导航:首页 > 网络数据 > 我们的大数据时代李广建

我们的大数据时代李广建

发布时间:2023-09-08 03:14:12

1. 大数据时代读后感1000字

大数据时代读后感1000字(精选7篇)

当品味完一本著作后,大家心中一定有很多感想,现在就让我们写一篇走心的读后感吧。怎样写读后感才能避免写成“流水账”呢?下面是我精心整理的大数据时代读后感1000字,仅供参考,大家一起来看看吧。

大数据时代读后感1000字 篇1

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔——舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球顶级企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,如果能做足功课又具备相应的理论功底,就能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:一、更多:不是随机样本,而是全体数据;二、更杂:不是精确性,而是混杂性;三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“[i]由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。在风险社会中信息安全问题日趋凸显,数据独裁与隐私保护成为一对矛盾。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

大数据时代读后感1000字 篇2

我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。这个命题是我读这本书最大的感触。个人认为也是这本书最核心的思想。从头说起吧,首先,书提出一个颠覆我以前认知的命题--”并非原子而是信息才是一切的本源“,将世界看做信息,看做可以理解的数据的海洋,为我们提供了一个从未有过的审视下是的视角。它是一种可以渗透到所有生活领域的世界观。这个命题是在书的最后一部分中的某一段中描写的。我之所以把它放在最前面来讲,因为我觉得,这是谈数据化世界的前提,自然也是谈论大数据的前提啦。书的中间部分有一节讲到数据化和数字化的区别。经过我自己脑子的整理,把数据化世界这个命题列为大数据思维的第二步。写到这里,我不由得反省下,我是不是有领悟到书的精髓所在(我认为的精髓),就是第一句话。因为回顾我整个思路,还是按照旧模式的因果关系思考模式思考问题。书中另一个吸引我的地方就是,有很多观点的论述,会从哲学的高度论述。虽然,自己肚子没多少墨水,但是读这些描述的时候,就会发现自己会更好的理解作者提出的命题。比如书中有一段文字

当我们说人类是通过因果关系了解世界时,我们指的是我们再理解和解释世界各种现象时使用的两种基本方法:一种是通过快速、虚幻的因果关系,还有一种就是通过缓慢、有条不紊的因果关系。大数据会改变这两种基本方法在我们认识世界时所扮演的角色。

在附上一些事例的时候,用作者提供的”本质“去看待时,很容易理解,确实是这么回事。好了,那么大数据到底改变了我们什么呢,作者给出3点,

大数据的精髓在于我们分析信息时的三个转变,这些转变讲改变我们理解和组建社会的方法。

第一个转变就是,在大数据时代,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,而不再依赖于随机采样(样本=总体)

第二个转变就是,研究数据如此之多,以至于我们不再热衷于追求精确度

第三个转变因前两个转变而促成,即我们不再热衷于寻找因果关系,而应该寻找事物之间的相关关系。大数据告诉我们”是什么“而不是”为什么“。在大数据时代,我们不必知道现象背后的原因,我们只要让数据自己发声。,出处:短美文,否则追究其责任,谢谢你的支持,我们会给做得更好!

正如大家所知道的那样,人类的大脑具备这样的功能,它会把新输入的刺激或信息与”过去的经验或积累的部分知识“相对照,然后进行调整并接受下来。如果眼前新的现实与大脑中储存的固有信息无法协调,便会在无意识中拒绝接受新的现实(当作没有看见);或者通过自己一知半解的知识任意推测,使自己认识到的情况偏离实际(产生错觉)。这是人的一种本能,目的在于使自己保持冷静。

所以作者称之为revolution。

讲了这么多,那么大数据到底给我们带来什么。在这里,我只想谈我感触最深的,其他的有兴趣的可以自己去了解。当然,书中提了很多,最多的就是,XXX公司或者个人利用大数据创造了多大的财富了,抛开这些表面的不说,最让我动心亦或者是害怕的是,预测。这是大数据带来最核心的东西,动心的理由无须赘述,计算机会告诉你什么时候买什么双色球可以中头奖,想想心里是不是有一点小激动咧。当然这只是我打的一个比较夸张的比喻。至于害怕呢,书中有段话我很喜欢

公平正义的基础是人只有做了某事才需要对它负责,毕竟,想做而未做不是犯罪,社会关系于个人责任的基本信条是,人为其选择的行为承担责任。如果大数据分析完全准确,那么我们的未来会被精准的预测,因此在未来,我们不仅会失去选择的权利,而且会按照预测去行动。如果精准的预测成为现实的话,我们也就失去了自由意志,失去了自由选择的权利。既然我们别无选择,那么我们也就不需要承担责任。这不是很讽刺吗。

扯到这里,顺便扯一下,书中另一段关于自由意志的描述

在哲学界,关于因果关系是否存在的争论已经持续了几个世纪。毕竟,如果凡事皆有因果的话,那么我们就没有决定任何事的自由了。如果说我们做的每一个决定或者每一个想法都是其他事情的结果。而这个结果又是由其他原因导致的。以此循环往复,那么就不存在人的自由意志这一说了。——所有的生命轨迹都只是受因果关系的控制了。因此,对于因果关系在世间所扮演的角色,哲学家们争论不休,有时他们认为,这是与自由意志相对立。

书中举了个例子,举了部电影《少数派报告》,当我看到这里的时候,”哎哟,我居然看过这部电影,想想心里还是有点小激动“,有兴趣的可以去看下,大概就是讲警察通过预测来提前抓捕犯人,不过不是通过大数据,是通过超人类的方式。当你什么举动都可以被预测,相当于你完全暴露在太阳光下,换成你,你害怕不。

最后,附上两段结语,一段是书中的一段话,另一段是我自己瞎编的。

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

大数据终将会影响到我们,也像其他技术一样会是一把双刃剑,用得好,动心,滥用,害怕。如同核技术一样,用的话,造福地球,滥用,给个金刚石地球你,照样爆。我相信,未来的大数据的发展会如作者所说的,是一场生活、工作与思维的革命。

