⑴ 大数据的发展所面临的挑战有哪些
挑战一:业务来部门没有清晰的大自数据需求。
挑战二:企业内部数据孤岛严重。
挑战三:数据可用性低,数据质量差。
挑战四:数据相关管理技术和架构。
挑战五:数据安全。
⑵ 每日思考|医疗大数据面临的挑战有哪些
【导读】医疗保健中大数据分析的妨碍已逾越了可能性。医疗保健中的大数据具有其本身的特征,包含异构性,不足性,及时性和持久性,匿名性和管理性。为了促进与健康相关的科学,这些功能给数据存储,挖掘和同享带来了许多挑战。那么思考一下医疗大数据面临的挑战有哪些呢?
因为缺少有效的数据管理程序,捕获数据是医疗保健组织的最大妨碍之一。为了更有效地运用数据,数据有必要干净,准确,格式正确,以便可以在各种医疗保健系统中运用。
现在,大多数患者记载都保存在集中式数据库中,以便快速,轻松地进行拜访,但真实的问题出在何时需要与外部医疗保健专业人员同享此信息。
关于大多数医疗保健提供者来说,数据安全性是常常被黑客入侵和违背安全性行为的头号问题,需要继续对其进行处理。
在处理重要的高度敏感数据乃至患者数据时,医疗保健行业有必要十分慎重。泄漏细节不只会使医疗保健公司支付昂扬的价值,并且未经事前授权而发表这些信息也是不道德的。
虽然数据剖析带来了很多优点,但医疗保健组织需要保证正确运用其数据。要注意的关键项是为相关工作人员提供拜访数据的资源,以使他们可以独立做出数据驱动的决议计划,并保证所获取的数据尽可能实时。大数据和数据剖析十分有效。它只需要具有在控制轮后面如何运用它的经历的人。
以上就是小编今天给大家整理分享关于“每日思考|医疗大数据面临的挑战有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。
⑶ 基因大数据深度挖掘面临挑战
基因大数据深度挖掘面临挑战
作为一种新型基因检测技术,基因测序能从血液或唾液中分析测定基因全序列,预测罹患多种疾病的可能性、个体的行为特征及行为合理性。基因测序技术能锁定个人病变基因,予以提前预防和治疗。正因如此,今年华大基因的上市,就引发了资本市场的热烈追捧。
在日前于北京召开的第四届全国功能基因组学高峰论坛上,众多与会专家就基因技术发展方向及面临的机遇与挑战进行了深入交流。
基因测序用途广泛
当前,基因测序相关产品和技术已由实验室研究演变到临床应用。有学者甚至认为,基因测序技术可能是下一个改变世界的技术,因为在自然界乃至人类世界,基因测序都有着无可替代的作用。
今年5月,由中科院昆明植物所牵头的联合科研团队通过基因组建库与测序等一系列关键技术,攻克了茶树基因组测序难题,在国际上率先获得高质量茶树基因组序列。
中科院昆明植物所研究员高立志坦言,这对揭示决定茶叶适制性、风味和品质以及茶树全球生态适应性的遗传基础,都有重要促进作用。
再比如,华中农业大学张献龙团队对棉花栽培品种和野生品种进行了全基因组重测序,发现棉花在人工选择过程中存在明显的亚基因组不对称选择过程。“10多年的功能基因组研究发现20多个与重要性状形成有关的基因,这将在棉花分子设计育种中发挥重要作用。”张献龙团队成员王茂军告诉《中国科学报》记者。
基因测序对人类医学发展也有重要作用。中科院生物物理所研究员、中科院院士陈润生介绍,基于组学大数据的精准医疗作为划时代的产业,已被各国列入战略规划。它有着直接解决当前医疗行业面临的诸多困难的潜力,在接下来的几年将会爆发式增长,预计到2018年全球市场规模将达2238亿美元。
基因大数据时代开启
华大基因科技服务原负责人、北京百迈客生物科技有限公司董事长郑洪坤指出,随着基因测序技术的不断发展和成本的大幅下降,以及国家在基因研究领域的大力支持和投入,如今,科学家在基因领域的研究越来越深入,基因大数据的积累越来越多,“全世界累计花费数百亿,已经产出了近20Pb的海量基因数据”。
“测序技术的发展让基因数据以远超摩尔定律的速度在积累,海量数据对科研工作者提出了新的要求。”中科院北京基因组所研究员章张表示。
