导航:首页 > 网络数据 > 十八款hadoop工具帮你驯服大数据

十八款hadoop工具帮你驯服大数据

发布时间:2023-09-06 22:13:14

大数据开发工具有哪些

大数据研究的出现,为企业、研究机构、政府决策提供了新的行之有效思路和手段,想要做好大数据的管理和分析,一些大数据开发工具 的使用是必不可少的,以下是大数据开发过程中常用的工具:
1. Apache Hive
Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
2. Apache Spark
Apache Spark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。
3. Jaspersoft BI 套件
Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是一流的, 许多企业已经使用它来将SQL表转化为pdf,,这使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。
4. Keen IO
Keen IO是个强大的移动应用分析工具。开发者只需要简单到一行代码, 就可以跟踪他们想要的关于他们应用的任何信息。开发者接下来只需要做一些Dashboard或者查询的工作就可以了。
5. Mortar Data
Mortar Data是专为开发者打造的Hadoop开发平台,它用Pig和Python的组合替代了MapRece以便开发者能简单地编写Hadoop管道(Pipeline)。
6. Placed Analytics
利用脚本语言以及API, PlacedAnalytics能够提供针对移动和网络应用的详细用户行为分析。包括, 用户使用时间和地理位置信息。 这些可以帮助开发者的应用更好地吸引广告商, 也可以帮助开发者对自己的应用进行改善。
7. Ingres Corp
它拥有超过一万客户而且正在扩增。它通过Vectorwise以及对ParAccel实现了扩展。这些发展分别导致了Actian Vector和Actian Matrix的创建。它有Apache,Cloudera,Hortonworks以及其他发行版本可供选择。
8. Talend Open Studio
Talend是一个统一的平台,它通过提供一个统一的,跨企业边界生命周期管理的环境,使数据管理和应用更简单便捷。这种设计可以帮助企业构建灵活、高性能的企业架构,在次架构下,集成并启用百分之百开源服务的分布式应用程序变为可能。
9. Cloudera
Cloudera正在努力为开源Hadoop,提供支持,Hadoop可以作为目标数据仓库,高效的数据平台,或现有数据仓库的ETL来源。企业规模可以用作集成Hadoop与传统数据仓库的基础。 Cloudera致力于成为数据管理的“重心”。
10. Pentaho Business Analytics
Pentaho的工具可以连接到NoSQL数据库,有很多内置模块,可以把它们拖放到一个图片上, 然后将它们连接起来。
工具的熟练使用可以起到事半功倍的效果,以上仅仅是一些数据开发过程中常用的工具,对于大数据开发人员来说是需要熟练掌握的,当然,大数据开发 过程中也会需要借助一些其他的工具,这就需要大数据开发人员 具有发现和解决问题的能力,以及养成善于积累的习惯!

❷ 大数据技术领域工具都有哪些

【导读】关于大数据的业务应用,通过将数据扩展到解决方案,应该关注数据的“结构”和“维度”。那么,大数据技术领域工具有哪些呢?大数据工程师都在用它们,今天就跟随小编一起来了解下吧!

1、Hadop

Hadoop诞生于2005年,是雅虎(Yahoo)为解决网络搜索问题而设计的一个项目。由于它的技术效率,后来被Apache软件基金会作为开源应用程序引入。Hadoop本身不是一个产品,而是一个软件产品的生态系统,这些软件产品结合在一起,实现了全面的功能和灵活的大数据分析。从技术上讲,Hadoop包括两个关键服务:使用Hadoop分布式文件系统(HDFS)的可靠数据存储服务和使用MapRece技术的高性能并行数据处理服务。

2、蜂巢

Hive是建立在Hadoop文件系统之上的数据仓库架构,用于分析和管理存储在HDFS中的数据。Facebook的诞生和发展是为了应对管理和机器学习Facebook每天产生的大量新社交网络数据的需求。后来,其他公司开始使用和开发Apache
Hive,如Netflix、Amazon等。

3、风暴

Storm是一个主要由Clojure编程语言编写的分布式计算框架。这家营销和情报公司由Nathan
Marz和他在BackType的团队创立,2011年被Twitter收购。Twitter随后将该项目开源,并将其推广到GitHub。Storm最终于2014年9月加入Apache孵化器项目,正式成为Apache的顶级项目之一。

关于大数据技术领域工具都有哪些,小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素大数据工程师具备能力等内容,可以点击本站的其他文章进行学习。

