㈠ 大数据工程技术有什么优势
1、首先,可以海量数据存储
随着信息化与网络安全建设的发展,企业的信息系统、安全设备越来越多,所产生的告警、日志等安全数据也呈爆发式增长,传统安全分析技术一直无法解决海量数据的实时处理与海量存储的问题。
传统关系型数据库的数据处理效率在3000EPS左右,而大数据分布式架构下可以将每秒数据处理效率提高15倍以上。同时可以通过灵活扩展,解决海量数据存储扩容成本高的问题。
2、其次,可以提高查询速度
数据查询的范围,是以数据存储能力为前提的,而实时的计算能力则是数据可以任意查询的基础保障。比如希望查询时间跨度为6个月数据,首先要能做到可以存储6个月的数据量,并且能够支持任意查询的处理速度。
传统关系型数据库查询1TB、时间跨度为6个月的数据,可能需要以小时为单位计算,而大数据分布式架构下能够达到秒级响应。如果单个节点有效数据不超过2TB,在优化好的基础上可以做到2秒完成任何数据查询。
3、最后,可以降低开发成本
在传统技术架构下,涉及到数据分析类系统的开发,需要进行详细数据结构设计,不设计好数据结构是无法完成开发任务的,如果功能变化,可能需要重新设计数据架构。
㈡ 大数据分析是什么,怎么分析的呢
朋友刚打电话说想吃日料,你打开手机某团APP就会显示有日料团购推荐,刚在某信上说要去日本玩,就在盆友圈看到了机票广告。你是否有过疑惑,为什么我的手机APP如此了解我?难道是我的日常生活习惯大数据被分析了吗?
大数据是什么?
大数据不仅仅是大量的数据,而且是来自不同来源,存在不同类型,代表不同含义的海量数据。大数据应该动态变化,不断增加,而且能够通过研究分析发现规律产生价值。
大数据可以帮助我们根据对历史情况的分析,发现事物的发展变化规律,可以有助于更好的提高生产效率,预防意外发生,促进营业销售,使我们的工作和生活变得更加高效轻松便利。
当然APP不会窃取你的数据,是你的行为数据让某团和某信意识到了你的需求,才有了以下推荐。
当你注册一个APP账号的时候,需要输入电话,姓名,性别,所在地等基础数据,更进一步的数据是你的消费记录,发过的红包,日常用语习惯,打车记录,外卖订单记录等等,这些数据会变成你的事实标签,成为你行为数据很重要的一部分。
上边提到的大数据分析不仅仅是收集庞大的数据,更是建立模型,分析数据资料,并得出一系列结论的系统过程。从杂乱的数据中分析出你的兴趣爱好,进而构建全面的用户画像。
举个例子来说,当你打开一篇标签为雪地靴的文章时,你的行为可能是专门点开,也可能是无意中点开,这个时候就需要更多的行为来判断这篇文章对你的吸引力了。
这是一个非常初级的内容标签权重算法:
兴趣标签(雪地靴)权重 = 行为权重 x 访问时长 x 衰减因子
行为权重:什么都不干1分,评论+0.5,点赞+0.5,转发+2,收藏+1
时长权重:10S以内权重为0.5,10S-60S为1,60S以上为2
衰减因子:0-3天内权重为1,3-7天权重为0.85,7-15天权重为0.7,15-30天权重为0.5,30天以上权重为0.1
行为权重对应你是否有评论、点赞、转发、收藏等操作,不同操作有不同的数值,累加成行为权重。停留时间越长,时间权重也越高。最后,短期行为也无法代表长期兴趣,单次阅读行为的权重会随着时间流逝不断衰减。于是,你每次打开雪地靴类的内容都会生成一个兴趣权重,根据型渣函数公式得到一个兴趣标签值,数值越高,你对雪地靴就越感兴趣。
当你各个方面的偏好被计算完成之后,这些偏好就会变成特征向量,再通过计算特征向量找出与你相似的人并分类。再通过训练模型和测试准确度,最终,你的某信,某宝和某团等APP就会得到一个相对于较全面你的用户画像,上边标注了你被分析之后的行为事实标签。根据这个用户画像,广告主就可以根据这个找到他们想要的消费者了。
之后,一个住在黑龙江漠河的有过雪地靴消费记录的未婚女青年在即将刷到广告位的那一瞬间,广告平台会发起竞价请求,最后价高的广告将出现在你的眼前。
需要说明的是,某宝某信和某团等采集的行为数据不仅只对应你的账号,更与你的手机唯一识别码绑定在一起,这意味着,你就算不注册不登录,你的行为数据一样会被采集。同时,广告平台也可以根据你的手机识别码在其他 App 上为你投放广告,这样你刷某音的时候也能看到某宝的雪地靴广告了。
不过大家不要紧张隐私泄露问题,根据国家《个人信息安全规范》,商业广告平台卜蠢悄的所有标签都应该避免精档空确定位到个人,以保护你的隐私安全 。