章张介绍,据不完全统计,我国生命组学数据产量约占全球的40%,但这些宝贵的数据资源却交给了他人管理,主要原因在于,我国长期缺乏涵盖多组学数据资源的生物大数据中心。为此,中科院北京基因组所生命与健康大数据中心围绕国家精准医学和重要战略生物资源的组学数据,建立海量生命组学大数据储存、整合与挖掘分析研究体系,并已初步建成生命与健康多组学数据汇交与共享平台。
亟待深度挖掘与科学解读
与国外相比,目前国内的基因组学、基因测序的推进速度并不慢。从学术角度看,中科院北京基因组所、农科院基因组所等机构实力雄厚,华大基因、百迈客等一批从事基因测序的相关企业也在逐渐成长。但在专家们看来,基因组学面临的挑战依然不小,因为随着信息、仪器等各个领域的快速发展,数据总量越来越多,加上各种新指标、参数的加入,数据也变得越来越复杂。
“在海量测序结果面前,数据深度挖掘和解读方面存在的严峻挑战日益明显。如何在基因大数据时代利用好这些数据资源,已经成为生物科研新时代的重要课题。”郑洪坤表示。
陈润生也指出,当前,快速积累的数据并未得到高效解读;高度异质化数据之间的整合尚处于起步阶段。样品端的挑战直接威胁到数据质量。但他同时表示,“这些挑战往往意味着机遇,大量未解读的数据同时也带来了无限创新的可能。”
⑷ 大数据时代的数据分析技术面临的挑战
数据分析是整个大数据处理流程的核心,大数据的价值产生于分析过程。从异构数据源抽取和集成的数据构成了数据分析的原始数据。根据不同应用的需求可以从这些数据中选择全部或部分进行分析。小数据时代的分析技术,如统计分析、数据挖掘和机器学习等,并不能适应大数据时代数据分析的需求,必须做出调整。
大数据时代的数据分析技术面临着一些新的挑战,主要有以下几点。
(1)数据量大并不一定意味着数据价值的增加,相反这往往意味着数据噪音的增多。因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。
(2)大数据时代的算法需要进行调整。首先,大数据的应用常常具有实时性的特点,算法的准确率不再是大数据应用的最主要指标。在很多场景中,算法需要在处理的实时性和准确率之间取得一个平衡。其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。最后,在选择算法处理大数据时必须谨慎,当数据量增长到一定规模以后,可以从小量数据中挖掘出有效信息的算法并一定适用于大数据。
(3)数据结果的衡量标准。对大数据进行分析比较困难,但是对大数据分析结果好坏的衡量却是大数据时代数据分析面临的更大挑战。大数据时代的数据量大,类型混杂,产生速度快,进行分析的时候往往对整个数据的分布特点掌握得不太清楚,从而会导致在设计衡量的方法和指标的时候遇到许多困难。
⑸ 大数据的分析挖掘主要面临的什么挑战
时每刻产生大量的数据。在此背景下,大数据时代(Big Data Era)将会面临新的挑战。
1、大数据时回代的基答本特征
所谓大数据,就是人类在生产和生活中产生的海量数据信息。
大数据时代的到来,毫无疑问会给人们带来空前便利。据统计,2010年以互联网为基础所产生的数据比之前所有年份的总和还要多;而且不仅是数据量的激增,数据结构亦在演变。Gartner预计,2012年半结构和非结构化的数据,诸如文档、表格、网页、音频、图像和视频等将占全球网络数据量的85%左右;而且,整个网络体系架构将面临革命性改变。由此,所谓大数据时代已经临。对于大数据时代,目前通常认为有下述四大特征:
第一:数据量大:数据量级已从TB(1012字节)发展至PB乃至ZB,可称海量、巨量乃至超量。
第二:类型繁多:愈来愈多为网页、图片、视频、图像等半结构化和非结构化数据信息。
第三:价值密度低:以视频安全监控为例,连续不断的监控流中,有重大价值者可能仅为一两秒的数据流;360°全方位视频监控的“死角”处,可能会挖掘出最有价值的图像信息。
⑹ 大数据分析工具面临哪些挑战
大数据分析工具面临哪些挑战
在大数据时代,传统的智能BI和报表工具已经很难承担大数据的市场应用任务。新一代的大数据处理工具将取代传统的数据处理软件,并引领新时代的数据挖掘浪潮。那么,在信息时代背景下,大数据分析工具又将会面临哪些挑战呢?