大数据时代读后感1000字 篇3

“大数据”一词不知何时在我们的生活悄然出现,为了一探究竟,我便选择了《大数据时代》一书。

作者先从全局简单地描述大数据对我们的生活、工作与思维的影响,再从三方面具体地用上百个学术和商业的实例展开写作。样本=总体、追求精确性和相关关系等大数据时代具体特点一一现出。在同时,作者也从个人、企业等多角度分析大数据中的隐忧。

书中内容繁多,在此不能各方面概括。此书中虽有许多专有名词,但作者以其通俗的语言以及许多实例让我嗅到大数据时代中一抹清新之气。

为什么是清新的呢?因为书中的内容仿佛向我打开了一个既有点熟悉又有点陌生的世界。我们现在已处于网络时代 ,在我们日常简单的操作中大量数据产生,然而起初我们仅用众多技术在解决手头上的问题,那些大数据像沙子中的金子,价值不被发现。到目前,每当我们网上购书时总会看到“猜你喜欢”的栏目、出现谷歌搜索与流感预测、Farecast与飞机票价预测系统等,这些事情的达成全来自于那些曾被忽略的大数据同时也在证明“预测,大数据的核心”这句话,为我们的生活创造了前所未有的可量化的维度。看到书中这部分内容时,我不禁感受到自己的生活已在享大数据带来的福利,就像“猜你喜欢”栏目让我触到更多合我口味的书,让我看到了以前无法发现的细节。拥有大量数据的公司巨头如谷歌、亚马逊大力开发有关大数据的新型产业和研究相关项目。借网络时代的便利大数据成为了如今最有商业价值的事物,使一切可量化的趋势也开始出现。“本质上世界是由信息构成的”,面对这句话时,大数据时代仿佛就在眼前。

在感受惊叹着大数据能为我们做到以往无法想象的事和它巨大的价值时,我认同大数据能极大优化我们的生活,但又不禁为这时代感到担忧。一旦大数据时代来临,不仅我们的隐私可能不再是隐私,就如书中所言“我们时刻暴露在‘第三只眼’下:亚马逊监视着我们的购物习惯,谷歌监视着我们的购物习惯,而微博似乎什么都知道”,而且利用大数据我们可以预测许多事情并且十分高效,一旦人们依赖大数据极少运用人类自身的创新等能力被数据束缚住,世界只会沦落为一个极少活力的机械环境。而我认为最大的忧患,是大数据时代对人类自身思维、思想、信仰等精神领域的冲击。如今我们都生活在数据中,大数据时代说不定在几年后就会逐步来临,这使我不禁发问:我们一直坚信着信仰着的究竟是什么?我觉得世界说变就变实在令我想不通这个问题。事情都有好坏,我也不知道自己是否杞人忧天。

于是我继续去探索作者对这问题的思考。“更大的数据在于人本身”,作者还说“我们是在创造更好的未来”,也说“在一个预测的时代里,人类的.自由意志不可侵犯,这一点不可轻视。我们在使用大数据时,应当怀有谦恭之心,铭记人性之本”。人类学家克利福德吉尔兹曾说:“努力在可以应用、可以拓展的地方,应用它、拓展它;在不能应用、不能拓展的地方,就停下来。”这些话语仿佛是阳光,驱散我心中对大数据时代的担忧以及内心对其的恐惧。我认为,在坚守我们内心和自由意志下,大数据才会造福我们人类世界,发挥出它背后对人温暖的光芒。

面对时代的变革,我会为坚守内心深处的自由意志而努力并“拥抱大数据”。

大数据时代读后感1000字 篇4

世界的本质就是数据,当你掌握了数据,你便掌控了世界—你可以轻而易举地通过数据中的相关关系预测事物的发展,将一切不利因素扼杀于摇篮之中—这远胜于"防患于未然"。

《大数据时代》一书,让我们在观念上有了三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。全书介绍了 "大数据"时代三种大的变革:思维变革,商业变革和管理变革。在这些巨大变革如洪水一般的"冲击"之下,现代社会的运作方式必将有重大的改变,若不顺应这种变革的潮流,就像古中国固步自封,最终被坚船利炮打开国门而自己还用着长钩铁戟抗争一样,不可避免被掠夺,被落于世界进程之后,所以我们必须转变我们的思想。

"我们不再热衷于寻找因果关系,而应该寻找事物间的相关关系",我想这句话是本书的核心思想。大数据时代,信息与数据已成为了一切的本源,我们生活在各种数据构成的海洋之中,如果从另一种视角看,就好像无数条"看不见的线"将我们与这些数据联系到一起,这是我们以前从未有过、从未想过的。大数据改变了我们以前的通过因果关系了解世界的方法,而提供了几种新的途径,因为,在大数据时代,我们可以分析更多数据,有时甚至可以处理和某个特别现象相关的所有数据,也就是:样本=总体;而且,当研究数据如此之多时,我们已不热衷于"精确",而是"混乱",若不接受"混乱",那么有95%的非结构化数据无法利用,这将无法使我们构建完整的数据世界,在分析更多、更全面的数据之后,我们就可以从这些数据之中发掘它们的相关关系,即以"是什么"而不是"为什么"的角度看待数据,不用管其从何而来,只要分析其如何影响其他事物既可,即"让数据自己发声",这些,彻底推翻了人类以前探索数据的方法,展现了一个全新的世界。

这种观念以惊人的力量给现知识状况带来了巨大的冲击,通过对海量数据的分析,获得巨大价值的产品和服务,或深刻的洞见。比如谷歌公司,2009年h1n1流行之时,通过检测检索词条,处理34。5亿个不同的数据模型,通过预测并与2007、2008年的美国疾控中心记录的实际流感病例进行对比后,确定了45条检索词条组合,并将其用于一个特定的数学模型后,预测结果与官方数据相关系数高达97%,这种大数据技术,以前所未有的方式,通过海量数据分析得出流感所传播的范围,为预测流感提供了一种更快速、高效的工具

