Ⅰ 如何建立以人工智能和大数据为支撑的技术运营团队
人工智能需要有大数据支撑
人工智能主要有三个分支:
1.基于规则的人工智能;
2.无规则,计算机读取大量数据,根据数据的统计、概率分析等方法,进行智能处理的人工智能;
3.基于神经元网络的一种深度学习。
基于规则的人工智能,在计算机内根据规定的语法结构录入规则,用这些规则进行智能处理,缺乏灵活性,不适合实用化。因此,人工智能实际上的主流分支是后两者。
而后两者都是通过“计算机读取大量数据,提升人工智能本身的能力/精准度”。如今,大量数据产生之后,有低成本的存储器将其存储,有高速的CPU对其进行处理,所以才有了人工智能后两个分支的理论得以实践。由此,人工智能就能做出接近人类的处理或者判断,提升精准度。同时,采用人工智能的服务作为高附加值服务,成为了获取更多用户的主要因素,而不断增加的用户,产生更多的数据,使得人工智能进一步优化。
大数据挖掘少不了人工智能技术
大数据分为“结构化数据”与“非结构化数据”。
“结构化数据”是指企业的客户信息、经营数据、销售数据、库存数据等,存储于普通的数据库之中,专指可作为数据库进行管理的数据。相反,“非结构化数据”是指不存储于数据库之中的,包括电子邮件、文本文件、图像、视频等数据。
目前,非结构化数据激增,企业数据的80%左右都是非结构化数据。随着社交媒体的兴起,非结构化数据更是迎来了爆发式增长。复杂、海量的数据通常被称为大数据。
但是,这些大数据的分析并不简单。文本挖掘需要“自然语言处理”技术,图像与视频解析需要“图像解析技术”。如今,“语音识别技术”也不可或缺。这些都是传统意义上人工智能领域所研究的技术。
Ⅱ 创造人工智能需要用到大数据吗
人工智能哪来的智能?所谓智能就是从大数据中学习到内在规律,数据量越大学到的规律就越接近实际,人工智能的水平就越高,大数据是人工智能的基础,没有大数据就没有人工智能。
Ⅲ 如何打造优秀的大数据团队
如何打造优秀的大数据团队
对于企业来说,要建设自己的大数据平台,需要的不只是技术解决方案,更重要的是组建一支优秀的数据团队。那么,数据团队有哪些成员组成?他们的工作方式是什么?采用怎样的组织架构来开展工作?
1. 数据团队成员这里只讨论数据团队中核心成员的角色和他们的工作职责。1)基础平台团队主要负责搭建稳定、可靠的大数据存储和计算平台。核心成员包括:数据开发工程师负责Hadoop、Spark、Hbase和Storm等系统的搭建、调优、维护和升级等工作,保证平台的稳定。数据平台架构师负责大数据底层平台整体架构设计、技术路线规划等工作,确保系统能支持业务不断发展过程中对数据存储和计算的高要求。运维工程师负责大数据平台的日常运维工作2)数据平台团队主要负责数据的清洗、加工、分类和管理等工作,构建企业的数据中心,为上层数据应用提供可靠的数据。数据开发工程师负责数据清洗、加工、分类等开发工作,并能响应数据分析师对数据提取的需求。数据挖掘工程师负责从数据中挖掘出有价值的数据,把这些数据录入到数据中心,为各类应用提供高质量、有深度的数据。数据仓库架构师负责数据仓库整体架构设计和数据业务规划工作。3)数据分析团队主要负责为改善产品体验设计和商业决策提供数据支持。业务分析师主要负责深入业务线,制定业务指标,反馈业务问题,为业务发展提供决策支持。建模分析师主要负责数据建模,基于业务规律和数据探索构建数据模型,提升数据利用效率和价值。2. 数据团队的工作方式数据团队的工作可以分成两大部分,一部分是建设数据存储和计算平台,另一部分是基于数据平台提供数据产品和数据服务。平台的建设者包括三种人群:基础平台团队对hadoop、spark、storm等各类大数据技术都非常熟悉,负责搭建稳定、可靠的大数据存储和计算平台。