导航:首页 > 网络数据 > 大数据social

大数据social

发布时间:2023-08-28 15:05:34

大数据时代下的社交网络

大数据时代下的社交网络

互联网的发展为社交网络的发展奠定了基础,社交网络的发展同时也为让互联网的关系网越来越复杂,在这个需求背景下,就提出了一个社交图谱的概念,也就是网络社交上表示人与人之间关系的网络图谱,但是我们有没有想到,其实社交图谱也是大数据时代的一个产物。

FB的创始人扎克伯格就是提出了社交图谱的概念,也让他的网站获得了成就,在大数据时代下的社交网络在对于用户分类、用户行为以及人际关系上有更加明显的表现力,通过这些用户行为分析,可以时时刻刻与用户之间进行互动看,也可以为用户提供很多需要的信息和观点。

最近很多社交网站也开始使用大数据了,进行网络的分析,从一些简单的人际关系的分析,到与他们相关行为的数据分析,不管是对人还是对时间,可能彼此之间都有一些内在的联系,因为社交网络时时都有动态在更新,根据这些信息来预测用户接下来可能产生的行为,这个是社交图谱也是大数据分析的目的之一,但是真的可以这么快就实现吗?还是说只是天方夜谭,当然现阶段的社交大数据还是处于探索阶段,更好的潜能还在等待着被激发。

同时大数据技术的应用也使得社交网络的图形分析有了更进一步的发展,伴随着需求的不断发展,数据的产生以及数据收集的难度越来越大,大数据分析工作也在不断的增长,这也促进了大数据的分析实时性以及需求性都达到了一个新的高度,当然我们也不会满足现阶段的大数据规模,通过不断的推动社交网络图形化,大数据的复杂程度也会提升到下一个高度。

如果你对大数据有兴趣,同时你对社交网络也有兴趣,随着大数据技术的不断发展,在未来的很长一段时间里,将会有更多的组织从事这方面的研究和发展,社交网络图形化的处理技术也会不断发展。

以上是小编为大家分享的关于大数据时代下的社交网络的相关内容,更多信息可以关注环球青藤分享更多干货

❷ 大数据挖掘商业价值的方法包括哪些

1、对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。
2、运内用大数据模拟实容境,发掘新的需求和提高投入的回报率。
3、提高大数据成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。
4、进行商业模式,产品和服务的创新。

❸ 大数据的现实意义

问题一:大数据的现实意义 举个例子 你在某宝买了件内衣 马云就能知道你的胸围 你的嗜好(蕾丝还是)你的住址 电话 姓名等等一系列问题

问题二:大数据有哪些重要的作用 主要由以下三点作用:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。

第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。

第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。

问题三:大数据真的有意义么 研究表明,大数据是继传统IT之后下一个提高生产率的技术前沿和信息服务业发展的重要推动力。大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
大数据应用能够发挥重要的经济作用,不但有利于私人商业活动,更有利于国民经济和公民。数据可以为世界经济创造重要价值,提高企业和公共部门的生产率与竞争力,并为消费者创造大量的经济剩余。
大数据及其开发利用能够催生新的产业形态,拓展成为战略性新兴产业的重要组成部分。大数据的生产、整合、开发利用具有广泛的高附加值,可以形成和应用于各行业的关键发现,大数据的有效利用可以创造巨大的潜在价值,许多行业和承担业务职能的组织可以利用大数据提高人力、物力资源的分配和协调能力,减少浪费,增加透明度,并促进新想法和新见解的产生。
在当下这个信息爆炸的时代,大数据是未来的趋势。ITjob官网有关于大数据应用实例的文章和介绍,很多论坛和贴吧也有关于大数据的讨论,你可以去具体了解下大数据在生活中的应用。以及未来的发展前景,再来思考有没有意义。

问题四:什么是大数据,大数据为什么重要,如何应用大数据 空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。

问题五:何谓大数据?大数据的特点,意义和缺陷. 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
特点:
1.数据量大;
2.数据类型多;
3.数据处理实时性强;
4.数据真实性。
意义:大数据的意义在于通过对大量数据进行分析从而对核心价值进行预测。
缺陷:对处理能力要求高,存在隐私安全问题。

