展客户的桥梁和重要的通道。
㈢ 商业银行经营管理问题研究论文
商业银行经营管理问题研究论文
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。下面是我整理的商业银行经营管理问题研究论文,一起来看看吧。
一、商业银行经营管理存在的问题
(一)银行内控机制不健全,规避银行风险不到位
健全的银行内控机制能够有效的对银行风险进行规避,在我国近年来发生的金融事件中,都体现出我国商业银行的内控机制存在问题,造成重大损失。建立健全我国商业银行的内控机制,是银行发展的关键。大部分银行有针对自身发展特点的内控规章制度,但是这种机制在不合理的激励约束下,在支行行长的权利过大,造成相应的监督机制不能够顺利进行的情况下,在电子化控制水平较低的情况下,造成商业银行的内控机制不能够很好地发挥效果,阻碍了商业银行规避风险的能力②。
(二)经营管理的方法落后,无法满足业务需求
尽管我国的商业银行在国际影响下也实行了资产负债比例管理,但是没有很好的进行落实,很多银行都是吸收更多的存款,却忽视了成本,这与外国银行追求效益的目标所取得的效果是截然不同的。这种经营管理的落后,造成我国商业银行的经营管理机制并不健全,使得不能够很好地发挥作用,在竞争中处于不利地位。
(三)分业模式对商业银行造成限制
为了降低风险,我国商业银行实行了分页的经营模式,但是这种方式却导致了我国商业银行的发展受到了限制。这种分页的经营模式,使我国商业银行难以满足企业所需的国际水平的金融产品和业务服务,使一些企业选用外国的银行作为自己的支持后盾。
(四)员工的专业水平不高,易造成风险
银行的许多工作人员只是单纯的完成数字任务,认为只要完成了任务就能够保证银行发展。忽略了员工素质对整体的发展提高作用。
二、商业银行经营管理问题的对策
(一)建立健全适合银行发展的内控体制
在经营管理的改革中,建立健全内控体系是商业银行发展的必然趋势,对于支行行长的权利要进行适当的控制,行长要明确自己的职责,不能盲目行使权利。要强化支行的内控体制建设,通过一系列的方法使支行的内控逐渐的科学化。
(二)改变经营管理模式,提高竞争力
商业银行的根本目的是盈利,因此要在这一目标的趋势下,不断地进行经济管理体制的改革,要运用现代管理技术,加强计算机技术的运用,进行精细的分工,对银行上下进行系统的培训,提高员工的经营管理理念,增强银行的竞争能力。改变经营管理模式还要积极吸收国外的有利经验为自己所用,并且不断地进行创新③。
(三)提高员工的整体素质
要加强员工的思想教育,提高员工的素质,对于员工的岗位特点,进行系统、针对的培训,对于员工的工作银行要进行明确划分,使银行的岗位得到具体的落实,并且岗位责任有人可寻,对员工要进行奖励与约束并存的管理机制,使员工意识到工作责任心的重要性,对员工的知识技能要进行定期的检查,做到用员工之所长,谋银行之发展。
三、结语
商业银行的发展对于我国整个金融业的发展有着积极的推动作用,我国商业银行的经济管理在经济全球化的背景下,竞争能力较弱,跟不上发展的步伐。加强我国商业银行的经营管理,对于一些金融风险起到规避的作用,对于银行自身的发展以及参与国际竞争能力都有很大的提高。
【摘 要】
随着移动互联网、云计算、大数据挖掘技术的不断发展,大数据在银行业领域的应用日趋深入。论文以大数据时代为背景,对大数据在商业银行中的应用现状和存在的问题进行研究。论文运用SWOT分析法对商业银行目前的优势、劣势、机遇和挑战进行分析,发现现阶段银行业在经营管理上的问题,结合大数据应用,从精准营销、客户关系管理、风险控制和用户信用管理四个方面,提出优化商业银行经营管理的策略。