数据平台团队主要负责各类业务数据进行清洗、加工、分类以及挖掘分析,然后把数据有组织地存储到数据平台当中,形成公司的数据中心,需要团队具有强大的数据建模和数据管理能力。数据产品经理团队主要是分析挖掘用户需求,构建数据产品为开发者、分析师和业务人员提供数据可视化展示。平台的使用者也可以包括三种人群:数据分析团队通过分析挖掘数据,为改善产品体验设计和商业决策提供数据支持。运营、市场和管理层可以通过数据分析师获得有建设性的分析报告或结论,也可以直接访问数据产品获得他们感兴趣的数据,方便利用数据做决策。数据应用团队利用数据平台团队提供的数据开展推荐、个性化广告等工作。3. 数据分析团队的组织架构在整个大数据平台体系中的团队:基础平台、数据平台、数据应用和数据产品经理团队都可以保持独立的运作,只有数据分析团队的组织架构争议比较大。数据分析团队一方面要对业务比较敏感,另一方面又需要与数据平台技术团队有深度融合,以便能获得他们感兴趣的数据以及在数据平台上尝试实验复杂建模的可能。从他们的工作方式可以看出,数据分析团队是衔接技术和业务的中间团队,这样的团队组织架构比较灵活多变:1)外包公司自身不设立数据分析部门,将数据分析业务外包给第三方公司,当前电信行业,金融行业中很多数据分析类业务都是交给外包公司完成的。优势: 很多情况下,可以降低公司的资金成本和时间成本;许多公司内部缺乏相关的知识与管理经验,外包给专业的团队有助于公司数据价值的体现 。劣势:一方面外包人员的流动和合作变数,对数据的保密性没有保证;另外一方面,外包团队对需求的响应会比较慢,处理的问题相对通用传统,对公司业务认知不如内部员工深入,创新较低。2)分散式每个产品部门独立成立数据分析团队,负责响应自己产品的数据需求,为业务发展提供决策支持。优势:数据分析团队与开发团队、设计团队以及策划团队具有共同的目标,团队整体归属感强,绩效考核与产品发展直接挂钩,有利于业务的发展。劣势:在业务规模比较小的情况下,数据分析师比较少,交流的空间也比较小。因为身边的同事都不是该领域的人才,无法进行学习交流,所以成长空间会比较小,分析师的流失也会比较严重,最终陷入招募新人——成长受限——离职——招募新人的恶性循环。另一方面,每个产品团队都零星地招募几个分析师,整体来看给员工的感觉是公司并不是特别重视数据化运营的文化,对数据的认同感会被削弱,不利于公司建立数据分析平台体系。3)集中式数据分析团队与产品团队、运营团队各自独立,团队的负责人具有直接向分管数据的副总裁或CEO直接汇报的权限,团队负责响应各业务部门的数据需求。优势:分析团队具有充分的自主权,可以专心建设好公司级别的数据平台体系,研究数据最具有价值的那些问题,有权平衡业务短期需求和平台长期需求直接的关系。另一方面,这种自上而下建立起来组织架构,可以向全体员工传达数据在公司的重要位置,有利于建立数据化运营的文化。劣势:产品业务团队会觉得他们对数据的掌控权比较弱,一些业务数据需求得不到快速响应,认为分析团队的反应太慢无法满足业务发展的需要。随着业务发展越来越大,产品团队会自己招募分析师来响应数据需求,逐渐替代分析团队的工作,这样势必会导致分析团队的工作被边缘化。4)嵌入式数据分析团队同样独立于产品团队存在,但只保留部分资深数据专家,负责招聘、培训数据分析师,然后把这些人派遣到各产品团队内部,来响应各类业务数据需求。优势:团队的灵活性比较好,可以根据公司各业务线的发展情况合理调配人力资源,重点发展的项目投入优秀的人才,一些需要关闭的项目人才可以转移到其他项目中去。劣势:分析师被嵌入到产品团队内部,受产品团队主管的领导,从而失去了自主权,导致沦落为二等公民。人事关系在公司数据分析团队中,却要被业务团队主管考核,但业务团队主管并不关心他们的职业发展,导致分析师的职业发展受到限制。