导航:首页 > 网络数据 > java如何处理大数据

java如何处理大数据

发布时间:2023-09-03 19:12:30

❶ 处理java大数据有什么技巧

java在处理数据量比较大的时候,加载到内存必然会导致内存溢出,而在一些数据处理中我们不得不去处理海量数据,在做数据处理中,我们常见的手段是分解,压缩,并行,临时文件等方法。

❷ 做了这么多年Java开发,如何快速转行大数据

一、学习大数据是需要学习java和linux

二、你有多年的java开发经验,那么可以直接跳过java课程部分,学习大数据技术!

三、分享一份大数据技术课程大纲供你了解参考

❸ Java大数据需要学习哪些内容

首先明确,java大数据通常指的是采用Java语言来完成一些大数据领域的开发任务,整体的学习内容涉及到三大块,其一是Java语言基础,其二是大数据平台基础,其三是场景开发基础。
Java开发包括了Java基础,JavaWeb和JavaEE三大块。java可以说是大数据最基础的编程语言,一是因为大数据的本质无非就是海量数据的计算,查询与存储,后台开发很容易接触到大数据量存取的应用场景。java语言基础部分的学习内容相对比较明确,由于Java语言本身的技术体系已经比较成熟了,所以学习过程也会相对比较顺利。JavaWeb开发不仅涉及到后端开发知识,还涉及到前端开发知识,整体的知识量还是比较大的,而且在学习的过程中,需要完成大量的实验。
大数据开发包括Java基础,MySQL基础,Hadoop(HDFS,MapRece,Yarn,Hive,Hbase,Zookeeper,Flume,Sqoop等),Scala语言(类似于Java,Spark阶段使用),Spark(SparkSQL,SparkStreaming,SparkCore等)。
学习Java大数据一定离不开具体的场景,这里面的场景不仅指硬件场景(数据中心),还需要有行业场景支持,所以学习Java大数据通常都会选择一个行业作为切入点,比如金融行业、医疗行业、教育行业等等。初学者可以考虑在实习岗位上来完成这个阶段的学习任务
总体上来说,Java大数据的学习内容是比较多的,而且也具有一定的难度。

❹ 如何优化操作大数据量数据库

如何优化操作大数据量数据库

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。
1.合理使用索引
索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:
●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。
●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。
●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。
●如果待排序的列有多个,可以在这些列上建立复合索引(pound index)。
●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。
2.避免或简化排序
应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:
●索引中不包括一个或几个待排序的列;
●group by或order by子句中列的次序与索引的次序不一样;
●排序的列来自不同的表。
为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。
3.消除对大型表行数据的顺序存取
在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。
还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的 *** ,所以应该改为如下语句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
这样就能利用索引路径处理查询。
4.避免相关子查询
一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。
5.避免困难的正规表达式
MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”
即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。
另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。
6.使用临时表加速查询
把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>“98000”
ORDER BY cust.name
如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
ORDER BY cust.name
INTO TEMP cust_with_balance
然后以下面的方式在临时表中查询:
SELECT * FROM cust_with_balance
WHERE postcode>“98000”
临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。
注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取
非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。
有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。
实例分析
下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:
1.part表
零件号?????零件描述????????其他列
(part_num)?(part_desc)??????(other column)
102,032???Seageat 30G disk?????……
500,049???Novel 10M neork card??……
……
2.vendor表
厂商号??????厂商名??????其他列
(vendor _num)?(vendor_name) (other column)
910,257?????Seageat Corp???……
523,045?????IBM Corp?????……
……
3.parven表
零件号?????厂商号?????零件数量
(part_num)?(vendor_num)?(part_amount)
102,032????910,257????3,450,000
234,423????321,001????4,000,000
……
下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE part.part_num=parven.part_num
AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num
如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:
表?????行尺寸???行数量?????每页行数量???数据页数量
(table)?(row size)?(Row count)?(Rows/Pages)?(Data Pages)
part????150?????10,000????25???????400
Vendor???150?????1,000???? 25???????40
Parven???13????? 15,000????300?????? 50
索引?????键尺寸???每页键数量???页面数量
(Indexes)?(Key Size)?(Keys/Page)???(Leaf Pages)
part?????4??????500???????20
Vendor????4??????500???????2
Parven????8??????250???????60
看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。

hibernate如何优化大数据量操作?

建议你直接用Jdbc好了,用batch,这样是最快的。

如何实现大数据量数据库的历史数据归档

打开数据库
con.Open();
读取数据
OdbcDataReader reader = cmd.ExecuteReader();
把数据加载到临时表
dt.Load(reader);
在使用完毕之后,一定要关闭,要不然会出问题
reader.Close();

这个问题是这样的:
首先你要明确你的插入是正常业务需求么?如果是,那么只能接受这样的数据插入量。
其次你说数据库存不下了 那么你可以让你的数据库上限变大 这个你可以在数据库里面设置的 里面有个数据库文件属性 maxsize
最后有个方法可以使用,如果你的历史数据不会对目前业务造成很大影响 可以考虑归档处理 定时将不用的数据移入历史表 或者另外一个数据库。
注意平时对数据库的维护 定期整理索引碎片