【关键词】
大数据;商业银行;经营策略
1.商业银行业大数据应用的特点
2017年人民银行和银保监会分别在《中国金融业信息技术“十三五”发展规划》中提出,商业银行要引入大数据等新技术,推进大数据基础设施建设,加快推动银行业务创新,加强风险控制能力。大数据已经被提升到了国家战略高度,在银行业运用过程中取得了一定的成果[1]。
数据容量大。我国商业银行长期的业务开展,使得银行业“天然”拥有海量数据,商业银行的主要数据是围绕柜面业务系统、信贷管理系统和风险控制系统等产生结构化数据。商业银行推出的电子金融服务系统,使得一些非结构化的数据信息开始产生,包括指纹和人脸识别等。数据结构复杂,移动互联的发展促使半结构化、非结构化数据爆发式增长。数据资产化,利用价值大。商业银行在稳健经营中对数据的准确性有很高的要求,利用好银行已有的海量数据,应用在客户识别、风险识别和产品营销等不同场景下,更好地实现数据资产的增值。
2.基于大数据应用的商业银行经营策略的SWOT分析
2.1 拥有的优势(Strength)
成本控制优势。随着信息技术发展,商业银行能够实现现有业务流程的自动化,大大降低了物理网点的工作人员数量,降低了银行的运营成本。随着云计算能力的提高和技术的成熟,云计算系统中的数据均保存在“云”端,减少关于IT基础设施的建设、单位数据存储和处理的成本。
营销效率优势。商业银行通过本身的海量数据进行深度挖掘,对客户进行静态特征、行为特征、倾向预测三个层次的刻画,构建客户体系,进行营销活动的精确推送。通过分析客户上下游相互关系,了解客户间业务等往来情况,发掘新的潜在客户,确定交叉销售目标,提高了客户服务效率及营销精准度。
风险管理优势。银行在传统风险控制方面积累了丰富经验,这些为大数据挖掘、传输、存储与安全应用提供了相对成熟的基础环境。将大数据、人工智能等技术作为风控工具应用到风险控制工作,提升风险控制效率和精准度。
2.2 存在的劣势(Weakness)
业务同质化。我国商业银行盈利的主要业务是贷款业务,少有针对客户需求设计开发的特色产品。因此,大数据的应用范围可以深入其他能够盈利的业务,如银行业的中间业务。利用大数据优势,找准银行的自身业务定位,打造差异化的竞争模式。
数据共享程度不高。各家商业银行均拥有自己的系统,出于自身利益考虑,几乎不存在分享机制,导致大数据基础建设效率低、数据利用率低、在整体上缺乏系统性,各银行只能描绘客户在本行的交易画像,不能展示出客户的金融全貌。
2.3 拥有的机会(Opportunity)
强化优势。商业银行传统所具备的安全、稳定、诚信等优势可以通过大数据应用进一步巩固强化。在风险管理中进一步利用大数据,提高银行自身的安全性。在营销方面,不断完善客户画像,了解客户真实需求,实现精准营销。成本控制方面,随着大数据技术的不断成熟,人力成本、设备成本和运营成本也将不断降低[2]。
金融产品的创新。在大数据时代,银行业不断进行产品创新,以满足客户个性化需求。这就需要深入了解客户的核心需求,利用大数据建立数据模型,为其定制专属于消费者自己的金融产品,提升用户的体验满意度。
2.4 面临的威胁(Threat)
银行业与互联网金融企业的竞争加剧。信息技术的快速发展,促使互联网金融呈现出爆炸式的发展态势。互联网金融模式具有资金配置效率高、交易成本低、支付便捷、普惠性等特点。互联网企业加快布局金融业,对整个银行业的核心业务产生冲击,挤占了原本属于传统银行业的利润空间。