那么,到底采取哪一种组织架构比较合适呢?可以根据公司数据化运营进展的深度灵活采取一种或几种方式。除了外包模式,其他组织架构我都经历过,简单来说,早期采用分散式、中期采用集中式、后期采用分散式或嵌入式以及两则并存。早期:公司对数据体系的投入一般是比较谨慎的,因为要全面建设数据体系需要投入大量的人力和财力,公司不太可能还没有看清楚局势的情况下投入那么多资源。所以,往往都是让每个产品团队自己配置分析师,能解决日常的业务问题就行。杭研院早期的网易云阅读、印像派等项目中就是采用的这种分散的模式。中期:随着业务的发展、公司对数据的认识有所提高并且重视程度不断加大,就开始愿意投入资源来构建公司级别的数据体系。这个阶段采用集中式有利于快速构建数据分析平台,为公司各个产品团队提供最基础的数据分析体系,能在未来应对业务的快速发展。杭研院花了两年时间完成了这个阶段的主要工作,并在网易云音乐和易信产品发展阶段起到了至关重要的作用。后期:一旦公司级别的数据分析平台构建完成,消除了早期分散模式中分析师缺少底层平台支持的窘境,他们能够在分析平台上自助完成大量的数据分析工作。而且经历过集中式阶段的洗礼,公司上上下下对数据的认识都有了很大的提高。此时,在回到分散模式时,原先的很多弊端已基本消除,此外,采用嵌入模式也是可以的。目前杭研院在网易云音乐、网易云课堂、考拉海购等几个产品中就是分散式和嵌入式并存的架构。总之,没有最好的组织架构,只有适合自己的组织架构。
Ⅳ “大数据和人工智能
人工智能与大数据的联系一方面,人工智能需要数据来建立其智能,特别是机器学习。
数字信息基础设施建设加速,数字经济获得更广阔空间,数据作为新型生产要素,对传统生产方式变革具有重大影响,是抓住新一轮产业革命机遇转型升级,提高经济效率、获得更广阔发展空间的重要抓手。数字基础设施和产业化数字技术,是数字化转型的基石,也能创造新的经济增长点。据天眼查数据显示,目前我国已有104.4万家数字经济相关企业。
以5G为代表的数字信息综合基础设施,推动着经济社会数字化升级,关系着经济社会发展信息“大动脉”的打通。“十四五”期间以及更长时期,建设高速泛在、天地一体、云网融合、智能绿色、安全可控的综合性数字信息基础设施存在广阔空间。天眼查大数据显示,我国现有5G相关企业超13.5万家,2021年新增注册企业9.7万家,增速219.4%;广东、山东、江苏三地5G相关企业数量最多,分别有1.5万家,9100余家以及8400余家。
Ⅳ 大数据助力智能化管理
“园区经济”是改革开放以来中国经济发展的重要经验。它不仅成为中国经济的载体和平台,也为中国工业经济发展探索了一条成功的经验和模式。《工业互联网创新发展行动计划 (2021-2023)》中提到,培育一批综合实力强的安全服务龙头企业,建设一批工业互联网安全创新示范园区,做好工业互联网园区网络建设。
恰逢新一轮工业革命将数字技术和工具带入工业产业发展,使制造业从业者能够简单有效地利用数字技术,使信息技术从业者能够深入理解激铅工业需求和文化,最终输出数字制造知识和资产,让对制造业本身不那么精通的人也能通过这些数字资产挖掘出新的服务和使用,并产生增值。这与园区经济转型的需求不谋而合。
互联网与园区的价值融合,可以充分发挥园区资源聚集、基础设施集中建设的规模优势,以及园区集中管控、精细服务的优势。同时,园区可以帮助工业互联网打通其使用的“最后一公里”,园区也可以收获互联网盈利模式。
因此,上海化学工业园融合工业互联网的创新、科技、智能、生态变革势在必行。