时间维度分区表,然后定情按照规则将属于历史的分区数据迁移到,历史库上,写个存储自动维护分区表。

如何用java jdbc 向数据库表插入大数据量

一次性插入大量数据,只能使用循环,
如:游标,while 循环语句
下面介绍While 循环插入数据,
SQL 代码如下:
IF OBJECT_ID('dbo.Nums') IS NOT NULL
DROP TABLE dbo.Nums;
GO
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);
DECLARE @max AS INT, @rc AS INT;
SET @max = 5000000;
SET @rc = 1;
INSERT INTO Nums VALUES(1);
WHILE @rc * 2 <= @max
BEGIN
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;
SET @rc = @rc * 2;
END
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;
--以上函数取自Inside SQL Server 2005: T-SQL Query一书。
INSERT dbo.Sample SELECT n, RAND(CAST(NEWID() AS BINARY(16))) FROM Nums

php 怎么解决 大数据量 插入数据库

ini_set('max_execution_time',Ɔ');
$pdo = new PDO("mysql:host=localhost;dbname=test","root","123456");
$sql = "insert into test(name,age,state,created_time) values";
for($i=0; $i<100000; $i++){
$sql .="('zhangsan',21,1,񟭏-09-17')";
}
$sql = substr($sql,0,strlen($sql)-1);
var_mp($sql);
if($pdo -> exec($sql)){
echo "插入成功!";
echo $pdo -> lastinsertid();
}
试试吧。10万条1分钟多,我觉得还行

请教如何通过WCF传输大数据量数据

就是直接把DataSet 类型作为参数直接传递给服务端
WCF默认支持这么做,直接传Datatable不行。
你看一下 “服务引用设置”中你选的 *** 类型是什么,我选的是System.Array
字典 *** 类型是默认第一项 System.Collections.Generic.Dictionary

又是一个把自己架在火上烤的需求啊,
如果不考虑传输因素,可以调整wcf配置,提升传递的容量,如果是对象传递可能还要调整对象层次的深度

❺ Java如何处理大数据的

文件读取:首先是一个文件上传,数据入库,10-200万条不等,这里主要考虑到一次性读取,JVM分配出来的栈内存不一定会够(个人对内存这一块还是处于一知半解的状态,所以比较谨慎,若诸位大神有好的认知,希望评论留下地址分享一下),是依行读取数据,设定一个批量值,当读取的数据达到一定量之后,执行批量入库操作,清空集合,再接着读取。
//读取文件内容
while((s = br.readLine())!=null){
//判断是否达到单次处理量
if(num%leadingNum==0&&num!=0){
int a = stencDao.insertBatch(listBean);
if(a!=leadingNum){
flag = false;
}
//清空集合
listBean.clear();
}
String value = s.trim();
//将读取到的内容放入集合中
if(!value.equals("")){
StencilCustomer bean = new StencilCustomer();
bean.setCustomerPhone(value);
bean.setLinkStencilId(id);
listBean.add(bean);
num ++;
}
}
数据处理:这里的思路也是将数据小化然后处理,这里使用了多线程,设定单个线程处理量,然后开启多个线程处理,这里需要考虑你的服务器的承载能力,如果线程开得太多了,处理不过来,会出现蹦死的情况。例如200万数据,我开了20个线程,单个线程处理600条。
//建立一个线程池 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(
minTaskNumber, maxTaskNumber, 3L, TimeUnit.SECONDS,
new ArrayBlockingQueue<Runnable>(minTaskNumber),
new ThreadPoolExecutor.DiscardOldestPolicy());
//当正在执行的线程数达到最大执行线程数的时候等待
boolean flag = true;
while(flag){
Thread.sleep(1000);//休眠2ms查询一次
int c = threadPool.getActiveCount();//线程池中活动中的线程数量
if(c<maxTaskNumber){
flag = false;
}
}
上面的代码是我对线程池的一个控制,控制服务器一直最大线程执行,Thread.sleep(1000);用while的时候,这个休眠最好不要去掉,去掉之后很影响执行效率

❻ Java 大数据量导出,该怎么解决

对于数据规模复太大的,做成制任务。

用户点击导出,检查他的数据规模,超过50W的,提示其数据规模过大,可能需要 N 小时完成,请稍候再来查询和下载导出结果。如果用户点击确定,你就提示:“任务已进入队列,点击此连接查询导出进度。”

然后你要做两件事情:
1、给这个用户记录个标识,就是他已经启动某导出任务,不能再启动新的了(或者限制一个人最多同时启动几个导出任务);
2、后台有个调度程序,开始执行导出工作,并将生成的Excel放在某磁盘目录或存在数据库中;这个调度任务可以控制下最大同时并发的导出任务数,以避免任务太多拖垮系统。

另外需要开发界面查询导出进度以及下载导出结果。导出结果可以考虑一个最大保存周期,比如7天。

阅读全文

与java如何处理大数据相关的资料

热点内容
数控车床所用编程语言有哪些 浏览:681
电信版iphone保修期 浏览:231
声音文件什么格式占的最小rm 浏览:237
win7隐藏的文件怎么显示 浏览:533
超编和XP编程器哪个好 浏览:379
win10office不联网激活 浏览:350
javascript改变值 浏览:622
vasp赝势文件下载 浏览:414
vscode文件读取时绝对路径 浏览:277
qq聊天记录彻底删除pc 浏览:11
无线网络打印机怎么连接电脑 浏览:983
健美租车app怎么用 浏览:298
怎么查看c盘所有文件内容 浏览:591
web服务器数据库 浏览:194
阿里云数据库怎么连接 浏览:160
使用ug编程配什么显卡 浏览:115
ipad百度云文件找不到 浏览:581
java中变量的存储 浏览:795
linux搭建bugfree 浏览:652
win10专业版小功能介绍 浏览:16

友情链接