数据的安全性问题。首先,随着互联网技术的发展,数据量的大幅增加导致了数据的严重失真,大量无序低效的无用信息混进数据库形成垃圾数据,增加信息误读的风险。其次,商业银行运用云平台也伴随着一定的风险:一是网络系统与存储中心可能存在漏洞引起技术安全风险;二是海量客户信息与个人隐私信息的泄露风险。
3.基于大数据应用的商业银行经营管理优化策略
3.1 精准营销
大数据应用更强调相关关系释放出的潜在价值。商业银行拥有海量数据,可利用聚类分析,挖掘出更多数据中含有的潜在特性,帮助商业银行进行市场细分。通过大数据挖掘中的关联分析相关关系,发掘新的潜在客户,确定交叉销售目标。大数据不断推进金融产品创新。商业银行通过大数据挖掘为客户提供差异化服务和定制化价格。根据对海量数据的分析预测,建立相应策略模型,掌握客户的消费习惯和行为特征,实现创新式的营销、无缝多渠道的销售、个性化的服务[3]。
3.2 客户关系管理
商业银行业务同质化严重,客户管理十分重要。在互联网背景下,金融脱媒现象加速,碎片化金融产品抓住了市场需求,提供差异化产品的同时也剥夺了银行的客户资源。因此,运用大数据挖掘方法可以为商业银行提供更精确的客户关系管理。商业银行可以与其他行业或大数据公司形成合作关系,以获取客户出行、交易习惯等数据,进行客户信用评分,当客户提出需求时,商业银行利用人工智能进行判断。商业银行还可利用大数据更精准地预测客户流失概率,并对相应超过客户流失概率阈值的客户实行定制化客户挽留措施[4]。
3.3 风险控制
银行业作为高经营风险的行业,风险控制是其生存和发展的基础。通过大数据技术扩容传统商业银行风险管理的数据源并处理半结构化和非结构化的各类数据,构建大数据风险管控平台,全面收集客户的数据。注重内外部数据的融合,整合银行内部积累的金融信息,同时,获取外部数据或公共信息等数据,降低信息不对称程度,增强风险控制能力。建立风险管控模型,可以借鉴国内外同业的做法,设计符合实际要求的模型,根据实际情况开展训练,输入实际的数据进行模型训练和验证,合理地改进模型的配置参数,提高模型的准确度[5]。
3.4 信用管理
商业银行信用风险管理对商业银行的贷款决策具有显著影响。商业银行要构建人工和数据相结合的模式,运用大数据挖掘技术,集合内外信息资源,形成覆盖所有机构、所有客户、所有产品的实时监测分析和预警控制网络,提高信用风险预警水平。利用大数据,实现贷款业务的贷前、贷中和贷后全过程管理。强化贷前风险识别,在客户审批阶段,依托行内信用数据库、评级系统及反欺诈平台,提前对客户可能存在的违约风险进行精准判断;强化贷中审批自主化,大数据信贷审批系统以风控评分卡模型的自动审核为主,加以人工审核进行辅助的模式;强化贷后风险监测,商业银行要建立信贷投放、资产质量等多维度的信用风险日常监测指标体系。
【参考文献】
【1】韩雪峰,朱青,马文捷.商业银行应用大数据的安全风险防范研究[J].江苏商论,2017(11):88-92.
【2】齐贵柱,齐苑博.大数据时代商业银行大数据分析研究[J].财经界,2019,500(01):128-129.
【3】屈波,王玉晨,杨运森.互联网金融冲击下传统商业银行的应对策略研究--基于SWOT分析方法[J].西部金融,2015(1):41-45.
【4】严文枢.关于商业银行大数据应用的思考和探析[J].福建电脑,2014(7):68-69.
【5】信怀义.商业银行大数据的应用现状与发展研究[J].中国金融电脑,2016(8):26-28.