同时,虽然大数据可为人类造福、对抗病症,但这仅限于掌握这门技术而言,若不重视这种技术,当我们的对手早于我们一步构建这种数据网络之时,便是我们的灾难,想想,大数据虽核心的在于预测,当敌人通过这种手段预测我方下一步的行动,将是可怕的—比如你的导弹将从何处发射,将飞往哪,你的军队动向、目标,总之所有一切"未来"将掌控于敌手,敌方甚至可以借此发现那些将来有"大作为"的人,从而进行渗透或扼杀,这对我们的发展无疑是致命的,所以,尽快加速大数据系统的构建进程是必须的。

对于我们国防生,也必须顺应这种发展趋势,未来的时代必将是数据极易获取,数据网络共享化的时代,通过这些数据,建立数据模型,可以准确分析并给出适合每一个人的计划,如运动量、训练强度,可以"先知、先觉",及时发现一个人的负面情绪前及时疏导,这些必将成为现实,我们必须跟进时代,做好准备,去应对大数据时代的一切!

大数据时代读后感1000字 篇5

“除了上帝,任何人都必须用数据来说话。”——这是《大数据》中出现的让人印象深刻的一句话,也是全书力图传递的信息。在数字信息时代,数据和空气一样遍布生活,对于有些人来说,数据无意义,而对于有些人来说,数据,即真相。

美国是《大数据》的主角,全书通过讲述美国半个多世纪信息开放、技术创新的历史,公共财政透明的曲折、《数据质量法》背后的隐情、全民医改法案的波澜、统一身份证的百年纠结、街头警察的创新传奇、美国矿难的悲情历史、商务智能的前世今生、数据开放运动的全球兴起,Web3·0与下一代互联网的未来图景等等,为读者一一细解数据创新给公民、政府、社会带来的种种挑战和变革。

透过全书,一个立体的美国及美国人民的思想呈现在我们面前——美国人民执著于个人隐私的保护,却又不遗余力地推动着政府信息的透明与公开。

读完此书,对生活中的数据及数据处理突然有了很大的兴趣。如果有一天,处处以数据说话,那么,政治、制度、生活将更加清明,事故、将降到最低点。

作为信息技术教师,是有必要阅读此书的!有慧根的教师将能从书中挖掘出信息技术特有的文化以及能用于教学的鲜活案例。

每天能用来阅读的时间很少,总是要等到夜深疲倦时才有空打开书本,总是在眼睛极不舒服的情况下坚持阅读,《大数据》就这样在坚持中溶入我的思想……

大数据时代读后感1000字 篇6

读完《大数据》,我才意识到这并不是一本枯燥无味的书籍。作者运用案例和讲故事的方式,把美国数据开放、收集、使用背后的立法故事、公民故事、技术故事、商业故事娓娓道来,引人入胜,令我大开眼界。

我在想,大数据概念对于教育来说会产生什么样的实用价值呢?一直以来,中国教育在研究教育的数字化,比如数字化校园,这个思路就是把我们教育的内容进行数字化,其结果指向的就是电子教材的研发或者是教学过程的数字化。美其名曰,这是教育技术的重要内涵。在教学过程中,学生的行为表现都可以被数据化,而这项研究不是任何一个专业可以深入下去的,它的专业性太强,所以我才会想到,所谓教育技术与其研究教育的数字化,不如研究教育的数据化来得实在,来的有意义。长期以来,我们并不了解教育对一个人的影响具体会如何表现,我们有的只是一个轮廓,我们也并不确定一个教师的行为对学生具体产生了哪些影响。所以,人们对教育一直有一个深深的质疑,它是不是科学的?大数据概念至少提出了关注“是什么”比“为什么”要有实际意义得多。而我们的教育恰好需要把注意力从“为什么”转移到“是什么”上面来,只有如此,才能把教育从为什么发展成“可能成为什么”上来,这会是一次思想上的革命。而对于现在地位岌岌可危的教育技术来说,把研究的重点从数字化转移到数据化上面,这才是它的出路。

如何将数据融入教学,教育者首先通过标准化全科教学处方,实现了教师授课模板和教学内容的标准化,保证每个教学过程和内容是可控的,然后结合每天的教学内容,处理好面对的数据,处理好数据,自然也就处理好了课堂的反馈,最终形成了既注重教学体验又以教学结果为导向的教学体系。

与此同时,不仅要注重课上的学生资源,在课后还要对这些资源进行跟踪处理。这与过去的教育教学显然是不同的,面对大数据时代的到来,教学有所改变是必然的。所以,无论环境怎么变换,数据如何复杂,我们都不能不去改变自己的教学去迎合将来的这个大数据时代。

大数据时代读后感1000字 篇7

舍恩伯格的《大数据时代》,让我重新审视了"大数据"这个在信息时代异军突起的热点词汇,作为信息安全专业的我,对大数据这个词本身有着更多的热忱。

在网络上搜索到的解释是:"大数据",或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。特点:数量、速度、品种、真实性。

而舍恩伯格认为,大数据并不能定义一个确切的概念。他提到"大数据是人们获得新的认知,创造新的价值的源泉;大数据还是改变市场、组织机构,以及政府和公民关系的方法。"这是一种更具有人文色彩和社会意义的诠释。

本书中,主要从三个方面论述,即思维变革、商业变革和管理变革。而舍恩伯格更是着重阐明三大观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。

对于观点一,我不敢苟同,毕竟大数据的实现需要一定的技术支持,而显然,现在这种技术还不够成熟,同时一些简单的事情运用大数据反倒是问题更加复杂化,因此这种大叔据的繁杂处理方式更适用于一些特定的情况,比如商业预测,人类dna的研究等。

而对第二种观点,我是十分赞同舍恩伯格所说的"大数据的简单算法比小数据的简单算法有效"。在计算机行业迅速发展中,一种新的简单可行的算法的出现,远没有计算机在运算速度和存储容量的发展快,而大数据算法似乎更能迎合这种大趋势。