问题六:什么是大数据,大数据为什么重要,如何应用大数据 读读这本书吧。。
驾驭大数据 驾驭未来
文/林海龙 虎嗅网友
大数据的流行,也引发了图书业大数据出版题材的升温。去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国 *** 的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。
该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!
大数据重要以及不重要的一面
与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。
网络数据与电子商务
对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。
一些有价值的应用场景
大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手......>>

问题七:互联网大数据有哪些好处多 大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。
现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。
通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。
大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。
以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。
为什么使用大数据?
数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。
现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。
更完整的解析
大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。
现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。
类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。
大数据是什么?
由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:
量级(Volume):大量的数据
速率(Velocity):高速的数据产出
多样性(Variety):多种类型和来源的数据。
正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:
网站分析
移动分析
设备/传感器数据
用户数据(CRM)
统一的企业数据(ERP)
社交数据
会计系统
销售点系统
销售体系
消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)
公司内部电子表格
公司内部数据库
位置数据(空间位置、GPS定位的位置)
天气数据
但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。
想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。
大数据的好处
大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......>>

问题八:大数据时代,大数据概念,大数据分析是什么意思? 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才 能充分实现大数据的价值。 当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类......>>

问题九:举例说明大数据在哪些方面发挥着重要作用 大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。

问题十:为什么大数据如此重要 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据 *** 的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意义:
有人把数据比喻为蕴[4] 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

❹ 如何才能让大数据变现

讨论一个问题。我们都知道数据是当下所有企业的战略资产,而每个企业中都积累,并不断在产生大量的数据,但为何依然很多企业并不认为数据为其带来了价值,原因可能有很多,但都可以归结到没有用好数据,或者数据不是好数据。

1、 什么样的数据才能产生价值?

阿里巴巴曾鸣认为,所有商业都在快速智能化,而数据是智能商业时代最重要的资产,但只有活数据才能创造价值。第一,数据是活的,也就是说数据是在线的,可以随时被使用;第二,数据必须是被活用的,也就是说数据在不断地被处理,产生智能商业决策,同时又产生更多的数据,形成数据回流。只有在线才能真正让数据成为活数据,进而以数据驱动企业运营。

SCRM的定位是面向行业领导者的用户生态数字化运营平台,行业领导者意味着其客户群体为行业第一层级的企业,用户生态数字化运营平台则有两层含义,一是企业全渠道连接用户、持续互动的连接器,二是连接数据,实现数据变现的平台。

2、SCRM是让消费者交互变纵为横

一是对于SCRM的理解。

一直以来,SCRM有诸多解读,对其中“S”所代表的social同样说法不少。车传利认为,SCRM的重点有两层,第一是以结合社交工具、社交手段,而更为重要的是“企业和品牌不能再远离用户,与用户做朋友”。后一层含义被很多厂商、很多产品所忽略,但事实却是当下消费者的消费习惯会不断变化,但企业要直接与用户产生关系的趋势不变的。

对消费者的需求,作为工具的SCRM产品如何帮助企业触达从企业端来看,过去很难连接消费者,了解不到客户的需求,在层层渠道、经销商中需求传递缺失。这种过去的企业与消费者的关系,可以形象的归结为纵向传递,消费者-渠道商-渠道商-……-企业。即便在现在,大量的第三方线上平台出现并聚集消费者,然而用户的真实需求也多被这些三方平台所截流,企业依然触达不到。

SCRM的一个重点特点便是能够打破中间环节,这也为变纵为横提供了可能,让企业能够打破与消费者之间的层层架构,实现企业与渠道商、门店以及最终消费者的直接连接,从而把握真实客户需求,真正做到客户运营。

3、在线让数据活起来

在数据收集方面,企业面临两大问题,一是线上被第三方平台所截流,线下被渠道截流,很难收集到真正的数据;二是,即便收集到,很多数据不是实时的,消费者可能已经过了相应的周期,数据就变成了废数据。

而数据变现最基础的便是依托互动数据识别用户特性,并基于数据进行进一步互动,下一层次的消费挖掘,比如大量消费者留下的客服数据,这是可以深度挖掘的数据,一方面反应产品存在的问题,一方面亦能发掘新需求。