❸ 做大数据分析系统Hadoop需要用哪些软件

1、ApacheMesos

代码托管地址:ApacheSVN

Mesos提供了高效、跨分布式应用程序和框架的资源隔离和共享,支持Hadoop、MPI、Hypertable、Spark等。

Mesos是Apache孵化器中的一个开源项目,使用ZooKeeper实现容错复制,使用LinuxContainers来隔离任务,支持多种资源计划分配(内存和CPU)。提供java、Python和C++APIs来开发新的并行应用程序,提供基于Web的用户界面来提查看集群状态。

2、HadoopYARN

代码托管地址:ApacheSVN

YARN又被称为MapRece2.0,借鉴Mesos,YARN提出了资源隔离解决方案Container,但是目前尚未成熟,仅仅提供Java虚拟机内存的隔离。

对比MapRece1.x,YARN架构在客户端上并未做太大的改变,在调用API及接口上还保持大部分的兼容,然而在YARN中,开发人员使用ResourceManager、ApplicationMaster与NodeManager代替了原框架中核心的JobTracker和TaskTracker。其中ResourceManager是一个中心的服务,负责调度、启动每一个Job所属的ApplicationMaster,另外还监控ApplicationMaster的存在情况;NodeManager负责Container状态的维护,并向RM保持心跳。ApplicationMaster负责一个Job生命周期内的所有工作,类似老的框架中JobTracker。

Hadoop上的实时解决方案

前面我们有说过,在互联网公司中基于业务逻辑需求,企业往往会采用多种计算框架,比如从事搜索业务的公司:网页索引建立用MapRece,自然语言处理用Spark等。

3、ClouderaImpala

代码托管地址:GitHub

Impala是由Cloudera开发,一个开源的MassivelyParallelProcessing(MPP)查询引擎。与Hive相同的元数据、SQL语法、ODBC驱动程序和用户接口(HueBeeswax),可以直接在HDFS或HBase上提供快速、交互式SQL查询。Impala是在Dremel的启发下开发的,第一个版本发布于2012年末。

Impala不再使用缓慢的Hive+MapRece批处理,而是通过与商用并行关系数据库中类似的分布式查询引擎(由QueryPlanner、QueryCoordinator和QueryExecEngine三部分组成),可以直接从HDFS或者HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。

4、Spark

代码托管地址:Apache

Spark是个开源的数据分析集群计算框架,最初由加州大学伯克利分校AMPLab开发,建立于HDFS之上。Spark与Hadoop一样,用于构建大规模、低延时的数据分析应用。Spark采用Scala语言实现,使用Scala作为应用框架。

Spark采用基于内存的分布式数据集,优化了迭代式的工作负载以及交互式查询。与Hadoop不同的是,Spark和Scala紧密集成,Scala像管理本地collective对象那样管理分布式数据集。Spark支持分布式数据集上的迭代式任务,实际上可以在Hadoop文件系统上与Hadoop一起运行(通过YARN、Mesos等实现)。

5、Storm

代码托管地址:GitHub

Storm是一个分布式的、容错的实时计算系统,由BackType开发,后被Twitter捕获。Storm属于流处理平台,多用于实时计算并更新数据库。Storm也可被用于“连续计算”(continuouscomputation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。

Hadoop上的其它解决方案

就像前文说,基于业务对实时的需求,各个实验室发明了Storm、Impala、Spark、Samza等流实时处理工具。而本节我们将分享的是实验室基于性能、兼容性、数据类型研究的开源解决方案,其中包括Shark、Phoenix、ApacheAccumulo、ApacheDrill、ApacheGiraph、ApacheHama、ApacheTez、ApacheAmbari。

6、Shark

代码托管地址:GitHub

Shark,代表了“HiveonSpark”,一个专为Spark打造的大规模数据仓库系统,兼容ApacheHive。无需修改现有的数据或者查询,就可以用100倍的速度执行HiveQL。

Shark支持Hive查询语言、元存储、序列化格式及自定义函数,与现有Hive部署无缝集成,是一个更快、更强大的替代方案。

7、Phoenix

代码托管地址:GitHub

Phoenix是构建在ApacheHBase之上的一个SQL中间层,完全使用Java编写,提供了一个客户端可嵌入的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBasescan,并编排执行以生成标准的JDBC结果集。直接使用HBaseAPI、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。Phoenix完全托管在GitHub之上。

Phoenix值得关注的特性包括:1,嵌入式的JDBC驱动,实现了大部分的java.sql接口,包括元数据API;2,可以通过多个行键或是键/值单元对列进行建模;3,DDL支持;4,版本化的模式仓库;5,DML支持;5,通过客户端的批处理实现的有限的事务支持;6,紧跟ANSISQL标准。

