导航:首页 > 网络数据 > 对金融大数据看法

对金融大数据看法

发布时间:2023-09-04 19:16:59

A. 什么是金融大数据分析

金融大数据分析是指使用大数据技术来收集、整理、分析金融数据的过程。这些数据可以来自各种来源,包括市场信息、交易记录、客户信息等。金融大数据分析的目的是帮助金融机构更好地理解市场趋势和客户需求,提升决策效率并降低风险。

B. 金融行业的大数据前景怎样

银行业是抄整体经济活动的袭中枢,这是毋庸置疑的,银行有大量数据,这其中:

1.客户的基本信息,比如姓名,资产量等等,这些数据银行有很多,但是不好,因为不干净,充斥着不真实,不全面的信息。

2.客户的交易行为信息。这个才是银行大数据的未来,只有通过客户的交易信息,才能真真看清楚客户是什么样的人。

而银行要在大数据有所作为,需要长期的清洗数据,整合系统,研究模型,不太容易,身躯太庞大了,最严重的事,缺乏专业的人才,据我了解,目前银行的大数据分析,还是科技部在兼着做呢。

C. 什么是大数据金融

就是建立在大规模数据信息上的金融行为。例如网络推出大数据炒股理财。

D. 大数据金融专业就业前景怎么样

就目前的市场发展趋势,和热度来看,建议你可以学习一下大数据。我们可以从两个方面来看一下大数据的发展趋势。

E. 我是做金融的,想问一下大数据对金融行业有什么价值

当然有数来据支持,可以说所有的行业,自都能够很大幅度的提高精准率,无论是从成本还是从效果,都是大有裨益的。

要了解大数据优势有哪,对我这个行业有哪些突出性的优势。

谁是准确的目标受众?如何在合适的时间、合适的地点、以合适的方式传达给消费者正确的信息?随着数据搜集、存储、管理、分析、挖掘与应用的技术体系的发展,这些问题的答案已经可以显现于眼前。

怎么获取数据:网民通过C2C的互动,C2B的互动,B2B的互动,实时生产数据。这些数据汇聚在一起,就能够获取到网民当下的情绪、行为、关注点和兴趣点、归属地、移动路径、社会关系链等一系列有价值的信息。原本分散的信息通过分析、挖掘具有了关联性,了解用户真实的态度和需求。

利用数据获客:利用大数据做精准营销的人群定向投放,根据人群的行为轨迹,再结合其他关联数据,如社交属性等数据来对投放人群进行标签化管理。这样才能使得广告投放有千人千面的效果。

对于营销来说,了解用户、分析用户尤为重要,而每年花在数据分析上的人力物力更是数不胜数。对于营销来说,大数据更多的是支持,可以将更多的人力物力节省下来。

做数据精准获客营销,要找对获客系统运营商大数据,需要了解请留言。

F. 大数据金融前景

一、大数据金融的含义
大数据金融指的是将巨量非结构化数据通过互联网和云计算等方式进行挖掘和处理后与传统金融服务相结合的一种新的金融模式,它是一种相比于传统金融更加透明、参与度更加广泛、体验更好、效率更高的新兴金融模式。
广义的大数据金融包括整个互联网金融在内的所有需要依靠发掘和处理海量信息的线上金融服务。也就是说,我们所提到的不管是P2P还是众筹等互联网金融行为,其核心都是大数据金融,因为互联网金融如果没有大数据的支撑,就成了一个单纯意义上的平台。而互联网金融得以在互联网诞生之日起,到今天人类社会进入“PB(1024TB)”时代,历年来数据信息的记录与积累,以及云计算技术的不断成熟,使得大数据金融在互联网诞生数十年后终于可以一展风采。持续高增长的电子交易数量和网络零售服务,使得依赖于商务需求的金融体系能够在线上寻求到数据支撑。

