㈠ 移动互联网如何让大数据“落地”,有哪些产品实例
问题补充:“大数据”这件事大家提了很久,可是真正能用好的产品少之又少。移动互联网使得更多、更广的数据不断产生,它是否能真正促使大数据“落地”,变成每个人真正能享受到的服务?下面是来自知乎小伙伴maggie的回答:云计算出现之前,传统的计算机无法处理大量的非结构化数据,云计算使得海量数据的存储和快速分析成为可能,而每个人都拥有的智能终端(手机、电脑、智能设备)以及带宽不断增加的移动通信网络,使得海量数据的收集成为可能。大数据的核心在于“预测”,而云计算使数据从“小样本”转变成有机会对所有可能的数据进行分析,预测将基于 “数据之间的关联性” 而非 “为什么是这样的因果性”,我们只需要按照预测出来的趋势去响应,使用这些结果。比如预测机票价格的走势,并给出可信度,帮助用户来决定什么时间购买机票最省钱。它不用关心为什么机票会有差异,是因为季节性还是因为其他什么原因,它仅仅是预测当前的机票未来一段时间会上涨还是下降。如果机票价格有上涨的趋势,系统就系统用户立即购买机票。而原始的数据可以从机票预订数据库或者行业网站上扒下来。这项预测技术可以用在类似的相关领域。比如宾馆预订,商品购买等。比如通过汽车引擎的散热和振动来预测引擎是否会出现故障。亚马逊的推荐系统是很好的例子:亚马逊从每一个客户身上捕获了大量的数据,历史购买了什么,哪些商品只是浏览却没有购买,浏览停留的时间,哪些商品是合并购买的,它要做的是找到产品之间的关联性,感兴趣的可以去搜索亚马逊推荐引擎的专利。在中国,淘宝、支付宝拥有大量的用户数据,还记得 “淘宝时光机吗“ ?通过数据分析,把毕业- 恋爱- 迁移城市-结婚- 买房- 生子- 买车的人生轨迹串起来,我不敢说有多准,但是的确感动了我们。从数据中挖掘出背后的故事,这是一个非常有意思的关联性数据挖掘尝试。想想也挺可怕的,淘宝是个拥有海量用户数据的平台,每天还有源源不断地从移动终端、电脑上不断增加的数据,如果把这些数据利用起来,不止可以做商品购物推荐,同时还可以对可能的关联性做预测。在零售行业,销售数据的统计分析,可以让供应商监控销售速率、数量、以及存货情况,可以知道什么货物和什么货物摆在一起,放在什么位置销量最好,特定的季节,什么产品销量最高。公共设施领域,不再是随机的巡检,而是针对设施上报的数据以及故障发生的历史数据、环境数据进行分析和预测,集中人力和物力优先检查最有可能出现问题的那些设施,减少整体平均的故障发生率。大数据革命首先要把这些可以获得的数据收集上来,包括未来可能被利用的信息。比如很多应用不管是不是需要位置信息,通常都会问你要位置信息,为未来能做出更多的智能反应做数据储备。保险公司通过车险投保人的历史数据(时间、地点、实际行驶路程)来为车险定价。广告公司可以根据人们的居住地点、要去的地方,提供定制广告,信息汇集起来可能会揭示某种发展趋势。交通服务公司可以通过手机的位置来预测交通情况,和某个地方目前聚集了多少人。最近的 ”棱镜计划“ ,从音视频、图片、邮件、文档以及连接信息中分析个人可能对国家安全造成威胁的行动。大数据可用的领域实在是很多,具体有什么好点子,哪些产品有机会,我觉着还得多去想和研究。总结起来,首先是数据收集,除了利用现有的数据渠道之外,还可能需要改造一些产品形态,使得数据更好地被量化和可被学习。然后是通过云计算来做数据相关性的分析,这里面有大量的算法工作要去做,所以未来算法人才是最具有技术挑战的工种。
㈡ 中国移动的大数据定位准确吗
一般是比较准确的。中国移动大数据中心可以即时捕获准确的数据信息,还可以创建详细的客户画像来标记准确的客户数据信息。
只要你手机未关机,你到过什么地方,就会保持与当地的移动通信的基站信号双向连接,当你变地点后,与你手机的双向连接的基站就更换了,根据一定时间内手机信号连接的基站更变,就可以知道你的行程轨迹。所以,在你手机在开机状态下反映出你的行程轨迹绝对准确。
㈢ 运营商如何运用大数据转型升级
据研究显示,大数据在全球的收入快速增长,预期在2012-2017年的复合增长率将达到60%。根据最近一段时间发布的各类大数据投资研究报告进行了初步估算,预期未来超过40%的GDP增量。大数据已经成为与自然资源同等重要的宝贵财富,发展潜力空间巨大。
而电信运营商作为数据的生产者,多年来积累的数据蕴藏着丰富的业务信息和商业信息,价值挖掘的潜力巨大,拥有如此优质的数据基础,使得运营商在企业、行业、社会等多个层面,都会大有作为。
在8月19日召开的中国国际大数据大会上,中国移动副总裁李正茂表示,中国移动已经意识到,大数据将与运营商的通信网络和客户资源具有同等重要的地位。
从企业层面来看,大数据将助力运营商全面提升运营商的精细化运营水平。一是改善用户体验,通过对用户感知的分析,并运用智能交互技术,进一步提升用户体验;二是实现科学决策,通过大数据刻画当前企业发展的状况,预测未来趋势,对企业成本、收入风险等进行精细化管控。