【摘要】
在经济全球化迅速发展以及改革开放不断扩大的机遇中,我国各行各业得以迅猛发展,其中我国银行业的发展举世瞩目,取得了许多长足的进步。但是,机遇与挑战通常是并存的,在银行业场迅速发展的同时,商业银行之间的角逐也逐渐激烈起来。因此,我国商业银行也面临着许多挑战。比如,在商业银行的经营管理中,还存在着许多风险与不足,与此相关的经营管理体制也未能及时的建立健全。商业银行若是想在如此激烈的角逐占有一席之地,就必须对其管理中存在或者潜在的风险加以预测并且进行防范。本论文根据商业银行经营管理中的出现的情况进行分析,通过一些成功经验,提出对风险的预测以及防范策略。
【关键词】
商业银行 经营管理 风险 防范措施
一、商业银行经营管理中存在的风险
(一)银行出现的不良贷款率较高
银行经营管理中出现风险种类十分多,但是主要对银行经营造成影响的是银行资产的质量风险。而对于资产的质量起到关键性作用的.是贷款的质量,许多银行存在的风险大多是由不良贷款引发的。依据近过去几年的数据统计,我国商业银行的不良贷款率相对于国外的主要商业银行还是偏高的,因此得出不良贷款率仍旧是造成我国银行资产质量风险的主要原因之一。
对不同种类企业的还贷能力进行准确评估存在一定难度,这给银行贷款的发放与回收带来困难。对于部分经营能力较强、企业规模大并且实力相对雄厚的企业,这部分企业绝大多数已经具备上市的资格,在相关行业中具有稳定地位。因此,在商业银行放贷中十分抢手,银行也十分愿意向其发放贷款。但是,相对的一些企业经济效益并不是十分理想,对于银行的贷款不能及时返还,造成银行信贷资金的危机,使其流动性受到限制。近年来由于经济增速的下降,大量企业盈利能力降低,对于商业银行的贷款质量造成了一定不利影响。
(二)员工的综合素质不高
在银行经营管理风险中,员工是主要的操作人员。但是,由于不少员工的综合素质以及学习水平不足,也成为影响银行经营管理风险的主要因素之一。员工的总体水平是企业竞争力的直接影响因素。但是我国银行员工的综合素质还不能满足银行业务发展的需求,更有甚者,有部分员工缺乏职业道德素养,利用个人的职位谋取或者侵犯银行利益,在进行工作的同时,出现了挪用公款、贪污等违法行为,对银行业务的发展造成不利影响。其次,就是银行员工的个人工作水平以及经验不足,对经营管理岗位的需求无法满足,缺少长远发展的眼光,不能应对随时出现的风险,成为阻碍银行发展的因素。
(三)个人信用系统的不完善
在银行经营管理中存在的影响因素之一是个人信用系统的不完善。银行业务中的重要组成部分是个人信贷,为了能够让个人信贷能够及时的返还,银行一般是要对贷款人的个人信用进行审查,对于一些没有良好的个人信誉的客户,将不会同意其贷款要求。但是,从银行业务对于个人信用的审查流程来看,普遍存在的问题是,对个人信用审查的不严格以及相关的贷款信用管理体制尚未健全。如今信用系统中涉及贷款人的各种信息以及身份证明并不能对贷款人的信用情况进行真实有效的反映。个人信用系统的不完善以至于出现对贷款人的可支配资金、可抵押的资产或是其收入情况不能全面掌握,或是贷款人出现一些伪造信息的情况。个人信用系统的不完善最终导致的结果是银行的贷款不能在规定时间内及时的收回,从而对整体运转系统造成影响。
二、银行经营管理中的防范策略
(一)资产配置进行优化,降低不良贷款率
对资产配置进行优化,从而降低不良贷款率。这不仅能降低银行风险爆发的概率,还会银行业务的发展有着促进作用。首先,要提高资产的质量,就要对资本的运作水平进行提高。要对银行业务中长期贷款进行科学的设置,使银行的流动性得以保障。其次,对金融科技的创新能力进行强化,将大数据、云计算等技术运用到贷款过程中,收集、分析各类数据,使银行能够精确的了解贷款过程中各种信息,使不良贷款率降低。最后,对于出现的不良贷款采取相应的手段,对其进行约束,并且对审款、放款、贷款等流程进行严格把控,增强信用贷款的管理,推进银行经营的进步以及银行业务的发展。
(二)提高员工综合素质
