1. 大数据和自然语言处理有联系吗自然语言处理这个方向有前途吗
关系很大,大数据的一个很大的组成部分就是文字,要处理比如要用到自然语言处理。
这个方向的前途还是不错的,但是比较专,只有比较大的公司和专业的机构会用。
小公司以及应用的单位不太可能会养这方面的人才。
如果硕士毕业有点鸡肋,建议读到博士。目前这方面人才很缺,如果你是比较有名的几个学校毕业的,就业一点问题都没有。这个行业不大,总可以找到师兄师姐的帮忙介绍
2. 自然语言处理与数据挖掘哪个更有前途与发展空间
两个不是同一层面的东西,严格来讲,自然语言处理是数据挖掘的一个具体应用领域。
自然语言处理,通过分词、语法分析等,对自然语言文本进行分析,在此基础上进行进一步的分析,比如情感分析,目前在大数据领域应用也挺广泛的。
3. 机器学习、数据挖掘、自然语言处理、推荐系统、大数据处理学哪个好
机器学习吧,数据挖掘有一些机器学习的内容,又有一些统计学的内容,推荐系统需版要数据挖掘、机器权学习、计算机的内容,大数据其实需要利用到机器学习和数据挖掘的内容,自然语言处理也需要用到机器学习、数据挖掘、语义学的内容等。我推荐学习机器学习,因为这个很基础,但是很实用,就像编程语言中的C语言那样,很基础,但是学通了就可以运用很广。
采纳吧!
4. 什么 是 大 数据
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类 (Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。解决大数据问题的核心是大数据技术。目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
5. 什么是大数据时代
在大数据与深度学习中蝶化的人工智能。当代人工智能离不开大数据和深度学习算法。我们先来了解什么是大数据,大数据的本质是什么,在大数据时代我们应该如何应对?
当我们谈论数据的时候我们在谈什么?在大部分人的日常印象中,数据代表的可能是每月水电煤账单上的数字,股票k线图上的红绿指数,还有可能是电脑文件里那一堆看不懂的源代码。
人工智能眼中的数据远比这些广泛。数据的存在形式随着人类文明的发展不断改变,从最初的声音,文字,图画,数字,到电子时代的每一张图片,每一段语音,每一个视频,再到如今互联网时代人类每一次的鼠标点击,用手机时每一次的手指滑动,乃至每一下心跳和呼吸,甚至经济生产中的一切人机动作,轨迹,都已融入数据流。今天的人类已经能够将各种或大或小的事物转化为数据记录,变成我们生活的一部分。数据已经浸染我们生活的每一个细节,就如生物学家所说人体组织的一半是由微生物组成,在数字时代,我们生活的一半已然是数据。在日常生活中,数据的概念对于我们即亲近又陌生。亲近它是因为我们从小就会接触加减乘除这些最基本的数据和算法。步入社会后也在与各种文件报表账单打交道。与此同时,当面对高科技产品中各种关于内存,分辨率等时髦又复杂的数据是,我们又觉得不了解它们甚至没意识到它们的存在。随着大数据,机器算法和人工智能的理念相继到来,这种陌生感会越发加深。
那么数据生活距离我们遥远吗?正相反,数据与我们日常生活的联系从未如此紧密过,从没有像今天如此活跃,具体的记录着人类与世界。从最初的计算机,摄像头到家用计算机,智能手机,再到大数据和人工智能,我们不断升级采集和利用数据的方式。而现在,从一辆车的每日碳排放量统计到全球气温的检测,从预测个人在网上喜好分析到总统选举时投票趋势的预测,我们都可以做到。数据将人与人,人与世界连接起来,构成一张繁密的网络,每个人都在影响世界,又在被他人影响着。传统的统计方法已经无法处理这种相互影响的数据,这么办?答案是让机器自己来处理数据,从数据中习得知识。这便是当代人工智能的本质。与传统的数据记录定义不同,这种数据是有“生命”的。它更像是我们身体的一种自然延伸:聆听我们的声音,拓宽我们的视野,加深我们的记忆,甚至组成一个以数据形式存在的“我”。
6. 1、大数据时代是如何到来的,跟那些主要因素有关系
大数据,是大数据文件,还是大量的数据文件?要多大,KB,MB,GB,TB,PB,EB?还是说是大范围的数据,包括文本,图像,视频。。。
至少到2014年,大数据还没有一个准确的范畴定义。这是IEEE关于大数据的特别报告集里的说法。这里的问题就在于,一个大字,每天都在变:更多的设备被应用到日常生活,每天都有超越以往所有的比特在网络产生,流动,湮灭,同样,每天都有更多的超越以往的对这些比特流的使用,应用在发生,而这样的使用,应用,又进一步产生更大量的数据流。。。
那么。就是大数据是什么?
大数据是各种 IT 技术发展的汇聚点
光纤通信,DSL接入,Wifi,LTE,等等等等的通信连接转换设备,越来越多的带宽,越来越低廉的价格,使得网络大数据传输成为可能。
光学技术与半导体集成电路技术使得大规模的数据存储成为可能。
各种 sensor 技术使得数据的日常获取越来越便捷。
数据库技术的长时间发展与广泛应用提供了足够的,初始的结构化数据的来源,并提供了新数据处理方式的原始脉络。
人工智能技术,包括图像视频文本的理解分析,原始数据的结构化挖掘,自然语言处理,机器学习等等等,使得从已有数据中获得新的惊喜知识成为每天都在发生的事情。
摩尔定律使得数据处理的成本越来越低廉,但是效率却越来越高。
移动通信技术使得每个人每个时刻在每个地方都在为数据的越来越大做出贡献。
网络信息检索技术,使得数据/知识的应用与分布越来越扁平化。
基于上述各项技术的发展,越来越多的应用领域得到了新的推动助力。