从行业层面来看,目前各行业纷纷加快大数据应用,重构未来的核心竞争力,运营商可利用数据与网络资源优势,聚焦行政管理、医疗、交通、教育等多个行业,在行政管理领域可以辅助提升政策制定、信息发布、事务办理、管理监控等多个领域的效率和设备,在医疗领域患者可通过可穿戴设备向医生发布数据,从而得到更为便捷的医疗服务。医药研发机构可以利用收集到的医学大数据提高研发能力和医疗水平。在交通、物流领域,可实现智能化的运输网络与运力规划,实施交通管理、车队管理等等。
从社会层面来看,运营商依靠多年的数据和平台经验积累,一定会成为提供社会化大数据生态平台服务的有力参与者。在未来,社会化大数据生态平台,将以数据银行的形式存在,平台使用者不但可以享用运营商的各类数据分析服务,使用者数据也可以在这里得到充分共享和流通,不同的商业模式将在这个平台上衍生和繁荣。
李正茂认为,大数据对于运营商转型升级具有重大的战略意义。而中国移动在大数据的具体研发、产业合作与对外应用方面,也进行了一些积极探索和实践。在自主研发方面,中国移动在2007年启动了大云的研发计划,构建了海量存储处理和数据分析和挖掘等核心能力。到目前为止,大云的大数据相关产品已经在17个省市进行了超过100项应用试点和商用,部署规模超过了3000台服务器,在快速响应市场需求的同时也降低了企业运营成本。
李正茂还透露,中国移动在今年成立了苏州研发中心,计划构建3000-4000人的研发团队和运营团队,宗旨就是要进一步完善云计算和大数据产品体系,尽快形成国际一流的云计算和大数据服务能力。
在产业合作方面,中国移动一直秉承开放共赢理念,推动云计算和大数据技术的成熟和产业健康发展。我们构建了大云产业联盟,与技术提供商、集成商、高等院校、政府机构等超过50家单位,在核心模块合作、授权技术服务、应用开发技术攻关等产业不同层面开展了合作。我们还积极参与了国内、国际标准化和开源组织工作,在TMF完成了大数据报告并完成发布,牵头完成了弹性应用计算接口等国家标准的制定。
另外,在大数据对内的研究探索方面,中国移动率先提出了大数据超细分微营销精服务的理念,在客户服务、市场营销等方面,也有不少成功案例。现阶段的工作,更多集中在应对数据规模增长和促进企业不同专业领域数据融合上面,以及不同程度的发挥数据价值。
㈣ excel大数据处理技巧
方法/步骤
1、数据整理。工欲善其事,必先利其器。数据质量是数据分析的生命,此步骤不可忽视、不可走过场。
①数字型的数字才可以参与画图和做分析模型,所以数据不能带单位(如:元、万元),也不能用区间数据(如:23-25,不要将电脑当作神脑)。
②数据的单位要一致,统一按列排序或者按行排序,此案例用列排序。
③注意:对于用文本格式存储的数字,单元格左上角有个绿色三角表示,要注意修改为数字格式。
2、对于本例,需要用到随机函数rand()。一个色子有6个面,取数为1-6。模拟色子数据=int(rand()*6)+1。
其他用到的函数有:求和sum();最大值max();最小值min()。
3、绘制图形。
①目前我们只做2维的数据分析,只有1个自变量和1个因变量。选择2列数据,合计列和最大值列。技巧:当需要选择不相邻两列,可以先选1列,按ctrl键,再选另1列,放开ctrl键。
②菜单插入→图形→散点图,确认。当然,折线图等也可以数据分析,但为了图面干净,推荐还是用散点图。
4、相关性分析。
首先,在散点图上某个散点上右键→添加趋势线。
5、然后,紧接着自动弹出设置趋势线模式(若没弹出这个对话框,也可在图上某个散点上右键,选择设置趋势线模式)→显示公式、显示R平方值。至于回归分析类型,采用线性类型比较通用些。
6、关闭后,观察图上的r2值(实际是指R平方值,下同),r2值0.8到1,说明正相关,自变量和因变量有(线性)关系。r2值0.6到0.8,弱相关。-0.6到0.6,不相关,自变量对因变量没有影响。-0.8到-0.6,弱负相关。-1到-0.8,负相关,自变量和因变量有(线性)关系,但方向相反。
7、最后,点击图上任意散点,表格会出现红色框和蓝色框,红色是因变量,不能移动,蓝色框可以移动。通过鼠标拖动蓝色框,可以看到最大值、最小值、中间值与合计数的线性相关性r2值。
8、本案例数据统计:合计数与最大值、最小值的相关性大多在0-0.7以内,合计数与中间值的相关性大多在0.7以上。自变量x为中间值,因变量y为合计数,他们的关系模型为:y = 0.4196x - 0.8817。(当然,公式中的参数只是针对这25次试验)
本案例结论:三数合计与中间值呈弱线性相关。
推论:评分比赛中,将最高分和最低分同时去掉,不影响最终得分。
以上就是Excel数据处理并绘制成分析图形方法介绍,操作很简单的,你学会了吗?希望这篇文章能对大家有所帮助!
㈤ 移动云图数据库有哪些功能
移动云图数据库主要有四大功能,分别是算法分析功能、数据可视化功能、备份恢复功能和实例监控功能,能够帮助企业打通数据孤岛,构筑全局视角。