员工的综合素质与银行能否顺利发展有着不可磨灭的联系,根据这一实际状况,银行应当对员工的综合素质引起重视,增强员工的综合素质,建成一支高素质、复合型人才队伍。第一,在招聘中进行严格要求,对人才的综合素质进行严格的考察与测评,既要对其专业能力进行考评,还要对其职业道德素质以及道德水平进行测评,使其能够保持对工作的热情以及在工作中能够发挥其能动性,积极的承担自己的责任。第二,对银行员工进行定期的培训,提供外出学习先进经验的机会,使其的专业知识不断更新,不断的积累先进经验。第三,在金融市场风云变幻中,银行也必将随之变动。因此,要求员工能够及时掌握市场的行情,通过对市场行情的分析开拓自己的眼界,提高员工对风险的敏感度。第四,要提高员工的综合素质水平,必须要定期的对员工进行考评,严格对其行为进行把关,有助于形成良好的学习氛围,促进员工综合素质的进步。
(三)建立健全信用系统
建立健全信用系统对推进银行经营管理有着关键性的作用,同时也是信贷业务能否良好展开的必要保障。在贷款业务的进程中,信用系统能否建立健全对贷款人的信用审查部分有着重要的推动作用。第一,银行在信贷业务中要完善信用审查环节,对其工作流程严格把关,对贷款人信息进行精确严格的问询,保证其信息的准确性。第二,在建立健全信用系统的过程中,要求银行员工在工作时,要对贷款人的信息填写进行具体的指导,并且明确的对其进行提示,要求其填写关于信用贷款的所有相关信息,包括其可抵押资产、收入来源、总体资金以及贷款资金的用途等详细信息。第三,对于贷款人填写的信息,银行后期应该进行仔细核查,并定期对其进行追踪,使信用系统的健全得以保障,从而降低潜在的信用风险。
三、结语
在经济全球化带动我国银行发展的同时,我国银行的竞争也日益激烈。在各种风险因素的影响下,银行的经营管理也存在着各种不同的风险。在商业银行经营管理中,风险的存在是不可回避的问题。因此,银行应该通过各种手段对已出现的或是潜在的风险采取解决措施或是提前预测,有效的规避风险。只有提高对风险认识的敏感度,才能对出现的风险坦然面对,继而能够使银行能够顺利发展,为我国经济发展做贡献。
;㈣ 商业银行应用大数据之策
商业银行应用大数据之策
随着以社交网络为代表的web2.0 的兴起、智能手机的普及、各种监控系统及传感器的大量分布,人类正在进入一个数据大爆炸的时代,“大数据”的概念应运而生。大数据被誉为继云计算、物联网之后IT产业又一次颠覆性的技术变革,已经引起各方面的高度关注。大数据的意义在于从海量数据中及时识别和获取信息价值,金融业在IT基础设施、数据掌控力和人才富集度方面较之其他产业更具优势,具备了深度“掘金”的潜力。但是,大数据也给金融业带来剧烈的挑战与冲击,我国商业银行需要树立“数据治行”理念,明确大数据战略的顶层设计,加强大数据基础设施建设,实施稳妥的大数据安全策略,方能从容迎接大数据时代。
大数据带来的冲击与挑战
(一)传统发展战略面临冲击。传统银行发展战略,是在预计未来金融政策、经济环境的前提下,根据现有银行人员、网点、客户、资本、存贷款规模等资源占有状况,以及竞争对手、客户需求状况,来确定其战略目标及发展路径和方式的。步入大数据时代后, 对数据资源的占有及其整合应用能力是决定一家银行成功与否的关键因素,而传统的网点、人员、资本等因素则趋于淡化,未来商业银行的客户营销,将主要依靠对不同类型客户需求数据的掌握,并开发设计出安全、便捷、个性化的金融产品。因此,这就要求各商业银行在评判竞争对手实力与自身优势时,要注重考量IT能力与大数据实力;在制定战略目标时,必须兼顾财务承受能力来决定对大数据的投入,从而确保战略规划与大数据支撑相适应;在确定战略目标的实施路径时,必须将互联网金融、电子渠道、数据的收集与挖掘作为向客户提供服务的重要方式和手段。