因此,企业要真正挖掘数据财富的前提,便是能真正获取到数据、能获取到真正数据。发源地的产品通过两方面建立这条通路,一是全渠道连接,二是将线下多端上线,让数据可连接,实现数据变现。

全渠道连接整合企业经营相关的所有与消费者交互的渠道。主要包括门店、线下活动等线下渠道,官网、微信微博、APP等自营媒体平台,天猫、京东等电商平台,经销商、服务商等合作伙伴以及广告等6类渠道,实现全渠道连接客户接触点。整合渠道后,依托平台与消费者持续互动,不断汇集实时的消费者数据,进而通过数据挖掘,实现数据应用。

同时,连接数据的重点在于让线下的链条在线化,包括线下渠道、线下商品、员工以及消费者的上线。

客户在线,以消费者几乎必备的微信作为入口,通过线上活动、支付等手段连接门店、连接消费者,将相关消费信息记录下来,回传到系统;

员工在线,门店的店员在线,将与消费者的互动实现线上记录,实现精细化运营;

产品在线,让每一个员工都知道每一个货品的销售情况,判断消费者喜好及货品市场接受度;

渠道在线,实现卖货情况、销售情况等实时掌握,判断门店经营情况。

4、做定制化的SaaS

与很多SaaS服务商不同,发源地服务直接定位在一体化解决方案,而不是产品+服务。或者说SaaS多是主通用产品,结合行业方案或者定制方案,而发源地则是直接瞄准定制方案。

发源地的服务过程主要分为四步:业务流程梳理与战略咨询、发源地SCRM SaaS解决方案、定制化解决方案实施、运营与维护支持。这与SaaS的服务方式普遍不同。

其原因一是因为发源地主要服务集团型、连锁品牌,如vivo、联合利华等,这类大型企业存在太多差异化需求,取决于客户群体的行业特性,发源地定下这种服务理念。

二是发源地认为,一套完整的方案,不是一个通用产品+简单服务便能完成,如果不涉及咨询层面,不与客户一同梳理出企业的流程、脉络,只是客户要一个服务便加一个服务,带给客户的只能是迁就的方案,而不是顺畅、一体化的方案。

当然,并不是说发源地提供的就是纯粹的定制服务,而是依托支持灵活业务拓展的PaaS开放平台,通过功能模块化、可插拔的方式实现。

❺ 关于大数据你必须了解的几个关键词

关于大数据你必须了解的几个关键词
大数据分析的定义:大数据分析,即对规模巨大的数据进行分析,能够高效存储和处理海量数据、并有效达成多种分析目标的工具及技术的集合。Gartner将大数据分析定义为追求显露模式检测和发散模式检测,以及强化对过去未连接资产的使用的实践和方法,意即一套针对大数据进行知识发现的方法。通俗地讲,大数据分析技术就是大数据的收集、存储、分析和可视化的技术,是一套能够解决大数据的4V【海量(Volume)、高速(Velocity)、多变(Variety)、真实(Veracity)】问题,分析出高价值(Value)的信息的工具集合。
大数据的特点:数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,需要搜索、处理、分析、归纳、总结其深层次的规律。数据量:这个参数表示数据的数量,随着科学技术及互联网的发展,推动着大数据时代的来临,各行各业每天都在产生数量巨大的数据碎片,数据计量单位已从从Byte、KB、MB、GB、TB发展到PB、EB、ZB、YB甚至BB、NB、DB来衡量。数据类型:传统企业数据(Traditionalenterprisedata):包括CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。机器和传感器数据(Machine-generated/sensordata):包括呼叫记录(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digitalexhaust),交易数据等。社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。处理速度: 1秒定律,这一点也是和传统的数据挖掘技术有着本质的不同,物联网,云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。大数据分析工具:数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,几款好用的处理工具如Hadoop、HPCC、Storm、Apache Drill、RapidMiner和Pentaho BI。工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。大数据的应用:大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。营销:主要用于管理和优化各种营销活动,如交叉销售、追加销售以及基于位置的一对一营销,并及时对客户需求进行完整评估等。财政:使用大数据技术可以预防欺诈检查、进行风险估计和管理、贸易监视、反洗钱、防止信贷风险等。保险:为规避风险,防止欺诈行为,由大数据分析师及时分析调整工作负荷,客户价值等。零售:1、分析商品2、供应链管理分析3、优化消费通讯:推进网络优化规划,满足不同客户需求,研发并推出新产品。分析引擎:提供连接器,处理数据库。支持大数据分析法:面对庞杂而复杂的数据,必须有许多有效的解决方案,普通分析和高级分析都可以轻松提供集成,集中分析数据,在一个单一的平台上,满足分析引擎对营销方案的需求。电子表格工具:ODBC连接器将客户与Microsoft Excel连接在一起,利用精湛的分析工具如Qlik,MicroStrategy,TIBCO、Jaspersoft,Tableau等,在ODBC/REST APIS的帮助下,将协调R统计编程语言添加到金属板。CRM和在线营销方案:Salesforce.com提供的着名的CRM和在线营销解决方案适合处理业务,并及时提供必要的网络分析对策。大数据的意义和前景:总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型进行挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在人们面前。