上海化学工业区于1996年获准建立。它位于上海南部,杭州湾北岸,横跨金山区和奉贤区,规划面积29.4平方公里。是国家新型工业化产业示范基地、国家级经济技术开发区、国家生态工业示范园区、国家循环经济先进单位。园区创造性地提出并实践了“产品与项目一体化、公用事业一体化、物流与输送一体化、环保一体化、管理与服务一体化”的发展理念,形成了资旅铅斗源高度集约、效益集中的大型化工生产模式。超过80%的企业原材料/产品供应链在园区内实现闭环。
目前,德国巴斯夫、科斯特龙、赢创等国际化工巨头,美国亨斯迈,中国石化、华谊集团、高桥石化等大型骨干企业,以及荷兰皇家沃尔堡集团、法国液化空气集团、苏伊士集团等世界知名配套服务企业已连续多年入驻园区,与园区形成了良好的互助共赢发展态势。
完善园区基础设施,建设定制化大数据云计算中心。
园区内有上海化工园区大数据云计算拆磨中心,是“4S”工业园定制的大数据云计算中心,融合了中国电信云网整合的力量和上海化工园区的规划。大数据云计算中心采用云计算技术,统筹利用现有IT资源和条件,为上海化学工业区管委会各部门统一建设和提供基础设施、支撑软件、使用功能、信息资源、运行保障、信息安全等服务。
大数据云计算中心具有强大的计算能力、开放的云架构和充分的可扩展性。采用政务云相同框架建设标准,连续多年通过信息安全等级保护三级保护审核。具有灵活的定制化调整和开发能力,可同时满足园区多家企业多样化的实际使用需求。同时,在园区管委会的指导和支持下,园区部分企业自主开发使用了企业级大数据平台。
搭建大数据平台和辅助决策系统。
实现“三个预期”的深入使用
园区内搭建大数据平台,基于化学工业区接口交互标准和化学工业区数据目录标准进行数据采集和交互服务。B
此外,园区推进综合业务监管辅助决策系统建设,以园区各种感知和业务数据为基础,以融合数据分析引擎为核心,以园区管理者、经营者、企业等主体的服务需求为导向,为智能决策提供有力支撑,提高决策效率,开展“三预测”(预测、预警、预报)深度使用。大数据平台的建设原则是“统一设计、分期建设、有序推进”。一是完成平台基础架构,基本形成数据治理架构,实现数据可视化分析展示,开展辅助决策工作。然后完善平台的功能,不断扩展平台连接的业务系统/数据,提供深度感知和智能决策服务。
辅助决策系统实现了园区整体业务运营的总览,对业务场景的8个核心指标和业务状态进行了设计、融合、分析和实现,共计29类。它采用逐级细化的可视化展示方式,业务数据的粒度由粗到细,实现了业务监管的分层决策模式。结合2D/3D GIS技术的使用,实现了工业互联网园区业务管理“一张图”。
挖掘典型使用场景推进工业互联网园区建设
园区内外生产性、生活性服务企业涉及原材料进出口、储罐储存、运输管廊运维、污水处理、热力供电等公共功能。企业积极响应工业互联网园区建设,形成典型的数字化使用场景,具体如下。
(1)数字结对。基于“GIS数字孪生”等技术,构建园区化工材料、能源材料输送管廊三维可视化数字化管理平台。结合智能传感器实现管廊的智能化管理,将企业运营、安全、生产、财务等多业务维度指标统一可视化展示。
(2)资产管理。对公用事业服务企业相关资产进行数字化识别、快速盘点、精准定位、全生命周期管理等创新使用,实现资产的可管、可控、增值。
(3)智能巡检。基于悬浮轨道机器人、地面行走机器人、集成IOT传感终端等。实时感知和监控管道和关键设备的运行状态,形成一体化的空中和地面检测网络。
(4)热电平衡。针对园区内多家企业对供汽稳定性的高要求,搭建了蒸汽配额交易平台,平衡不同企业间因生产峰谷和配额利用率差异造成的供汽不稳定或浪费,实现供需精准匹配和资源优化。
(5)环境监测。基于生产企业
业厂内物联网和园区广域网的覆盖,建立多源环保污控数据集成监控体系,实现对园区内重点企业、重点区域的污染源状态、排放数据及环境质量数据的实时监测与预警。