(二)传统经营方式面临重大转变。在大数据时代, 金融业务与互联网深度融合, 商业银行的经营方式将会发生彻底改变。在产品开发、营销方面,通过对海量交易、行为数据的收集、分析和挖掘,科学构建数据模型, 分层客户的不同金融需求可以得到充分展示,进而针对客户需要、市场需求研发产品、开展营销,真正做到以客户为中心开发设计产品,并实现精准营销,而不是以银行为中心制造、推销产品。在风险防控方面,许多商业银行在风险分析和评估中,虽然已经引入了数量分析方式,但是因历史数据的积累不足,经验判断依然在风险管理、决策中起主导作用。依托大数据,对客户实施多维度评价,其风险模型将会更加贴近市场实际,对客户违约率的取值变得更加精准,长期以来银行凭经验办业务的经营范式将会得到根本改善。在绩效管理方面,可以通过对大数据的有效利用,并借助通讯、视频、移动终端等技术手段,对商业银行员工的工作方式、频率、业绩等做出更加准确的评价,有助于充分发挥绩效考核的正向激励作用。
(三)数据基础设施建设面临严峻考验。进入大数据时代,数据来源的多元化主要体现在两个层面:一是在金融业务链条之外。移动网络设备和网络社交媒体产生了极其丰富的实时化的客户行为数据,在这种环境下,客户行为偏好数据往往隐藏在社交网络之中。如果要实施“大数据工程”,商业银行必须搜集开放的网络数据,但现有的银行IT系统、技术手段还无力搜集、分析、利用大数据。二是在金融业务链条内部。随着专业细分与金融外包的趋势愈加明朗,由一家或少数几家银行掌控关键业务数据的时代已经走向终结,业务数据产生、流转于金融业务链条的各个结点,业务数据、客户行为数据不可能自动集成至某个机构,这对“大数据工程”的实施提出了严峻挑战。
商业银行的应对与谋变
(一)优先搞好大数据战略的顶层设计。大数据战略必须超越电子银行部或IT部门的狭隘视角,面向全局、面向未来,以客户需求、市场需求为导向,建立自身的大数据架构。完整的客户数据必须是多维度的,至少包含以下几个方面:一是客户的基本信息,譬如信用信息、社交关系信息等;二是客户的偏好信息,譬如金融产品偏好、金融服务偏好等;三是客户的行为信息,譬如银行范围内的行为数据、外部行为数据等;四是客户的分析数据,譬如客户风险度、客户价值度等。要想使这些不同维度的数据信息具有分析价值,首先必须具有合理的数据结构。但现实情况却不尽如人意,各银行的数据结构基本上是条块分割的。为此,各银行必须优先搞好顶层机制的设计与改革,逐步打破业务界限,重组业务流程,确保数据灵活性。
在总行层面上,需要抓紧制定大数据工作规划,建立大数据工作推进机制。主管数据部门负责组织协调,对大数据工作进行统筹规划、集中管理;业务部门负责大数据的搜集、整理、存储、分析和应用,全面采集、多方式整合商业银行内外部各类数据,形成数据管理、数据使用、数据推广的有效工作机制。
(二)科学谋划和打造大数据平台。一方面各银行要积极与社交网络、电商、电信等大数据平台开展战略合作,建立数据信息交流、共享机制,全面梳理、整合客户各类信息,将金融服务与社交网络、电子商务、移动网络等深度融合。另一方面各银行也可考虑自行打造大数据平台,以便牢牢掌握核心话语权。
(三)积极建设大数据仓库。着眼于大数据挖掘和分析,对海量数据的持续实时处理,建设数据仓库项目,为服务质量改善、经营效率提升、服务模式创新提供支撑,全面提升运营管理水平。在项目建设中,通过梳理整合经营管理关键数据,建立数据管控体系,搭建基础数据平台。通过数据仓库建设,运用数据挖掘和分析,全方位调整管理模式、产品结构、营销模式、信息战略,从根本上提高风险管理、成本绩效管理、资产负债管理和客户关系管理水平,实现多系统数据的业务逻辑整合,形成全行级客户、产品等主题数据。
(四)以大数据思维推进金融互联网化战略。进入大数据时代,金融产业与信息技术将实现深度融合, 金融电子化的深度、广度将日渐强化。各银行必须顺势而为, 紧紧追随迅猛发展的互联网、移动互联网浪潮, 积极实施金融互联化战略, 尝试构建电子化金融商业模式, 着力发展直销银行、社区智能银行、互联网金融、电子商务等业务。这就要求各银行应当从发展战略的高度,将金融互联网作为未来提供金融服务、提升核心竞争力的主渠道。