数据搜集与兼容
数据的搜集与整合是数据处理的第一步,在数据源充足的情况下,如何更好更快的检索并搜集到足够的数据成为数据分析过程的关键。对于大数据分析工具来说,有时甚至要面对数十种格式的数据源或数据库,能否快速兼容就成了关键。
新时代的大数据分析工具必须拥有强大的数据兼容能力,包括对非结构化数据的处理。即使在数据量庞大而杂乱的情况下,大数据分析工具也要能快速反应,整合与甄别数据,为接下来的数据分析工作打好基础。
大数据坏境下的数据分析速率
数据分析效率直接反映大数据分析工具的性能优劣,新时代的大数据分析工具在面对海量数据时不仅要能快速分析、快速得出结果,还要能保证数据分析结果的准确与客观(基于数据)。而传统的数据分析工具因为软件设计架构的落后已难以胜任大数据分析工作。
传统的技术架构不能满足大数据分析工具的性能要求,在众多大数据解决方案中,国云数据开发的大数据魔镜采用新颖的“三层架构”模式,将大数据分析工具的功能选项做进一步细分,不得不说是一种大胆的尝试与创新。
数据分析方法的革新
与传统的数据处理流程相比,因为数据量的庞大和非结构化数据的增加,大数据分析工具必须具有更强的并行处理能力。以便查询、分解及数据分析进行分布式处理,将处理任务分配到不同的处理节点,提高数据处理深度与宽度。
在数据分析过程中,数据分析模型扮演着分析“路径”的角色。大数据分析工具必须内嵌有多种数据分析模型才能满足不同目的的数据分析需求。这个要求从技术层面上来说问题不大,关键是随着大数据应用范畴的拓展,大数据分析工具能否赶上市场需求的步伐。
数据可视化技术(末端展示)
数据可视化可谓是新时代数据分析工具必备的功能了。数据可视化就是将数据或者数据分析结果以图表的形式展示在各种平台上。这要求大数据分析工具有着强大的数据图表渲染功能,并且要内置丰富的可视化效果,以满足用户的不同展示需求。
除了末端展示的需要,数据可视化也是数据分析时不可或缺的一部分,即返回数据时的二次分析。大数据魔镜仅可视化效果就有数百种,能为客户提供完美的数据可视化解决方案,可见数据可视化技术已成为主流大数据分析工具的“标配”。
时代在变化中发展,科技在争议中进步。大数据分析工具作为重要的大数据应用技术而影响着未来大数据产业的发展,可谓举足轻重。但只要顺应时代发展和社会需求,大数据分析工具的前途还是一片明朗的。
⑺ 大数据应用都面临什么挑战
第一个挑战就是对数据资源及其价值的认识不足。这是因为全社会尚未形成对大数据客观、科学的认识,对数据资源及其在人类生产、生活和社会管理方面的价值利用认识不足,存在盲目追逐硬件设施投资、轻视数据资源积累和价值挖掘利用等现象。所以说这是我国大数据长期内最大的挑战,但也是比较容易实现的目标。
第二个挑战就是技术创新与支撑能力不够。这主要是因为大数据需要从底层芯片到基础软件再到应用分析软件等信息产业全产业链的支撑,无论是新型计算平台、分布式计算架构,还是大数据处理、分析和呈现方面与国外均存在较大差距,对开源技术和相关生态系统的影响力仍然较弱,总体上难以满足各行各业大数据应用需求。而这是大数据短期内最大的挑战。
第三个挑战就是数据资源建设和应用水平不高。这是因为用户普遍不重视数据资源的建设,即使有数据意识的机构也大多只重视数据的简单存储,很少针对后续应用需求进行加工整理。而且数据资源普遍存在质量差,标准规范缺乏,管理能力弱等现象。在很多跨部门、跨行业的数据共享仍不顺畅,有价值的公共信息资源和商业数据开放程度低。数据价值难以被有效挖掘利用,所以说,大数据应用整体上处于起步阶段,潜力远未释放。
第四个挑战就是信息安全和数据管理体系尚未建立。数据所有权、隐私权等相关法律法规和信息安全、开放共享等标准规范缺乏,技术安全防范和管理能力不够,尚未建立起兼顾安全与发展的数据开放、管理和信息安全保障体系。
第五个挑战就是人才队伍建设还需加强。就目前而言,我国的综合掌握数学、统计学、计算机等相关学科及应用领域知识的综合性数据科学人才缺乏,远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。
⑻ 大数据工程面临挑战有哪些
基础平台的改变
首先大数据挑战的就是企业的存储系统,大数据爆炸式的增长使得存储系统的容量、扩展能力、传输瓶颈等方面都面临着挑战。与之相连的还有服务器的计算能力,内存的存储能力等等都面临着新的技术攻关。目前闪存技术的发展以及英特尔、IBM等公司在大数据方面都已经投入相当大的资金进行研发,主要也是为了解决大数据对基础平台所带来的挑战。
商业模式的挑战
大数据具有强大的数据价值,当我们可以利用大数据挖掘到需要信息的时候,则需要我们根据得到的信息对企业的商业模型、产品和服务等方面进行创新,这样才能够真正的让大数据的价值得到体现。
⑼ 如何应对大数据的挑战
合理获取数据,存储应需而变,筛选和分析大数据,理性面对大数据的诱惑,云计算和大数据相辅相成,处理好非结构化数据,与硬件保持距离,提高大数据的可视化,安全防范必不可少。