另外,园区充分发掘主体化工生产型企业智慧化建设的内在动力,引导、鼓励企业结合自身实际,加大投入,开展技术和智能化改造,提升智能制造水平,目前已形成生产过程管理信息化、生产过程工艺自动化、智能巡检/运维、能源管理、智能输送、视频监控等工业互联网使用场景。
打破园区数据孤岛,园区管理运营更上一层楼
上海化学工业区实现了普通政务云与园区使用、医疗生产力系统、公安封闭系统、物联网及视频系统的融合,在确保数据安全和使用顺畅的情况下保持了原有的个性化资源需求。目前,园区各类项目上云超过20个,资源使用率超过85%;平台运行平稳,总体可用率超过99.99%;使用部署时间从原来的3~6个月缩短为3~5天;等级保护三级评测达到90分以上,未出现信息安全问题。
上海化学工业区数据平台将采集的8200万余条数据归入3类、15项、21目、256细目的数据体系中,在此基础上形成7大主题库和256个业务库,通过API为各类使用提供了430个数据元素。平台的建设初步打破了管委会、公用工程服务企业和生产企业间的信息孤岛,可以为园区管理运营的各个领域提供快速、有效的决策支持,为上海化学工业区的管理和服务提供新的洞察力,提升园区治理、运营和公众服务的智能化水平。
专家推荐语
上海化学工业区建设之初开创性地提出了“五个一体化”的发展理念,引领带动全国石油和化工园区的发展。园区进行大数据云计算中心建设,将普通政务云与园区使用充分融合,搭建智慧决策平台,汇集各类业务数据,进行实时分析和可视化展示,服务于园区不同客户,提升园区运营和服务的智能化水平,对于全国范围内经济开发区、高新区及工业园区具有较高的可借鉴性和可复制性。
系统软件用于管理计算机资源,并为使用软件提供一个统一的平台。 使用软件则在系统软件的基础上实现用户所需要的功能。支撑软件是支撑各种软件的开发与维护的软件,又称为软件开发环境。它主要包括环境数据库、各种接口软件和工具组。著名的软件开发环境有IBM公司的Web Sphere,微软公司的***.NET等。包括一系列基本的工具(比如编译器,数据库管理,存储器格式化,文件系统管理,用户身份验证,驱动管理,网络连接等方面的工具)。
Ⅵ 大数据下的企业信息化建设
大数据下的企业信息化建设
在各种媒体的连篇累牍的报到和宣传下,我们的大多数企业对“大数据”一词想必都不陌生。无论是对于走在社会发展前沿的互联网、IT产业,亦或是传统的医药、交通行业,大数据必将带来难以估量的价值。在企业信息化过程中,若掌握对大数据的处理能力,可在今后的信息化发展应用上取得领先地位。面对如今的大数据时代,正在进行信息化改革的工业企业要把握好大数据带来的机遇,紧跟信息时代的潮流。
1大数据时代
1.1大数据的定义。网络中说,大数据指的是“所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”由于数据量的庞大,大数据的单位不能用G或T来衡量,起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。大数据是一种海量的、高增长率的以及多样化的信息资产,它需要新的处理模式来进行数据的处理和应用。
1.2大数据的4V特征。大数据具有四大特征:一是数据量巨大。各种智能设备产生了大量的数据,数据量从TB级快速升到PB级别。二是数据类型繁多。如网络日志、图片、视频等。三是价值密度低。以视频为例,连续不间断监控过程,可能有用的数据只有一两秒。四是处理速度快。因为数据存在时效性,所以大数据要求能够快速处理。“1秒定律”,这与传统的数据处理技术有着本质的区别。业界将大数据的特征归纳为四个“V”,即Volume(容量)、Variety(种类)、Value(价值)、Velocity(实时)。
2大数据时代下工业企业的现状及存在的问题
