导航:首页 > 网络数据 > 理财产品大数据

理财产品大数据

发布时间:2023-09-06 05:54:56

大数据在银行业的应用与实践

大数据在银行业的应用

一、舆情分析

对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。

二、客户信用评级

银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。

三、客户与市场洞察

银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。

四、运营优化

银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。

五、风险与欺诈分析

主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。

银行数据架构规划

随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。

大数据为银行创造的价值

当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。

在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。

在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。

随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。

目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。

在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。

对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。

比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。

⑵ 关于大数据,证券公司的客户服务可以这样玩

对证券公司来说,开户的股民就是他们的用户,如何利用大数据来提供更好的用户体验,怎么用,恐怕是很多证券公司都考虑的问题。正如周鸿祎在自述中说的,其实很多时候企业并不需要去搞那些惊天地的大创新,贴近用户使用体验、增加用户好感的微创新可能更实用。

我就冒昧的尝试着从一个股民的角度,提提证券公司可以怎么利用大数据。数据的来源可以主要是客户行为数据的分析。

第一,可以从客户交易的数据中挖掘。

1、客户交易过的

2、操作频率高的

3、持有时间长的

4、客户赚到钱的、赔了钱的

5、客户放到自选股里的

     对于以上几类情况,最简单的就是将有关证券、行业的最新消息弹给用户,提示阅读。

     其次,完全可以借助证券板块的分类,对以上客户交易的股票属于相同、相关的板块的股票,以小窗或通知的形式,在手机、网上交易终端上弹出给用户,并标注说明“与您操作的某某股票同属xx行业且具有较好投资前景的股票,为您精选了N只,请您笑纳!”。 这个层次比较肤浅,稍深入一点,可以建立一个选股模型,在推荐的板块和股票中,进一步从上市公司基本面分析、技术指标分析,精选个股推送给用户。

       我们还可以进一步发挥下,对某用户交易的数据再挖几铲子,可以对其历史交易记录再分析一下,结合具体股票的基本面、技术走势和时间等要素,归纳出用户成功率高的操作模式,为用户提供他自己都没有想到的投资策略。你说这够贴心不?(当然,屡战屡败的用户可能就真的无法总结出这百战多胜的依据了,幸亏我还有过胜利记录,虽然不多,嘿嘿)

       如果政策允许,完全可以在ta准备交易某证券时,提示:您的选择太英明了,本公司今天已有x位用户与您英雄所见略同,购买了此证券!或者,您真是有独到见解,今日您是对此股票第一位钟情者!让ta可以换个角度考虑一下自己的交易是否合适。

第二、将客户交易情况统计形成数据分析图表,作为增值服务提供给股民。

       可以提供多种分析角度,供股民选择。比如:从证券类型,大盘、中小板、创业板、债券、基金、理财产品等分类统计和显示交易额及盈亏比例,让股民明了自己究竟哪类证券做的成功;从时间角度,按月份、加上重要节假日,看看哪个月赚钱多,运气旺;还可以从交易方式,按电脑软件委托、手机下单、电话委托等。

        可以分析提供股民的投资爱好,比如:行业上热衷煤炭、高科技、农林牧副渔等,形态上追涨、抄底等,操作上短平快、长期持有等,哪个方面收益大,哪个收益小。

第三、 (参考前一条)将提炼出来的成功率高的股民投资策略,转成一个产品的形式 。

       根据其核心要素和特点,起个名字,比如:涨停板敢死队策略、APEC蓝选股策略等等,可以将这些策略产品放在公共平台上供其他人选择使用或购买。当然,如果真的不错,可以考虑收费哦。然后,给这些策略标注上,“已经有xxx位用户选择”的类似内容,让客户找到认同感。

       还可以从年龄上区分,划分为“激进青春”、“沉稳岁月”、“从容暮年”等,供我们股民自己对号找适合的位置。

第四、非交易方面的增值服务。

1、交易地点的安全提醒。可以从发送交易的电脑IP地址、手机位置信息,获取到客户所在地理位置,与客户基本信息中的地址(或经常交易的地址)比较,提醒客户不在通常交易地点注意账户安全。(这个是模仿QQ登录提醒的哦。哈哈)

2、顺着第1点,如果客户在外地,可以自动推送当地天气预报、吃住推荐、小吃、旅游景点等信息。哦,当地如果有营业网点,那也可以推给客户,最好能为提供享受到某些待遇就更美啦。

3、好吧,我想了这么多了,剩下的大家自己开动起来拓展思路吧!嘿嘿。

  

⑶ 国内有哪些理财产品是利用大数据分析的,钱大人算不算

钱大人算的,钱大人是国内首家基于大数据量化投资针对二级市场的互联网资产投资产品。目前,钱大人上主要的投资对象是股票

⑷ 大数据银行理财的作用及意义

大数据银行理财是一种新型的投资服务,它利用大数据分析技术对银行客户的投资组合进行精准分析和管理,帮助客户建立更精确的投资组合,了解客户的财务状况,分析客户的投资风格,推荐最佳的投资策略,从而实现最佳的投资收益。

大数据银行理财的作用和意义在于:

1、帮助客户更好地把握投资机会:利用大数据分析技术,可以更好的帮助客户把握投资机会,实现更佳的投资收益。

2、提高客户的投资风险管理水平:通过分析客户的投资风格,推荐客户最佳的投资策略,极大的提高客户的投资风险管理水平,避免客户出现投资失败的情况。

3、提升客户的投资效率:大数据银行理财的分析技术可以极大的提高客户投资的效率,节省客户的时间和精力,减少投资失误,从而实现最佳的投资收益。

⑸ BAT的金融大数据到底是如何运作的

1、大数据征信:在个人征信领域,目前是金融行业面临的最大问题。基于用户在互联网上的消费行为、社交行为、搜索行为等产生的海量数据,其价值并未被充分挖掘,个人征信在大数据的采集和信息挖掘上面仍有很大的想象空间。阿里的芝麻信用在其中算是最会玩的。芝麻信用几乎打通了用户的身份特质,行为偏好,人脉关系,信用历史,履约能力等各类信息。这恰恰是因为接入了电商、支付、社交等各类数据维度。

2、大数据风控:大数据风控目前应该是前沿技术在金融领域的最成熟应用,相对于智能投顾、区块链等还在初期的金融科技应用,大数据风控目前已经在业界逐步普及。目前,美国基本上都用三大征信局的信息,最传统的评分基本上都是用FICO来做的。各家平台会尝试着用机器学习、神经网络等大数据处理方法。

国内市场对于大数据风控的尝试还是比较积极。特别是大公司,可以将移动互联网的行为和贷款申请人联系到一起展开大数据风控。网络在风控层面上的进展还是比较突出,网络安全每天要处理数十亿网民搜索请求,保护数亿用户的终端安全,保护十万网站的安全,因此积累了大量的数据。

一个很具体的案例就是,通过海量互联网行为数据,比如监测相关设备ID在哪些借贷网站上进行注册、同一设备是否下载多个借贷App,可以实时发现多头贷款的征兆,把风险控制到最低。

3、大数据消费金融:消费金融对大数据的依赖是天然形成的。比如说消费贷、工薪贷、学生贷,这些消费型的金融贷款很依赖对用户的了解。所以必须对用户画像进行分析提炼,通过相关模型展开风险评估,并根据模型及数据从多维度为用户描绘一个立体化的画像。

网络金融的优势在于,通过基于大数据和人工智能技术为基础的合作商户管理平台,为合作商户提供涵盖营销和金融服务的全面管理方案,降低获客成本,解决细分行业的微小需求。一方面可以降低风险,另一方面也能提升金融的安全度。

在大数据消费金融的领域中,腾讯和阿里的优势很大程度上是在渠道层面上的。正如前文所说的,阿里以电商-支付-信用为三级跳板,针对性很强支付宝接入消费金融产品之后会有较强的渠道作用。而在去年12月,腾讯的“微粒贷”已经接入到了微信支付当中。在消费金融的发展速度上,腾讯速度也不差。

4、大数据财富管理:财富管理是近些年来在我国金融服务业中出现的一个新业务。主要为客户提供长期的投顾服务,实现客户资产的优化配置。这方面业务在传统金融机构中存在的比较多。不过因为技术能力不足,大数据财富管理在传统金融机构中相对弱势。

财富管理在互联网公司的业务中也非常流行。蚂蚁金服一开始最为简单的财富管理方式就是余额宝,后来逐渐演化成经过大数据计算智能推荐给用户的各种标准化的“宝宝”理财产品。网络金融相对来说更进一步,是依托“网络大脑”通过互联网人工智能、大数据分析等手段,精准识别和刻画用户,提供专业的“千人千面”的定制化财富管理服务。

金融大数据的孪生兄弟金融云是地基,未来更具看点

大数据和云计算永远都是相伴相随的一对孪生兄弟。金融大数据核心工作包括三方面,即获取数据、建立模型、模型在实践中优化、迭代。而对于金融大数据而言,金融云才是它的地基。

打个不恰当的比方,前文中说大数据是煤矿,而金融云其实就是矿井。矿井的安全行、可靠性决定了挖煤的效率和结果。

金融云把底层技术很多问题都解决了。大量金融模型都是金融云所引入的,如客户模型、产品模型、账务模型等。同时金融云关注金融本身的严谨性和周密性、安全性的考虑。

2016年7月,“腾讯云+未来”峰会上,腾讯云和腾讯金融云都已成为最重点部署的业务。同年9月,网络世界大会金融科技分论坛上,网络金融云正式向业界开放。据时任网络金融研发负责人沈抖表示,网络金融云将通过人工智能、安全防护、智能获客、大数据风控、IT系统、支付等六大技术能力给合作伙伴赋能。10月,阿里云栖大会上,阿里金融云负责人则是提出将会和生态合作伙伴、服务联盟为金融行业量身定制推出云增强服务。

大数据必须要跑在云端,而金融大数据更需要和业内其他企业展开数据、支付、业务等一系列的合作。金融云对可用性、安全性的要求严格,比如说对一个高度可控可信的云安全体系而言,基础环境安全、风控与审计、数据安全三者缺一不可。而金融云在未来的竞争中将发挥越来越重要的作用。

?

阅读全文

与理财产品大数据相关的资料

热点内容
电脑没联网怎么拷贝文件 浏览:224
wps工具栏怎么换成中文 浏览:338
win7和xp共享文件 浏览:883
苹果4代音量键没反应 浏览:827
怎样打开tif文件 浏览:153
java下载文件zip 浏览:440
qq浏览器压缩文件怎么设密码 浏览:526
黄埔数控编程哪里好 浏览:406
mac109升级1010 浏览:691
在java的菜单如何导入文件 浏览:982
现在什么网站销量最高 浏览:760
angularjsclass定义 浏览:157
ug数控编程怎么导出程序 浏览:466
cmdb文件 浏览:710
鹎文件夹 浏览:763
网络舆情应对的基本理念是什么 浏览:433
word2007层次结构 浏览:456
去掉文件名的数字 浏览:713
word公司 浏览:710
淘宝店数据包怎么上传 浏览:341

友情链接