❻ 大数据是什么意思

问题一:大数据是什么意思 大数据是指整个分析运营的各个方面的数据整合。特别是指互联网带来的整个方方面的物流 信息流 资金流都在数据分析下整合
希望你能接受这个答案。

问题二:大数据是什么意思? 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。大数据是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的加工能力,通过加工实现数据的增值。

问题三:现在说的大数据是什么意思 最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。
中文名:大数据时代
外文名:Big data

问题四:什么是大数据,大数据的意义是什么? 大数据的意思就是数据要在线,这样你的数据才能有价值,用于分析或者处理。大量的数据在线后的分析才有意义。可能得到你想要的数据,电影里好多这种素材,比如人脸的搜索,人员的定位,人流的分析,运行的状态等等都有使用。现在做这些应用的也很多,只是落地的还稍微少一点。还是为了创造价值。

问题五:移动大数据是什么意思 从海量的数据里进行撷取、管理、处理、并整理之后,获得你需要的资讯

电影《纸牌屋》的成功就是其中一个例子,Netflix(引进纸牌屋的公司)作为世界上最大的在线影片租恁服务商,从其网站点击率、下载量、搜索请求和评论等众多海量数据中进行分析与预测后,认为纸牌屋能火,因此选择引进《纸牌屋》

问题六:什么是大数据 大数据是什么意思 “大数据”不是“数据分析”的另一种说法!大数据具有规模性、高速性、多样性、而且无处不在等全新特点,具体地说,是指需要通过快速获取、处理、分析和提取有价值的、海量、多样化的交易数据、交互数据为基础,针对企业的运作模式提出有针对性的方案。由于物联网和智能可穿戴的普及带来的,生产线上普通的蓝领员工,前台电话员,等企业内的低阶员工也成为产生大数据的数据内容的一部分,数据的产生除了来自社交网络,网站,电子商务网站,邮箱外,智能手机,各种传感器,和物联网,智能可穿戴设备。
大数据营销与传统营销最显著的区别是大数据可以深入到营销的各个环节,使营销无处不在。如用户的偏好?上网的时间段?上网主要浏览页?对页面和产品的点击次数?网站上的用户评价对他的影响?他会在哪些地方分享对产品和购物过程的体验?这些都是对用户网上消费和品牌关注度的深入分析,可以直接影响用户消费的倾向等商业效果。
大数据彻底改变企业内部运作模式,以往的管理是“领导怎么说?”现在变成“大数据的分析结果”,这是对传统领导力的挑战,也推动企业管理岗位人才的定义。不仅懂企业的业务流程,还要成为数据专家,跨专业的要求改变过去领导力主要体现在经验和过往业绩上,如今熟练掌握大数据分析工具,善于运用大数据分析结果结合企业的销售和运营管理实践是新的要求。
当然大数据对企业的作用一个不可回避的关键因素是数据的质量,有句话叫“垃圾进,垃圾出”指的是如果采集的是大量垃圾数据会导致出来的分析结果也是毫无意义的垃圾。此外,企业内部是否会形成一个个孤立的数据孤岛,数据是否会成就企业内某些人或团队新的权力,导致数据不能得到实时有效地分享,这些都会是阻碍大数据在企业中有效应用的因素。
而随着大数据时代的到来,对大数据商业价值的挖掘和利用逐渐成为行业人士争相追捧的利润焦点。业内人士称,电商企业通过大数据应用,可以探索个人化、个性 化、精确化和智能化地进行广告推送和推广服务,创立比现有广告和产品推广形式性价比更高的全新商业模式。同时,电商企业也可以通过对大数据的把握,寻找更 多更好地增加用户粘性,开发新产品和新服务,降低运营成本的方法和途径。