2.1 传统的工业企业的信息化水平不高。改革开放以来我国的工业企业获得了迅猛的发展,在大数据的时代下我国的信息化系统在传统企业的应用效率却得不到较大的提升,传统的工业企业在节能降耗方面的成效并不显着。由于信息系统得不到其应有的应用,产品的开发力度也不高,开发新产品的速度和能力也得不到应有的提升。
2.2 工业企业缺乏利用信息化来增强市场应对能力。在国外市场,高新技术企业在利用数据化来增强企业的市场应对能力方面取得了显着地成果,但是从我国来讲,我国的高新技术企业大多数情况下还是处于创业的阶段,应对性不强,在通过数据来增强对财务、营销以及库存的管理方面仍然存在着较大的问题,在当前的时代条件下如何通过大数据时代下的信息化的发展进步来增强我国工业企业的资金周转能力以及市场反应性成为了急需解决的问题,因此,我们就需要不断通过建立起企业的网站来不断提升工业企业的知名度,以帮助更多的企业在日趋激烈的市场竞争中站稳脚跟,获得进一步的发展。
2.3大数据时代下传统产业与当地产业的融合度不高。在当前的大数据时代下,我国的一些企业在实施数据项目时,虽然得到了一定程度的发展,但是并没有与当地的企业建立起良好的关系,并没有用高技术新信息来服务于客户,这样一来,就出现了传统产业企业与当地企业脱节的现象,在大数据时代条件下,工业企业更要利用好信息化来不断推动产业的发展。
2.4 企业信息化建设对政府存在较大的依赖性。由于机构不够完善,加之部分企业的思想观念和意识较为落后,使得企业的信息化投入的风险性较大,转化的成果也很难在短时间内完成,因此企业在技术和人才培训方面也常常会感到力不从心,这样一来企业在信息化建设的过程当中对于政府的依赖性仍然较大。
3 明确大数据时代下信息化推动工业企业加强信息化建设的指导思想
3.1 加快我国的国民经济发展。提升我国社会的信息化水平,以信息化来不断推动企业的工业化产值,是当前我国进行现代化建设的重点,更是我国利用信息化来促进社会生产力发展的重大战略措施。在当前来讲,我国的企业信息化就是通过现代的信息技术来推动企业信息化的,因此,我们要不断提高企业深度,不断加强企业的信息转化能力,不断以新的信息、新的技术进步来推动产业的发展进步。从某种意义上来说,企业的信息化能够在较大的程度上降低企业的生产成本,降低企业的产耗,更好地适应起市场发展的需要。同时也要加快技术进步的脚步,以信息化来带动产业化,提升企业的经济效益,带动企业的创新性发展,这对于我们解决企业生产经营过程当中存在的问题,更好地发挥工业企业的带动作用起了决定性的作用。在大数据发展的今天,大力推动工业企业的信息化,加快我国国民经济的发展进步,也是我们更好的适应经济全球化的客观需要。
3.2 推动我国工业企业发展进步的战略思想。我国工业企业实现现代化,不断增强企业的国际竞争力对于实现以企业为主体,以技术创新为动力,以实现示范企业的发展为新的目标,来大力推广现代化技术,不断以信息化来促进工业化,推动企业的优化升级起着重要的作用。
4大数据下的企业信息化建设
4.1 企业信息化过程中的数据安全管理。大数据环境下,信息系统之间是互连的,他们之间会形成一个息息相关的生态圈。大数据的环境会带来一定的风险,比如:企业自身的商业机密在数据共享时会被泄露;很多敏感数据的所有权和使用权没有被明确界定;数据量的存储和安防措施不够有力等。数据具有共享性,我们在保证数据在大环境下共享的同时,还要注意数据的安全性。我们的信息安全管理工作内容之一就是保证数据在传递过程中不会被篡改和泄露。企业在进行信息化建设时,要加强对数据安全问题的控制和管理,以解决大数据时代带来的新的数据安全性问题,所以大数据时代信息安全管理任重而道远。