观点三中提到的相关关系在大数据中可是重量级的,它能较快找到事物规律和对应的解决措施,当然,也不能完全忽视因果关系,毕竟人们在思维上更能够接受因果关系分析出的结果,而大数据预测的需要人们慢慢的适应才能接受。当我们完成相关关系的分析而又不满足于只知道"是什么"的时候,我们就可以转而研究"为什么"了,毕竟问题的根本在于因果。而舍恩伯格的全体数据和相关关系是大数据时代下的一种捷径。

但是在信息时代,信息安全问题的日趋凸显,数据独裁与隐私保护之间的矛盾更是立于风口浪尖,成为众矢之的,舍恩伯格在本书的最后章节曾试图寻找一种解决方式来摆脱这一种困境,但最终没能做到,但是他提出"大数据并不是一个充斥着算法的和机器的冰冷世界,人类的作用仍无法被完全代替。"这里表明人在数据时代同样的重要,数据是为人类服务的,也就该人类驱使下完成相应的目的。

在这样的大环境下,常引起我更多的思考和担忧。

大数据时代对于我们同是机遇与挑战,一些国家已开始步入大数据时代的行列,并在各个领域开始研究和使用。而对于我国庞大的人口,以及较大的领土面积,都可以在大数据时代为我们提供数据的保障,而能否面临挑战,在大国之间的新一轮角色角逐间崭露头角,我们更需要解决技术等方面的问题,更应在政策上逐步开放各领域的数据,保证数据来源、权限等问题得到解决,不断学习先进的计算机技术,缩小与其他国家的差距。

工业化、信息化,我们都向世界交出了一份让世界不能小觑的答案;

大数据时代的数据化我们又将怎样在新的风暴中所向披靡,如果大数据时代是一种必然趋势,那这就是我们这一代人的责任,是我们新的战场!

;

2. 《大数据时代》:别把参考答案当做最终答案

因为周边总是充斥着“大数据”、“云计算”的字眼,望着说着术语的人们眼里野心勃勃的光芒,我不禁有些急躁的想弄明白什么是大数据,到底我们可以从大数据里挖掘到什么样的财富。不得不说,我选了一本好书,全篇脉络分明,逻辑缜密,穿插着数量繁复的案例,让人在兴致盎然之际就能通俗理解。

第一部分 大数据时代的思维变革

大数据时代的来临,最先要颠覆的是我们的思维模式:1、不是随机样本,而是全体数据;2、不是精确性,而是混杂性;3、不是因果关系,而是相关关系。

坦率的说,这个部分给我的感悟很深,相信很多工作涉及到做数据报告的人,都会从中获益不少。浅显的说,大数据时代是让我们把思维聚焦引向发散的变革。传统意义上,甚至人们日常生活的惯性里,都本能的需求一种因果关系。例如发生了一件事情,人们会立刻寻找一个简单的原因去说服自己。也就是“因为……所以……”这种逻辑思维是根深蒂固的。

在大数据时代,在拥有几乎完整的数据时,我们不再刻意追求数据中彼此之间的目的性,从相关性出发,我们无法说清楚为什么,但我们总知道就是这样。相关性的概念将会引申更多的创意思维,相信未来的工种也会因此更加细分,甚至会出现更多的新兴行业。

第二部分 大数据时代的商业变革

这是每个人都深有体会的:1、一切皆可量化;2、取之不尽,用之不竭的数据创新;3、数据、技术与思维的三足鼎立。

全书最核心或者说我本人最想了解的答案就在这里了。搜索引擎,导航工具,微博,微信记录着我们一切的行为记录,我们的情绪起伏都能被量化。这对商界是笔巨大的财富,他们可以根据这些数据定制独一无二的消费计划,也可以从中的相关关系中避免许多不必要的损失。

于是数据时代的价值链诞生:

1、基于数据本身的公司。 这类公司拥有大量的数据或者可以收集到大量数据。他们以出售数据盈利。当然大数据时代的后期,他们也开始逐渐转型,收购分析团队,将数据更大限度的价值化,以获取更高的盈利。

2、基于技能的公司。 咨询公司就是此类公司的典型代表,天睿,尼尔森这些都是数据分析的佼佼者,甚至四大现在也在积极开拓咨询业务。

3、基于思维的公司。 创新思维应该属于大数据时代最宝贵的财富。FlightCaster、Facebook、滴滴等等这些都是创新思维的典范。

我们要想从大数据时代挖掘金矿也可以顺着这条价值链下手。本人更倾向于第三种思维的风暴。有趣的是,这类公司的发起人甚至这些被我们趋之若鹜的应用都是创始人无聊逗乐的作品。显然,热爱生活,为生活提供更多便利和快乐,仿佛都是创新思维创造需求所必须的。

第三部分 大数据时代的管理变革

风险: 除开我们平常喜欢网购,消费习惯被搜索引擎记录在外,导航系统记录着我们的行动轨迹,甚至是我们的心情,通过微信朋友圈和微博,也都一一被监控中。我们仿佛生活在一双看不见的眼睛里,想想都觉得不寒而栗。

更可怕的是,当人们过于依赖大数据去做决策的时候,我们的社会终将有一天会演变为预测行为更替事实行为的悲剧。最简单的例子:警察可能从大数据监控的一系列行为中分析得到结论某人会谋杀他的妻子,而这个人也许什么都没做,而警察却名正言顺的将此人逮捕。因为大数据预测分析他一定会做,而警察的行为只是阻止了的悲剧的发生。完全磨灭了他可能真的不会犯罪的可能性。

掌控: 让数据的使用者承担责任,是相对保护个人隐私的有效方式。避免了个人信息数据被过度曝光,又给与了数据分析者极大的开发使用空间。另外大数据时代更要避免数据独裁时代。谷歌曾要求员工测试41种蓝色的阴影效果中,哪种被人们使用最频繁,从而决定网页工具栏的颜色。这种数据独裁曾在谷歌一度到达顶峰,同时也激起了强烈反抗。