问题七:什么是大数据时代 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?

一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。

二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。

三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新......>>

问题八:大数据,是指什么?_?怎么解释 大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。

问题九:征信大数据是什么意思? 大数据是指所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、处理、并整理成为服务于 经营决策的资讯。大数据征信是指什么呢?简单的说,例如电商行业京东做出判断的消费数据信息就是大数据征信。大数据征 信是伴随互联网金融发展起来的。目前征信机构有很多,不乏后起之秀如立木征信,使用互联网技术抓取或接口合作获取征信 数据,并且可以接入央行征信。随着互联网金融的发展,大数据征信与央行征信会不断融合直至融为一体,真正的满足数据的 完整性,可以更加全面地评估信用,为企业或个人提供决策分析、风险评估以及生活场景的应用。

❼ 大数据时代是什么

问题一:什么是大数据时代 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?

一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营友巧决策更积极目的的资讯。
2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才能充分实现大数据的价值。
当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起答空,这些非结构化的数据服务的价值在哪里。

二:大数据的类型和价值挖掘方法
1、大数据的类型大致可分为三类:
1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。
3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。
2、大数据挖掘商业价值的方法主要分为四种:
1)客户群体细分,然后为每个群体量定制特别的服务。
2)模拟现实环境,发掘新的需求同时提高投好举键资的回报率。
3)加强部门联系,提高整条管理链条和产业链条的效率。
4)降低服务成本,发现隐藏线索进行产品和服务的创新。

三:大数据的特点
业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:
1、是数据体量巨大
数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新......>>