(五)依托大数据技术实现风险管理的精细化。大数据时代,商业银行可以消除信息孤岛,全面整合客户的多渠道交易数据,通过经营者个人金融、消费、行为等信息进行授信,有效破解传统信贷风险管理中的信息不对称难题,降低信贷风险。为此,各银行必须深化风险管理体制改革,运用大数据理念来构建以客户为中心的全面风险管理体系,理顺部门间的职责,淡化部门色彩,彻底打破以往小数据模式下形成的部门、机构、区域、产品间数据信息分隔管理以及由分支机构各自分散识别风险的做法,形成按客户集中统一管理数据信息和高效协调机制。
要积极推行把现场调查与非现场数据信息挖掘分析相结合、模型筛查与经验判断相结合,以定性信息与定量财务、经营等多重数据信息的勾稽核验等为重点内容的风险管理创新。总行要通过大量数据信息的挖掘分析,勾画出客户的全景视图,更加全面地评估客户风险状况,有效提升贷前风险判断和贷后风险预警能力。
要进一步完善基于大数据信息平台的集中式风险审查审批体制,采用大数据方式来验证借款人的数据信息,校正申报机构或部门对借款人的风险判断。运用合理的参数和模型,计量出可接受的最大风险敞口,精准识别和动态审查借款人的每一笔融资业务。再利用习惯性数据信息和常识性、逻辑性分析,作出更专业的判断,使风险识别、防范、决策更加可靠、更加贴近实际。
以上是小编为大家分享的关于商业银行应用大数据之策的相关内容,更多信息可以关注环球青藤分享更多干货
㈤ 大数据时代对商业银行的影响
大数据时代到来后,信息的数量剧增,并且传播非常迅速,这对于商业银行来说是一个非常大的挑专战。
大数据有属力地推动了商业银行传统客户管理形式的不断完善,新的经营管理方法因运而生,将第三方加入到了金融竞争中,并迫使其增强自身的管理能力,在这样的状况之下,商业银行如果不在第一时间内转换传统的经营管理形式,就很有可能会成为大数据时代的牺牲品。
身处在大数据时代,应当及时调整原有思维,加大对数据变动的关注度,发扬自身优势,借助大数据努力处理好新产品的研究和开发、客户管理和银行内部管理等事项,采用完备数据库、创建数据平台、建设数据队伍等手段,通过对大数据技术的合理运用,推动商业银行的整体发展。
㈥ 大数据在银行业的应用与实践
大数据在银行业的应用
一、舆情分析
对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。
二、客户信用评级
银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。
三、客户与市场洞察
银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。
四、运营优化
银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。
五、风险与欺诈分析
主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。
银行数据架构规划
随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。
大数据为银行创造的价值
当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。
在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。
在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。
随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。
目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。
在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。
对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。
比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。