狭义上的大数据金融指的是依靠对商家和企业在网络上历史数据的分析,对其进行线上资金融通和信用评估的行为。我们可以很直观地看到,最初在互联网平台上寻求到金融服务的商家和企业,一类是在互联网平台上留下了一定数量的历史信用信息的商家或企业,另一类是在相关产业之内积累了相当程度的历史信用的商家或企业。而从未在线上或实际交易中产生过信息的全新商家和企业在没有建立足够的交易基础之前是不太容易通过单纯的信用方式进行这种融资的。无论是广义还是狭义的定义,大数据金融的核心内容都是对商家和客户的海量数据进行收集、储存、发掘和整理归纳,使得互联网金融机构能够得到客户的全方位信息,掌握客户的消费习惯并准确预测客户行为。这样的做法不管是作为评级认定标准,还是作为目标客户进行营销宣传的理由,都能够使互联网金融机构对自己的风险进行控制,对自己的发展策略进行更详尽的规划。作为大数据的使用者,互联网金融机构必须为数据的采集和使用付出成本,如果不是同时作为数据的收集方,进行原始数据的采集和整理,那就要向数据来源的第三方支付使用费用。
二、大数据金融的发展机遇
1.互联网企业自身转型需要。随着电商竞争愈演愈烈,最初的零售领域与支付领域的竞争已逐渐延伸到了整个供应链的其他环节,包括物流、仓储,自然也包含了最重要的金融服务。尽快发展自身原有业务引申出来的大数据金融服务,有利于建立用户黏性。积极地进行专业化、个性化定制金融服务对未来电商领域的全方位竞争有着十分重要的意义。
2.实体产业需要大数据金融的支持。大数据金融通过各种方式给市场带来了活性,整个产业链的效率提升、资源配置优化是有目共睹的,虚拟经济与实体产业的下一步发展,必定都离不开大数据金融的支持。打通上下游环节,使资金更有效率,无论是对电商的未来发展还是对传统金融的突破都大有益处。
三、大数据金融面临的挑战
大数据使得互联网金融得到空前的发展,同时也带来了一系列的问题。原来的互联网非金融机构从事类金融服务,给传统的金融体系带来了一定的冲击,如何协调和处理好这两者之间的关系,成了未来大数据金融发展至关重要的环节。未来,大数据金融的发展必将基于传统金融行业与互联网大数据技术的进一步融入和整合,这就要求金融服务与互联网及大数据的关联程度必须不断加强。
1.必须推进金融服务与社交网络的进一步融合。使金融业的数据来源能够脱离早期呆板滞后的提交、审批、尽职调查等来源方式。要使金融信息的获取渠道能够直接深入金融服务本身,就要利用互联网、社交媒体等新的数据来源,从多渠道获取实时客户信息和市场信息,充分了解自标客户的需求和资质情况,建立更高效的客户关系与更完整的客户视图,并利用社交网络对忠实客户和潜在客户进行精准营销和定制化金融服务的方案。

2.传统金融机构要进行互联网、大数据金融的转型,必须要处理好与数据服务商的竞争、合作关系。目(下转80页)(上接76页)前,线上互联网企业由于占据极大的平台优势,垄断从交易发生到交易结算的各个环节以及这其中产生的各项数据信息,使传统金融企业想要介入十分困难。要想在实际过程中重新组建自己的数据平台,从时间方面来看,已经处于劣势。因此,传统金融机构与数据服务商开展战略合作是比较现实的选择。
四、大数据金融的发展趋势
大数据技术还远未成熟,而大数据金融带给我们的变化已足以让人惊讶,大数据金融的未来也是一片光明。未来,随着大数据技术的不断成熟,大数据金融的发展也必将进一步改变人们的生活生产方式。
1.大数据金融跨界发展。由于互联网技术的开放性,信息不对称将显著减少,金融在日后也许就不是少数传统的金融从业者的专属领域了。从供应链要求的技术来看,互联网企业、软件企业都纷纷加入大数据金融的开发中,大数据进入跨界发展的趋势越来越明显,金融业的竞争也将由于未来力量的冲击变得更加激烈。这也可能导致将来金融业内部混业经营的进一步发展,银行金融与非银行金融的界限、证券公司与非证券公司之间的界限都可能变得非常模糊。