4.2 企业信息化建设中的大数据基础平台建设。大数据时代的发展需要完善的信息基础平台,而现有的供电局信息基础架构还不足以满足大数据时代的发展需求。我们在进行信息基础平台的建设和完善时,不仅要增加信息系统的计算能力和数据消化能力,还要重视对数据资源的扩展和融合。业界普遍认为,现今的云计算技术能够搭建一个信息基础设施平台,满足各类工业企业对数据服务的需要。所以,我们的供电局如果要搭建和完善信息基础平台,应该利用好云计算技术,把自身对大数据的存储和处理能力进一步提高。
4.3 企业信息应用系统逐渐迈入整合化、智能化时代。大数据技术最吸引工业企业的地方不在于它的“大”,而在于数据的“用”--整合、分析、利用等。我们的企业在信息化建设过程中总是会产生大量的数据,这是一种不可避免的现象。而此时,如何将那些海量的数据加以整合和利用是目前企业进一步加强信息化建设遭遇的必须要解决的拦路虎。大数据信息应用系统对如何利用好数据具有不可估量的价值,而在大数据应用系统发挥作用前,企业急需对系统模型和数据规范进行统一和整合。我们的企业在大数据时代的发展和推动下,将信息应用系统推动到智能化的阶段。
4.4 加强企业信息化环境建设,为工业企业信息化提供环境保障。建立起企业现代化建设的激励机制,切实提高企业的信息化水平。进一步加大企业的信息化水平、不断推动企业管理模式的创新,加强技术合作领域的创新型发展,引进国外先进的经验和创新发展的实例来促进企业信息化,不断推动企业整体水平的提高,改造落后的生产管理模式来加强企业的发展进步,使得信息技术能够真正为工业企业的发展提供力量,为企业信息化创造条件。在大数据时代,工业企业也要充分利用各种形式、各种媒体来加大企业的信息宣传力度,增强企业的最新信息技术的更新普及,使得企业形成良好的信息化氛围。另外,企业也可以利用好大数据时代的信息化来建立起网络化的服务平台,使得工业企业的形象以及服务能力得到进一步提升。
5 企业在大数据时代下面对的机遇和挑战
5.1信息化建设中的缺陷。首先,我们的大多数企业在信息化建设中,都仅仅是对信息技术的简单应用,而没有意识到数据将带给我们的巨大价值。其次,很多大型的国有企业因为受到政策的保护而导致自身危机意识薄弱,在信息化建设中会慢半拍,落后于其他外资或合资企业。还有,许多企业在信息化建设中对大数据技术的重要性认识不够,在企业管理上缺乏对大数据的应用,导致企业管理高成本、低效率的局面。
5.2 把握住大数据时代带来的机遇。大数据时代的到来,会给企业带来革命性的影响。企业通过对大数据的分析和挖掘,可以优化自己的信息管理流程,逐渐变成精细化、数据驱动型的管理。企业传统的管理和运营模式会被改变,大数据将成为企业的决策中心,并提高企业对市场的反应能力和降低企业管理成本。不同行业、不同规模的企业在大数据发展中受到的影响程度也不同,总的来说,就是大数据技术应用越深,企业吸收的价值也越大。目前来看,企业主要需要做的就是利用大数据技术不断提升自己的信息化水平,并积极挖掘大数据的应用。
5.3 应对大数据的挑战措施。大数据时代的到来,为我们的企业带来机遇的同时,也带来了一些挑战。面对这些挑战我们的企业可以做出以下措施来应对:一是加强领域的合作,各相关技术领域的专家要加强合作与共赢;二是开发高效的数据密集型计算方法,科学家们需要加大研发力度;三是在信息化应用过程中不断进行调整,遇到具体问题要具体分析。
6 结束语
随着大数据时代的到来,国际上许多企业在信息化建设中遭遇着各种各样的机遇和挑战。在这种情况下,哪个企业能最快地适应和习惯新形式下的数据模式,熟悉和掌握最新最有效率的数据处理方式,那个企业就能在信息化建设中占得先机,取得主动权。大数据时代是针对国际来说的,所以为了紧跟国际步伐甚至超越某些国家,我国的许多企业开始投入到大数据技术的研究中,以期能够尽快的建立和完善自身的信息化建设,并提高企业的核心竞争力,为企业的未来发展前景寻找有力的支撑。