8、ApacheAccumulo

代码托管地址:ApacheSVN

ApacheAccumulo是一个可靠的、可伸缩的、高性能、排序分布式的键值存储解决方案,基于单元访问控制以及可定制的服务器端处理。使用GoogleBigTable设计思路,基于ApacheHadoop、Zookeeper和Thrift构建。Accumulo最早由NSA开发,后被捐献给了Apache基金会。

对比GoogleBigTable,Accumulo主要提升在基于单元的访问及服务器端的编程机制,后一处修改让Accumulo可以在数据处理过程中任意点修改键值对。

9、ApacheDrill

代码托管地址:GitHub

本质上,ApacheDrill是GoogleDremel的开源实现,本质是一个分布式的mpp查询层,支持SQL及一些用于NoSQL和Hadoop数据存储系统上的语言,将有助于Hadoop用户实现更快查询海量数据集的目的。当下Drill还只能算上一个框架,只包含了Drill愿景中的初始功能。

Drill的目的在于支持更广泛的数据源、数据格式及查询语言,可以通过对PB字节数据的快速扫描(大约几秒内)完成相关分析,将是一个专为互动分析大型数据集的分布式系统。

10、ApacheGiraph

代码托管地址:GitHub

ApacheGiraph是一个可伸缩的分布式迭代图处理系统,灵感来自BSP(bulksynchronousparallel)和Google的Pregel,与它们区别于则是是开源、基于Hadoop的架构等。

Giraph处理平台适用于运行大规模的逻辑计算,比如页面排行、共享链接、基于个性化排行等。Giraph专注于社交图计算,被Facebook作为其OpenGraph工具的核心,几分钟内处理数万亿次用户及其行为之间的连接。

11、ApacheHama

代码托管地址:GitHub

ApacheHama是一个建立在Hadoop上基于BSP(BulkSynchronousParallel)的计算框架,模仿了Google的Pregel。用来处理大规模的科学计算,特别是矩阵和图计算。集群环境中的系统架构由BSPMaster/GroomServer(ComputationEngine)、Zookeeper(DistributedLocking)、HDFS/HBase(StorageSystems)这3大块组成。

12、ApacheTez

代码托管地址:GitHub

ApacheTez是基于HadoopYarn之上的DAG(有向无环图,DirectedAcyclicGraph)计算框架。它把Map/Rece过程拆分成若干个子过程,同时可以把多个Map/Rece任务组合成一个较大的DAG任务,减少了Map/Rece之间的文件存储。同时合理组合其子过程,减少任务的运行时间。由Hortonworks开发并提供主要支持。

13、ApacheAmbari

代码托管地址:ApacheSVN

ApacheAmbari是一个供应、管理和监视ApacheHadoop集群的开源框架,它提供一个直观的操作工具和一个健壮的HadoopAPI,可以隐藏复杂的Hadoop操作,使集群操作大大简化,首个版本发布于2012年6月。

ApacheAmbari现在是一个Apache的顶级项目,早在2011年8月,Hortonworks引进Ambari作为ApacheIncubator项目,制定了Hadoop集群极致简单管理的愿景。在两年多的开发社区显着成长,从一个小团队,成长为Hortonworks各种组织的贡献者。Ambari用户群一直在稳步增长,许多机构依靠Ambari在其大型数据中心大规模部署和管理Hadoop集群。

目前ApacheAmbari支持的Hadoop组件包括:HDFS、MapRece、Hive、HCatalog、HBase、ZooKeeper、Oozie、Pig及Sqoop。

❹ 大数据处理工具有哪些

互联网的迅速发展推动信息社会进入到大数据时代,大数据催生了人工智能,也加速推动了互联网的演进。再对大数据的应用中,有很多工具大大提高了工作效率,本篇文章将从大数据可视化工具和大数据分析工具分别阐述。