数据的盲目崇拜总让人会遗忘数据总有固有的局限性,数据导向的答案是参考答案不是最终答案。不为数据而数据,才是大数据时代最好的态度,才能将大数据的功能最大化。

3. 大数据对于当前企业的运营有哪些帮助

进入新的历史时期以来,收集更加丰富的数据是摆在各个企业面前的主要任务,一旦企业不能收集范围更广的信息,那么企业管理决策则极易出现更多的失误。企业要重视内部数据信息管理工作,保证当前数据管理与大数据时代特点相一致。第一,进入大数据时代以来,由于涌现出数不胜数的数据信息,因此如果传统数据信息管理技术不能及时改变则极有可能影响大数据的应用,所以要求当前企业必须及时引进先进的软件与硬件,才能推动大数据的普遍应用。第二,由于数据信息的海量出现,因此企业还需不断提高数据信息的管理能力,要保证及时处理与加工得到的各种数据信息,要及时掌握当前最新数据。很多企业已经意识到信息数据的重要性,但因为不拥有先进的技术措施,各种数据信息还不能发挥应有的作用。第三,在企业管理决策过程中,虽然大数据发挥着不可替代的作用,但同时也需重视数据碎片的作用,一个企业要想取得成功则必须重视二种数据的应用,才能使二种数据相互协调,保证数据分析具有更高的科学性,进一步简化分析过程,减轻工作人员的劳动强度。企业还需及时创新内部知识管理,要尽快引入新型知识管理模式。在实际运行中,知识管理其实就是数据的管理。企业在做出管理决策时,知识提取是一个不可缺少的过程,只有大力应用各种知识才能制订最为合理的决策。当前由于大数据技术的影响,人们日益意识到知识的重要性,很多企业当前将建设现代化的知识管理模式放在重要位置,高度重视知识管理工作。同时企业也不能过分依赖大数据的应用,而忽略了主观决策的重要性,要保证二者相互协调、相互促进,才能帮助企业做出正确。

4. 用好大数据推进“智慧城市”建设

用好大数据推进“智慧城市”建设

大数据已在很多领域被广泛应用,各行各业都受到大数据的强烈冲击。在这样的背景下,中国国际大数据创新发展论坛于23日在深圳召开,此次大会意在激发创新创业活力,鼓励企业发掘和利用数据资源,促进创新链和产业链深度融合,推动大数据发展与科研创新的有机结合,最终形成大数据驱动型的科研创新模式。

而随着大数据时代的到来,深圳也开始进入利用大数据构建智慧城市的进程中。与会专家建议,深圳有良好的大数据建设基础,构建智慧城市一定要用好大数据。

深企将从IT时代走向DT时代

深圳的民营企业众多,大数据对这些民营企业意味着什么?民营企业又如何抓住大数据时代的机遇?正威国际集团董事局主席王文银在演讲时讲了一个“尿布与啤酒”的案例。

“这个‘啤酒与尿布’故事启发我们,大数据让我们可能有全新的视角来发现新的商业机会和重构新的商业模式。今后企业的市场营销活动会更有针对性和精准性。”王文银说。

作为深圳一家知名民营企业的掌舵人,王文银结合正威的实践指出,各行各业开始数字化、互联网化,越来越多的企业将投入到这场伟大的数据革命之中。作为国家级创新城市,深圳市在政策和具体行动上给予大数据产业大力的支持;同时,一大批从事大数据产业实践的知名企业在深圳扎根,也为这个产业发展创造了得天独厚的条件。

王文银分析认为,大数据能让企业精准地生产和服务。它将重构行业商业思维和商业模式。未来的企业将从业务驱动型转变成价值驱动型,而判断价值主要是通过大数据分析,让数据来告诉企业需求在哪、机会在哪、价值在哪。此外,王文银认为,大数据使企业真正实现从过去的以自我为中心转变为以客户为中心,与此同时,大数据一定程度上将颠覆企业的传统管理方式。

“深圳民营经济最有活力,作为其中的一员,正威也正走在通向大数据的路上。目前,集团正在打造大数据互联网生态链。”王文银表示,“预计在5年左右,深圳的企业将从IT时代走向DT时代,因此民营企业一定要抓住大数据时代的机遇。”

大数据是建设智慧城市的源泉

深圳正在构建智慧城市。大数据在智慧城市建设中将扮演怎样的角色?中国智慧城市专家委员会首席科学家李林分享了来自新加坡的经验。他指出,新加坡大数据产业的发展有它自己的规划,一些经验值得深圳借鉴。

李林在新加坡长期研究的是数据信息和知识之间的关系。他认为,新加坡在智慧城市建设方面之所以做得好,得益于他们在35年前就开始构建大数据,“他们整个智慧城市的建设过程其实反映的就是大数据建设的一个过程”。

李林介绍,无论住房、医疗还是教育,在新加坡都是用数据说话。在新加坡租房、买房、入学、看病,根本不需要提供一大堆证件证明,老百姓都不用做任何事情,只要报一个身份证号码就可以了,因为政府早就建好了一个城市管理的大数据系统。“新加坡为了管理好大数据,他还给每一个公民和临时来的暂住者发一个数据代码,这个数据代码会跟你在新加坡所有的社会证件相关联,比如说跟你的中国护照关联。你在新加坡必须使用这个数据代码,因为这个代码会跟你所有的大数据关联,影响到你生活的衣食住行。”

针对现在包括像深圳、上海、北京这样的国内城市也在纷纷推广智慧城市建设,李林指出,新加坡在大数据的建设方面非常有远见。事实上,新加坡在构建城市大数据的时候,首先会充分了解老百姓的需求,通过城市居民在需求上的大数据来构建城市管理,所以现在新加坡人生活得很幸福,这一点很值得深圳学习。“实际上智慧城市建设涉及城市的各个领域、各个产业,大数据是建设智慧城市的源泉,深圳要构建智慧城市,就要把大数据跟智慧城市关联起来”。