2.大数据金融服务多样化。大数据金融从电商平台发展出来以后,不断地整合发展传统产业,从零售的日用百货发展到电子产品,再到汽车,甚至是大宗商品交易,未来也会发展到房地产、医疗等方面,日常的金融服务也将不断地扩展,综合化、社会化、日常化。
3.大数据金融服务专业化。随着涉足领域越来越广泛,大数据金融必将产生专业化趋势,产生更明确的产业链分工,根据不同的环节或者是不同的行业,其服务内容都将产生一系列的变化。同时随着发展水平的提高,必定会有高要求的定制化服务、个性化服务要求,未来的大数据金融企业必将以客户为中心,高度精准与定位客户需求来制定专业的个性化服务。总而言之,大数据金融凭借高度数据化的管理和运作模式,在互联网发展的今天有着不可替代的地位,将来大数据金融必将是金融业发展的中流砥柱,它将进一步渗透到各行各业的每一个角落,不断地促进金融生态的发展。在不久的将来,每个人都将能够切身体会到大数据金融带来的变化,都能从大数据金融的发展中获得益处。

G. 大数据技术在金融行业有哪些应用前景

大数据金融市场前景广阔,深度开发大数据金融工具,或将重构整个金融行业。预计未来5到回10年,金答融大数据产业将迎来黄金增长期,大数据也将成为助推“大众创业、万众创新”浪潮的有力抓手。
据《大数据金融行业市场前瞻与投资分析报告》数据显示,2016年我国大数据金融市场规模为15.84亿元,随着政策逐步实施与落地,以大数据为核心手段、核心驱动力的产业金融,将迈入时代发展正轨成为主流趋势,预计2018年中国金融大数据应用市场会突破100亿元,金融业开始进入了大数据时代快车道。
大数据金融作为一个综合性的概念,在未来的发展中,企业坐拥数据将不再局限于单一业务,第三方支付、信息化金融机构以及互联网金融门户都将融入到大数据金融服务平台中,大数据金融服务将在各家机构各显神通的基础上,实现多元业务的融合。
伴随互联网金融纵深发展,大数据优势越加凸显。作为互联网金融创新的驱动力,大数据金融带来的方式革新,未来走向精细化和专业化。今后大数据金融行业的努力方向,应该是以完备的大数据为基础,基于用户需求提供智能化一站式产品购买及定制化服务,以及数据挖掘、数据整合、数据产品、数据应用及解决方案等。

H. 大数据金融存在的问题

法律主观:

一、大数据的定义分析:从生产来看,不需要特别的采集过程,因为监管要求、业务逻辑或者技术便利,具有“自生产”特征,比如搜索数据、交易数据等;从存-储来看,相对于传统数据库的数据规模,量变引起质变,需要新的数据库技术来支持存-储和访问;从使用来看,分析方法从基于概率论的抽样理论过渡到人工智能、统计学习等讲求高维、高效率分析技术。从行业细分角度,大数据金融业主要有大数据银行金融和大数据证券金融,分别和银行业务、证券业务相关。当然,保险业天然就和大数据相关。信用卡自动授信是典型的大数据银行金融。从银行角度是否应该对申请者授信、发授多少信用额度,是个重要问题。传统方式是人工审核申请资料,然后根据大致的档位发放额度或拒绝申请。但是当银行积累了足够多的用卡客户数据,可以把是否违约,违约概率,有效使用额度等指标作为被评价对象,然后调用与此相关的各种客户信息建立统计模型,自动计算授信结果。机器人投资是大数据证券金融的代表形式,股票价格波动受各种因素影响,传统的投资方式一般人工收集信息,手动交易。机器人投资可以建立多因素模型,自动选择股票或寻找交易时机,在适厅春当的风控模型下建立机器人投资云交易模式。再如,连接银行和证券的大数据不良资产评估。2005年,某国有不良资产管理公司开始尝试在海量数据基础上进行不良资产评估。原本银行信贷资产的评估都是基于会计模型,但是不良资产茄烂基本没扮纳耐有会计特征,很难用传统方法评估。因此,收集已处置资产和待处置资产样本进行对比,建立数据挖掘模型,可以方便评估待处置资产的价格。二、大数据金融的定义分析:金融业积累的大数据就是金融大数据,根据银行金融和证券金融本身的不同,这些数据也分成银行金融大数据和证券金融大数据。积累数据过程中,产生了数据采集、存-储、使用的相关工作和企业,这样就完成了金融大数据的产业链,但总体依然是信息技术产业链。目前,大数据服务平台的运营模式可以分为以阿-里小额信贷为代表的平台模式和京-东、苏-宁为代表的供应链金融模式。阿-里小贷以“封闭流程+大数据”的方式开展金融服务,凭借电子化系统对贷款人的信用状况进行核定,发放无抵押的信用贷款及应收账款抵押贷款,单笔金额在5万元以内,与银行的信贷形成了非常好的互补。**金融目前只统计、使用自己的数据,并且会对数据进行真伪性识别、虚假信息判断。**金融通过其庞大的云计算能力及数十位优秀建模团队的多种模型,为**集团的商户、店主时时计算其信用额度及其应收账款数量,依托电商平台、支付宝和阿-里云,实现客户、资金和信息的封闭运行,一方面有效降低了风险因素,同时真正的做到了一分钟放贷。京-东商城、苏-宁的供应链金融模式是以电商作为核心企业,以未来收益的现金流作为担保,获得银行授信,为供货商提供贷款。大数据能够通过海量数据的核查和评定,增加风险的可控性和管理力度,及时发现并解决可能出现的风险点,对于风险发生的规律性有精准的把握,将推动金融机构对更深入和透彻的数据的分析需求。虽然银行有很多支付流水数据,但是各部门不交叉,数据无法整合,大数据金融的模式促使银行开始对沉积的数据进行有效利用。大数据将推动金融机构创新品牌和服务,做到精细化服务,对客户进行个性定制,利用数据开发新的预测和分析模型,实现对客户消费模式的分析以提高客户的转化率。大数据金融模式广泛应用于电商平台,以对平台用户和供应商进行贷款融资,从中获得贷款利息以及流畅的供应链所带来的企业收益。随着大数据金融的完善,企业将更加注重用户个人的体验,进行个性化金融产品的设计。未来,大数据金融企业之间的竞争将存在于对数据的采集范围、数据真伪性的鉴别以及数据分析和个性化服务等方面。

I. 云计算和大数据对互联网金融产生什么影响

21世纪是一个信息时代,互联网得到高度普及,互联网与金融的融合孕育了互联网金融,而大数据时代的到来又给互联网金融带来了质的变化。

互联网金融不是互联网和金融的简单叠加,更深层次的变化是改变了金融服务模式,给金融体系带来了变革,融入了更多互联网特有技术,大数据技术就是其中的典型代表,它也被视为推动互联网金融发展的重要驱动力之一,使金融业形成了一种新的业态。

(9)对金融大数据看法扩展阅读:

大数据的主要特点为:大量、高速、多样、价值。大数据最核心的价值就是在于对于海量数据进行存储和分析。相比起现有的其他技术而言,大数据的“廉价、迅速、优化”这三方面的综合成本是最优的。

互联网金融的核心就是数据,数据的规模、真实性、有效性、数据分析应用的能力将决定未来互联网金融业的竞争力,而大数据技术正是互联网金融的重要技术支撑。

J. 大数据在金融行业的应用与挑战

大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。

阅读全文

与对金融大数据看法相关的资料

热点内容
怎么在ps抠的图变成矢量文件 浏览:405
口袋妖怪银魂安卓v11 浏览:1
网站上芒果tv的账号都是什么 浏览:104
带公式的表格如何刷新数据 浏览:81
数据标注语音和2d哪个好 浏览:145
保存excel文件的方法 浏览:655
手机上看不到电脑上的文件 浏览:626
关于ps的微信公众号 浏览:612
矩阵论教程 浏览:971
字体文件分系统吗 浏览:921
编程一级考试要带什么证件 浏览:923
extjs表格修改前数据 浏览:612
什么是数据库的函数 浏览:722
oppo手机怎么用数据线连接电脑 浏览:247
恒智天成备份文件在哪里 浏览:976
电脑没联网怎么拷贝文件 浏览:224
wps工具栏怎么换成中文 浏览:338
win7和xp共享文件 浏览:883
苹果4代音量键没反应 浏览:827
怎样打开tif文件 浏览:153

友情链接