大数据分析工具:
RapidMiner
在世界范围内,RapidMiner是比较领先的一个数据挖掘的解决方案。很大程度上,RapidMiner有比较先进的技术。RapidMiner数据挖掘的任务涉及了很多的范围,主要包括可以简化数据挖掘的过程中一些设计以及评价,还有各类数据艺术。
HPCC
某个国家为了实施信息高速路施行了一个计划,那就是HPCC。这个计划总共花费百亿美元,主要目的是开发可扩展的一些计算机系统及软件,以此来开发千兆比特的网络技术,还有支持太位级网络的传输性能,进而拓展研究同教育机构与网络连接的能力。
Hadoop
这个软件框架主要是可伸缩、高效且可靠的进行分布式的处理大量数据。Hadoop相当可靠,它假设了计算元素以及存储可能失败,基于此,它为了保证可以重新分布处理失败的节点,维护很多工作数据的副本。Hadoop可伸缩,是因为它可以对PB级数据进行处理。
Pentaho BI
Pentaho BI和传统的一些BI产品不一样,这个框架以流程作为中心,再面向Solution(解决方案)。Pentaho BI的主要目的是集成一系列API、开源软件以及企业级别的BI产品,便于商务智能的应用开发。自从Pentaho BI出现后,它使得Quartz、Jfree等面向商务智能的这些独立产品,有效的集成一起,再构成完整且复杂的一项项商务智能的解决方案。
大数据可视化工具:
Excel2016
Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
SPSS 22
SPSS 22版本有强大的统计图制作功能,它不但可以绘制各种常用的统计图乃至复杂的3D视图,而且能够由制作者自定义颜色,线条,文字等,使制图变得丰富多彩,善心悦目。
Modest Maps
Modest Maps是一个轻量级、可扩展的、可定制的和免费的地图显示类库,这个类库能帮助开发人员在他们自己的项目里能够与地图进行交互。
Raw
Raw局域非常流行的D3.js库开发,支持很多图表类型,例如泡泡图、映射图、环图等。它可以使数据集在途、复制、粘贴、拖曳、删除于一体,并且允许我们定制化试图和层次。
R语言
R语言是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB。

❺ 大数据分析一般用什么工具分析_大数据的分析工具主要有哪些

在大数据处理分析过程中常用的六大工具:

1、Hadoop

Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是Hadoop是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop还是可伸缩的,能够处理PB级数据。此外,Hadoop依赖于社区服务器,因此它的成本比较低,任何人都可以使用。

2、HPCC

HPCC,HighPerformanceComputingand(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国实施信息高速公路而上实施的指槐芦计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。

3、Storm

Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。Storm很简单,支持许多种编程语言,使用起来非常有趣明余。

4、ApacheDrill

为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。ApacheDrill实现了Google'sDremel.

据Hadoop厂商MapR公司产品经理TomerShiran介绍,“Drill”已经作为Apache孵化器项目来运作,将面向全球软件工程师持续推广。

5、RapidMiner

RapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。

6、PentahoBI

PentahoBI平台不同于传统的BI产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。

1、大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。

2、这些数据集收集自各种各样的来源:

a、传感器、气候信息、公开的信息、如杂志、报纸、文章。

b、大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。

c、大数据分析是在研究大量的数据的过程中寻找模式,相关性和其他唯带有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。

❻ 请问大数据开发工具有哪些

你好,目前大数据常用的工具有Apache Hadoop、Apache Spark、Apache Storm、Apache Cassandra、Apache Kafka等等。下面分别介绍一下这几种工具:

  1. Hadoop用于存储过程和分析大数据。Hadoop 是用 Java 编写的。Apache Hadoop 支持并行处理数据,因为它同时在多台机器上工作。它使用集群架构。集群是一组通过 LAN 连接的系统。Apache Hadoop是大数据行业中最常用的工具之一

  2. Apache Spark可以被认为是 Hadoop 的继承者,因为它克服了它的缺点。Spark 与 Hadoop 不同,它同时支持实时和批处理。它是一个通用的集群系统。它还支持内存计算,比 Hadoop 快 100 倍。这可以通过减少对磁盘的读/写操作次数来实现

  3. Apache Storm 是一个开源的大数据工具,分布式实时和容错处理系统。它有效地处理无限的数据流。通过无界流,我们指的是不断增长的数据,并且有一个开始但没有定义的结束

  4. Apache Cassandra是一个分布式数据库,可提供高可用性和可扩展性,而不会影响性能效率。它是最好的大数据工具之一,可以容纳所有类型的数据集,即结构化、半结构化和非结构化

  5. MongoDB是一个开源数据分析工具,提供跨平台能力的NoSQL数据库。对于需要快速移动和实时数据来做出决策的企业来说,它堪称典范

  6. Apache Kafka 是一个分布式事件处理或流式处理平台,可为系统提供高吞吐量。它的效率足以每天处理数万亿个事件。它是一个高度可扩展的流媒体平台,还提供了出色的容错能力

当然,除了这些之外,还有一些其他跨平台的工具可供大数据使用。

希望我的回答能帮到你!