深圳有良好的大数据建设基础

城市的智慧建设离不开大数据建设,深圳大数据建设的环境如何,与其他一线城市比,深圳的大数据建设有哪特点?深圳市大数据产业发展促进会秘书长彭向阳指出,与北方的一线城市比,深圳尽管没有丰富的政府资源,但这个以创新为特点的城市在建设大数据领域拥有得天独厚的条件。

彭向阳介绍,深圳的大数据这几年才刚刚发展起来,深圳的大数据促进会也是去年才刚刚成立。“总的来看,深圳的大数据建设尚处在一个萌芽状态。”

尽管在刚刚起步的阶段,但彭向阳认为,“大数据的形成需要打好几个基础,首先是能力基础,再就是技术基础和政府资源的基础,最后是市场用户需求的基础。总体来说,深圳的这几个基础都不错。”

“深圳有很多企业已经通过互联网+这样的形式把自己的大数据系统建立起来了,而深圳市大数据产业发展促进会建立的目的就是为这些企业搭建平台,把最新的技术资源整合起来,推动深圳大数据产业甚至国内大数据产业的发展。”彭向阳说,“目前来看,大量的数据还是在政府手里,我们协会希望推动政府能够尽快开放大数据,为企业应用大数据提供更好的资源和基础。”

针对深圳大量的民营企业,李林建议:“企业首先要了解大数据,然后再指导大家怎么来运用大数据;其二是企业要积极融入互联网。现在我们整个智慧城市建设的核心是网络,网络的应用和大数据的应用相辅相成,有了云计算、有了大数据,我们的互联网才真正有意义;第三,深圳有很多大数据应用得很好的企业,希望大家多看看多学习,因为通过学习才会有启发,你才能在你的行业用好大数据。”

以上是小编为大家分享的关于用好大数据推进“智慧城市”建设的相关内容,更多信息可以关注环球青藤分享更多干货

5. 大数据的应用领域有哪些

1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

6. 谁最早提出大数据的概念

最早提出大数据的是美国数据学家维克多•迈尔-舍恩伯格。推荐他的两本书《删除》,《大数据时代》。

7. 《大数据时代》读后感

认真读完一本著作后,相信大家的视野一定开拓了不少,为此需要认真地写一写读后感了。怎样写读后感才能避免写成“流水账”呢?下面是我收集整理的关于《大数据时代》读后感范文(通用5篇),仅供参考,希望能够帮助到大家。

《大数据时代》读后感1

对于畅销书刊、热点话题、时尚科技,始终不太感兴趣。书刊,喜欢有一定年份的。话题,钟情于务虚的观点。新奇的产品于我无缘,习惯使用成熟的科技产品。既不清高,也非冷漠,就是要与现实保持一定的距离,给自己留一点思考的空间。这一习惯最近破了例。由于工作的原因,耳濡目染,“大数据”这个新兴概念开始频繁步入我的视野。按捺不住内心的好奇,网购《大数据时代》,手不释卷,三天读完,颇有收获。此书有如下特点。

首先,作者站在理论的制高点上,条理清楚地阐述了大数据对人类的工作、生活、思维带来的革新,大数据时代的三种典型的商业模式,以及大数据时代对于个人隐私保护、公共安全提出的挑战。其次,文中的事例贴近现实生活,贴近时代,令读者既印象深刻,又感同身受。此外,作者没有使用大量的专业术语,没有假装一副专业的面孔。纵观全书,遣词造句,均通俗易懂。

作者认为大数据时代具有三个显著特点。

一、人们研究与分析某个现象时,将使用全部数据而非抽样数据。

二、在大数据时代,不能一味地追求数据的精确性,而要适应数据的多样性、丰富性、甚至要接受错误的数据。

三、了解数据之间的相关性,胜于对因果关系的探索。“是什么”比“为什么”重要。

作者指出,随着技术的发展,数据的存储与处理成本显著降低,人们现在有能力从支离破碎的、看似毫不相干的数据矿渣中抽炼出真知烁见。在大数据时代,三类公司将成为时代的宠儿。

一是拥有大数据的公司与组织。如政府、银行、电信公司、全球性互联网公司(阿里巴巴、淘宝网)。

二是拥有数据分析与处理技术的专业公司,如亚马逊、谷歌。

三是拥有创新思维的公司,他们可能既不掌握大数据,也没有专业技术,但却擅长使用大数据,从大数据中找到自己的理想天地。

面对即将来临的大数据时代,个人将如何应对自如?这是个严肃的问题。

《大数据时代》读后感2

去年的“云计算”炒得热火朝天的,今年的“大数据”又突袭而来。仿佛一夜间,各厂商都纷纷改旗换帜,推起“大数据”来了。于是乎,各企业的CIO也将热度纷纷转向关注“大数据”来了。有一张来自《程序员》微博的漫画很形象。我觉得这张图,很真实地反映了现实中小企业云计算,大数据的现状。

不过话又还得说回来,《大数据时代》是本好书。

当然,很多IT知名人士也大力推荐,写了好多读后感来表述对这本书的喜欢没看此书之前,对所谓大数据的概念基本上是一头雾水,虽则有了解关注过现在也比较火热的BI,觉得也差不多,可能就是更多的数据,更细致的数据分析与数据挖掘。看过此书后,感觉到之前的想法,只能算是中了一小半吧———巨量的数据,而另一前:着眼于数据关联性,而非数据精确性,或许才是大数据与现时BI的不同,不仅仅是方法,更多的时思想方法。不过坦白讲,到底是数据的关联性重佳,还是数据的精确性更好,还真的需要时间来检验一下,至少从现在的数据分析方法来论,更多的倾向于数据的精确性。

看完此书,我心中的一些问题:

1、什么是大数据?

查了查网络,是这样定义的:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity这个好像是IBM的定义吧。

以个人的观点来看:数据海量,存储海量都是大数据的基本原型吧。

2、大数据适合什么样的企业?

诚然,大数据的前提是海量的数据,只有拥有巨量的数据资源,方能从中查找出数据的关联性,才可以让通过专业化的处理,让其为企业产生价值。针对电信运营,互联网应用这样海量用户的数据的大企业,也是在应用大数据的道路上拥有得天独厚的条件,但是针对中小企业呢?销售订单数据?若非百年老店,估计数据也是少得可怜,能用的可能只有消费者数据了吧。貌似大多数厂商,用来举例的也就是消费都购买行为分析为最多。

同样,在公共事业类的政府机构,大数据的作用也许也能很好的发挥。反而感觉在大多数中小型企业应用大数据,似乎有点大题小作。书中说:大数据是企业竞争力。诚然,数据是一个企业的核心无形资源(利用得好的话),但是否所有的数据,或都换则方式说:所有的企业都以大数据为竞争力,是否真的合适么?是否在中小企业中,会显示得小题大做呢?

3、大数据带来的`影响

当一波又一波的IT技术热潮源源不断地向我们铺面而来的时候,你甚至都没有做好准备,你都要开始迎接它所给你带来的影响了。经过物联网,云计算的推波助澜下,大数据开始登场了。但它到底给我们带来了什么呢?

1)预测未来书中以Google成功预测了未来可能发生流感的案例来开篇,表明通过大数据的应用,可以为我们的生活起一个保驾护航的指向标。实质很简单,技术改变世界。

2)变革商业大数据所带来的商机,同时会衍生出一系列与大数据相关的商业机遇与商业模式,数据的潜在价值会源源不断地发挥作用可以容易想到的是未来有专门的数据收集,数据分析,数据生成的一条数据产业链产生。影响的,当然是IT公司

3)变革思维书中所说:因为有海量的数据作基础,未来,我们可能更关注数据的相关,而非精细度。对这条,本人还是持保留意见的。

《大数据时代》读后感3

如今说起新媒体和互联网,必提大数据,似乎不这样说就OUT了。而且人云亦云的居多,不少谈论者甚至还没有认真读过这方面的经典著作——舍恩佰格的《大数据时代》。维克托·迈尔舍恩伯格何许人也?他现任牛津大学网络学院互联网研究所治理与监管专业教授,曾任哈佛大学肯尼迪学院信息监管科研项目负责人。他的咨询客户包括微软、惠普和IBM等全球企业,他是欧盟互联网官方政策背后真正的制定者和参与者,他还先后担任多国政府高层的智囊。这位被誉为:大数据时代的。预言家“的牛津教授真牛!那么,这位大师说的都是金科玉律吗?并不一定,读大师的作品一定要做些功课才好读懂,才能能与之进行一场思想上的对话。

舍恩伯格分三部分来讨论大数据,即思维变革、商业变革和管理变革。

在第一部分”大数据时代的思维变革“中,舍恩伯格旗帜鲜明的亮出他的三个观点:

一、更多:不是随机样本,而是全体数据。

二、更杂:不是精确性,而是混杂性。

三、更好:不是因果关系,而是相关关系。对于第一个观点,我不敢苟同。

一方面是对全体数据进行处理,在技术和设备上有相当高的难度。另一方面是不是都有此必要,对于简单事实进行判断的数据分析难道也要采集全体数据吗?

我曾与香港城市大学的祝建华教授讨论过。祝教授是传播学研究方法和数据分析的专家,他认为一定可以找到一种数理统计方法来进行分析,并不一定需要全部数据。联系到舍恩伯格第二个观点中所说的相关关系,我理解他说的全体数据不是指数量而是指范围,即大数据的随机样本不限于目标数据,还包括目标以外的所有数据。我认为大数据分析不能排除随机抽样,只是抽样的方法和范围要加以拓展。

我同意舍恩伯格的第二观点,我认为这是对他第一个观点很好的补充,这也是对精准传播和精准营销的一种反思。”大数据的简单算法比小数据的复杂算法更有效。“更具有宏观视野和东方哲学思维。对于舍恩伯格的第三个观点,我也不能完全赞同。”不是因果关系,而是相关关系。“不需要知道”为什么“,只需要知道”是什么“。传播即数据,数据即关系。在小数据时代人们只关心因果关系,对相关关系认识不足,大数据时代相关关系举足轻重,如何强调都不为过,但不应该完全排斥它。大数据从何而来?为何而用?如果我们完全忽略因果关系,不知道大数据产生的前因后果,也就消解了大数据的人文价值。如今不少学者为了阐述和传播其观点往往语出惊人,对旧有观念进行彻底的否定。

世间万物的复杂性多样化并非非此即彼那么简单,舍恩伯格也是这种二元对立的幼稚思维吗?其实不然,读者在阅读时一定要看清楚他是在什么语境下说的,不要因囫囵吞枣的浅读而陷入断章取义的误读。比如说舍恩伯格在提出”不是因果关系,而是相关关系。“这一论断时,他在书中还说道:”在大多数情况下,一旦我们完成了对大数据的相关关系分析,而又不再满足于仅仅知道‘是什么’时,我们就会继续向更深层次研究的因果关系,找出背后的‘为什么’。“由此可见,他说的全体数据和相关关系都在特定语境下的,是在数据挖掘中的选项。

大数据研究的一大驱动力就是商用,舍恩伯格在第二部分里讨论了大数据时代的商业变革。舍恩伯格认为数据化就是一切皆可”量化“,大数据的定量分析有力地回答”是什么“这一问题,但仍然无法完全回答”为什么“。因此,我认为并不能排除定性分析和质化研究。数据创新可以创造价值,这是毫无疑问的。舍恩伯格在讨论大数据的角色定位时仍把它置于数据应用的商业系统中,而没有把它置于整个社会系统里,但他在第二部分大数据时代的管理变革中讨论了这个问题。