❼ 大数据处理必备的十大工具!

大数据的日益增长,给企业管理大量的数据带来了挑战的同时也带来了一些机遇。下面是用于信息化管理的大数据工具列表:

1.ApacheHive

Hive是一个建立在hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。

2JaspersoftBI套件

Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是一流的,许多企业已经使用它来将SQL表转化为pdf,,这使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。

3.1010data

1010data创立于2000年,是一个总部设在纽约的分析型云服务,旨在为华尔街的客户提供服务,甚至包括NYSEEuronext、 游戏 和电信的客户。它在设计上支持可伸缩性的大规模并行处理。它也有它自己的查询语言,支持SQL函数和广泛的查询类型,包括图和时间序列分析。这个私有云的方法减少了客户在基础设施管理和扩展方面的压力。

4.Actian

Actian之前的名字叫做IngresCorp,它拥有超过一万客户而且正在扩增。它通过Vectorwise以及对ParAccel实现了扩展。这些发展分别导致了ActianVector和ActianMatrix的创建。它有Apache,Cloudera,Hortonworks以及其他发行版本可供选择。

5.PentahoBusinessAnalytics

从某种意义上说,Pentaho与Jaspersoft相比起来,尽管Pentaho开始于报告生成引擎,但它目前通过简化新来源中获取信息的过程来支持大数据处理。Pentaho的工具可以连接到NoSQL数据库,例如MongoDB和Cassandra。PeterWayner指出,PentahoData(一个更有趣的图形编程界面工具)有很多内置模块,你可以把它们拖放到一个图片上,然后将它们连接起来。

6.KarmasphereStudioandAnalyst

KarsmasphereStudio是一组构建在Eclipse上的插件,它是一个更易于创建和运行Hadoop任务的专用IDE。在配置一个Hadoop工作时,Karmasphere工具将引导您完成每个步骤并显示部分结果。当出现所有数据处于同一个Hadoop集群的情况时,KarmaspehereAnalyst旨在简化筛选的过程,。

7.Cloudera

Cloudera正在努力为开源Hadoop,提供支持,同时将数据处理框架延伸到一个全面的“企业数据中心”范畴,这个数据中心可以作为首选目标和管理企业所有数据的中心点。Hadoop可以作为目标数据仓库,高效的数据平台,或现有数据仓库的ETL来源。企业规模可以用作集成Hadoop与传统数据仓库的基础。Cloudera致力于成为数据管理的“重心”。

8.

HP提供了用于加载Hadoop软件发行版所需的参考硬件配置,因为它本身并没有自己的Hadoop版本。计算机行业领袖将其大数据平台架构命名为HAVEn(意为Hadoop,Autonomy,Vertica,EnterpriseSecurityand“n”applications)。惠普在Vertica7版本中增加了一个“FlexZone”,允许用户在定义数据库方案以及相关分析、报告之前 探索 大型数据集中的数据。这个版本通过使用HCatalog作为元数据存储,与Hadoop集成后为用户提供了一种 探索 HDFS数据表格视图的方法。

9.TalendOpenStudio

Talend’s工具用于协助进行数据质量、数据集成和数据管理等方面工作。Talend是一个统一的平台,它通过提供一个统一的,跨企业边界生命周期管理的环境,使数据管理和应用更简单便捷。这种设计可以帮助企业构建灵活、高性能的企业架构,在次架构下,集成并启用百分之百开源服务的分布式应用程序变为可能。

10.ApacheSpark

ApacheSpark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。

阅读全文

与十八款hadoop工具帮你驯服大数据相关的资料

热点内容
学数控编程如何学 浏览:14
win10直接删除文件 浏览:349
少儿编程和奥数哪个大 浏览:956
学校网站查成绩怎么办 浏览:657
javaweb面试 浏览:4
qq空间说说点不进去 浏览:772
nodejscms系统 浏览:822
追星数据组是什么东西 浏览:3
文件的格式怎么建立 浏览:529
免费yoosee苹果下载 浏览:447
网络大国与大数据 浏览:770
怎么学plc的编程 浏览:643
javadnf辅助源码 浏览:973
什么app可以画二维图像 浏览:125
手机如何设置副路由器设置密码 浏览:592
如何让已经压缩的文件恢复 浏览:344
网络atm取款支出是什么意思 浏览:942
ios查看wifi密码插件 浏览:742
win10因蓝屏 浏览:322
app病毒是如何植入的 浏览:384

友情链接