在风险社会中信息安全问题日趋凸显。如何摆脱大数据的困境?舍恩伯格在最后一节”掌控“中试图回答,但基本上属于老生常谈。我想,或许凯文·凯利的《失控》可以帮助我们解答这个问题?至少可以提供更多的思考维度。正如舍恩伯格在结语中所道:”大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考的答案,帮助是暂时的,而更好的方法和答案还在不久的未来。“谢谢舍恩伯格!让大数据讨论从自然科学回到人文社科。由此推断,《大数据时代》不是最终答案,也不是标准答案,只是参考的答案。

此外,在阅读此书之前还必须具备一些数据科学的基本知识和基本概念,比如说什么叫数据?什么叫大数据?数据分析与数据挖掘的区别,数字化与数据化有什么不同?读前做些功课读起来就比较好懂了。

《大数据时代》读后感4

读完《大数据时代》这本书后,我意识到:我们即将或正在迎接由书面到电子的跳跃之后的又一重大变革。

这本书介绍了大数据时代来临后,接踵而至的三项变革——商业变革、管理变革和思维变革。

其实,这场变革已经打响。商业领域由于大数据时代的到来而推陈出新。前几年,一家名为Farecast的公司,让预订到更优惠的机票价格不再是梦想。公司利用航班售票的数据来预测未来机票价格的走势。现在,使用这种工具的乘客,平均每张机票可以省大约50美元,这就是大数据给人们带来的便利。

大家应该都知道2009年出现的H1N1型流感,就拿美国为例,疾控中心每周只进行一次数据统计,而病人一般都是难以忍受病痛的折磨才会去医院就诊,因此也导致了信息的滞后。然而,对于飞速传播的疾病,Google公司却能及时地作出判断,确定流感爆发的地点,这便是基于庞大的数据资源,可见大数据时代对公共卫生也产生了重大的影响!

在我看来,如果想在在大数据时代里畅游,不仅要学会分析,而且还要能够大胆地决断。

在美国,每到七、八月份时,正是台风肆虐之时,防涝用品也摆上了商品货架。沃尔玛公司注意到,每到这时,一种蛋挞的销售量较其他月份明显增加。于是,商家作了大胆的推测,出现这样的结果源于两种物品的相关性,便将这种蛋挞摆在了防涝用品的旁边。这样的举措大大增加了利润,这就是属于世界头号零售商的大数据头脑!

大数据时代的到来,可以让我们的生活更加便利。但是,如果让大数据主宰一切,也存在一定的风险。

大家应该都知道电子地图,它可以为人们指引方向。但大家应该还不知道,它会默默地积累人们的行程数据,通过智能分析可以推断出哪里是自己的家,哪里是工作单位。我们的隐私就这样被不为人知地收集着。

大数据时代的到来,让我们的生活更安全,更方便,但与此同时,我们的隐私不再是隐私,数据的收集变得无所不包、无孔不入。世界已经向大数据时代迈进了一小步,一个崭新的时代正向我们走来。让我们用知识武装大脑,做好准备,迎接新时代的到来!

《大数据时代》读后感5

首先,想谈一谈何为大数据,何为大数据时代。大数据是一种资源,也是一种工具。它提供一种新的思维方式去理解当今这个信息化世界。为何说是一种新的思维方式:在信息缺乏的时代或模拟时代,我们更倾向于精确性的思维方式,就像是"钉是钉,铆是铆",而在这种传统的思维方式下,我们得到问题的答案只有一个。

而在大数据时代下,我们打破了这种思维方式,换句话说,我们接受结果的不确定性。简言概括之,我认为大数据是一种预测模型。在大数据时代下,我们关注的不是因果,即为什么是这样,而更关心"是什么"这种相关关系。换句话说,在这种新思维的思考方式下,我们探究问题背后的原因也是不可行的。我们所做的是利用大数据这种工具,让数据自己说话!

其次,我想谈下如何利用大数据提升我军战斗力。当然,大数据分析并不是精准的预测,精准的预测也是不存在的。大数据只能有利于我们理解现在和预测未来的可能性。

作为军人,我所关注的是如何利用好大数据的工具提升我军战斗力,打赢这场信息化战争。毫无疑问,现在我们打的不是刀对刀,枪对枪的战争,更不是模拟时代,当代乃是数字时代,打的是信息化战争!

四次战争的大胜,美军的战争形态从机械化转向信息化,而且相应的在战场取胜的时间也越来越短,这正是大数据时代下的必然结果。而我军正在转向信息化的过程中。在此战争形态的过程中,我们需要更多的计算分析师,大数据分析师,数学家等高等技术性人才来打赢这场信息化战争。这正是大数据时代下我们不得不有的基础。我军战斗力的提升迫在眉睫!

当然大数据是一把双刃剑,利用好了取胜也是得心应手,相反,利用不好会导致不可估量的损失。

毕竟,这只是一种预测模型,得不到精准的预测结果。我们更要让数据为我们所用,不要被庞大的数据库框住我们的思维。为适应时代的发展,在这个适者生存,弱肉强食的世界,大数据时代下的残酷竞争已经给我们敲响警钟,一场悄无声息的信息化战争已经打响!

阅读全文

与我们的大数据时代李广建相关的资料

热点内容
angularjsclass定义 浏览:157
ug数控编程怎么导出程序 浏览:466
cmdb文件 浏览:710
鹎文件夹 浏览:763
网络舆情应对的基本理念是什么 浏览:433
word2007层次结构 浏览:456
去掉文件名的数字 浏览:713
word公司 浏览:710
淘宝店数据包怎么上传 浏览:341
pbt文件 浏览:204
HX基础编程怎么改变字体 浏览:876
怎么开网络教学 浏览:915
630升级工程武器 浏览:936
用换机助手接收的软件文件在哪找 浏览:282
阅达app一教一辅五年级有哪些 浏览:7
win10系统用f2调节音量 浏览:19
压缩文件密码器 浏览:840
线下活动数据分析有哪些 浏览:314
助听器插片式编程线如何连接 浏览:293
怎么删除系统休眠文件 浏览:914

友情链接