问题二:大数据时代:大数据是什么? 大数据是什么?是一种运营模式,是一种能力,还是一种技术,或是一种数据 *** 的统称?今天我们所说的“大数据”和过去传统意义上的“数据”的区别又在哪里?大数据的来源又有哪些?等等。当然,我不是专家学者,我无法给出一个权威的,让所有人信服的定义,以下所谈只是我根据自己的理解进行小结归纳,只求表达出我个人的理解,并不求全面权威。先从“大数据”与“数据”的区别说起吧,过去我们说的“数据”很大程度上是指“数字”,如我们所说的客户量,业务量,营业收入额,利润额等等,都是一个个数字或者是可以进行编码的简单文本,这些数据分析起来相对简单,过去传统的数据解决方案(如数据库或商业智能技术)就能轻松应对;而今天我们所说的“大数据”则不单纯指“数字”,可能还包括“文本,图片,音频,视频……”等多种格式,其涵括的内容十分丰富,如我们的博客,微博,轻博客,我们的音频视频分享,我们的通话录音,我们位置信息,我们的点评信息,我们的交易信息,互动信息等等,包罗万象。用正规的语句来概括就是,“数据”是结构化的,而“大数据”则包括了“结构化数据”“半结构化数据”和“非结构化数据”。关于“结构化”“半结构化”“非结构化”可能从字面上比较难理解,在此我试着用我的语言看能否形象点地表达出来:由于数据是结构化的,数据分析可以遵循一定现有规律的,如通过简单的线性相关,数据分析可以大致预测下个月的营业收入额;而大数据是半结构化和非结构化的,其在分析过程中遵循的规律则是未知的,它通过综合方方面面的信息进行模拟,它以分析形式评估证据,假设应答结果,并计算每种可能性的可信度,通过大数据分析我们可以准确找到下一个市场热点。 基于此,或许我们可以给“大数据”这样一个定义,“大数据”指的是收集和分析大量信息的能力,而这些信息涉及到人类生活的方方面面,目的在于从复杂的数据里找到过去不容易昭示的规律。相比“数据”,“大数据”有两个明显的特征:第一,上文已经提到,数据的属性是包括结构化、非结构化和半结构化数据;第二,数据之间频繁产生交互,大规模进行数据分析,并实时与业务结合进行数据挖掘。解决了大数据是什么,接下来还有一个问题,大数据的来源有哪些?或者这个问题这样来表达会更清晰“大数据的数据来源有哪些?”对于企业而言,大数据的数据来源主要有两部分,一部分来自于企业内部自身的信息系统中产生的运营数据,这些数据大多是标准化、结构化的。(若继续细化,企业内部信息系统又可分两类,一类是“基干类系统”,用来提高人事、财会处理、接发订单等日常业务的效率;另一类是“信息类系统”,用于支持经营战略、开展市场分析、开拓客户等。)传统的商业智能系统中所用到的数据基本上数据该部分。而另外一部分则来自于外部,包括广泛存在于社交网络、物联网、电子商务等之中的非结构化数据。这些非结构化数据由源于 Facebook、Twitter、LinkedIn 及其它来源的社交媒体数据构成,其产生往往伴随着社交网络、移动计算和传感器等新的渠道和技术的不断涌现和应用。具体包括了:如,呼叫详细记录、设备和传感器信息、GPS 和地理定位映射数据、通过管理文件传输协议传送的海量图像文件、Web 文本和点击流数据、科学信息、电子邮件等等。由于来源不同,类型不同的数据透视的是同一个事物的不同的方面,以消费客户为例,消费记录信息能透视客户的消费能力,消费频率,消费兴趣点等,渠道信息能透视客户的渠道偏好,消费支付信息能透视客户的支付渠道情况,还有很多,如,客户会否在社交网站上分享消费情况,消费前后有否在搜索引擎上搜索过相关的关键词等等,这些信息(或说数据)......>>

问题三:大数据时代是什么意思?详解 最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。大数据作为云计算、物联网之后IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营交易信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。

问题四:大数据时代,大数据概念,大数据分析是什么意思? 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才 能充分实现大数据的价值。 当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类......>>

问题五:什么是大数据,大数据时代怎么理解 大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。

问题六:什么是大数据时代 大数据时代
(巨量资料(IT行业术语))
编辑
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
产生背景
编辑
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数
大数据时代来临
据,并命名与之相关的技术发展与创新。它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。[1]
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里・金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。”[2]
影响
编辑
大数据
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[3]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。[2]
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。[4]
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……[1]
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到2012年为止,人类生产的所有印刷材料的数据量是200PB,全人类历史上说过的所......>>

问题七:什么是大数据时代 大数据时代
(巨量资料(IT行业术语))
编辑
最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。” “大数据”在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。
中文名
大数据时代
外文名
Big data
提出者
麦肯锡
类 属
科技名词
目录
1 产生背景
2 影响
? 大数据
? 大数据的精髓
? 数据价值
? 可视化
3 特征
4 案例分析
5 产业崛起
6 提供依据
7 应对措施
产生背景
编辑
进入2012年,大数据(big data)一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数
大数据时代来临
据,并命名与之相关的技术发展与创新。它已经上过《 *** 》《华尔街日报》的专栏封面,进入美国白宫官网的新闻,现身在国内一些互联网主题的讲座沙龙中,甚至被嗅觉灵敏的国金证券、国泰君安、银河证券等写进了投资推荐报告。[1]
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。
正如《 *** 》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。
哈佛大学社会学教授加里・金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是 *** ,所有领域都将开始这种进程。”[2]
影响
编辑
大数据
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[3]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。[2]
在现今的社会,大数据的应用越来越彰显他的优势,它占领的领域也越来越大,电子商务、O2O、物流配送等,各种利用大数据进行发展的领域正在协助企业不断地发展新业务,创新运营模式。有了大数据这个概念,对于消费者行为的判断,产品销售量的预测,精确的营销范围以及存货的补给已经得到全面的改善与优化。[4]
“大数据”在互联网行业指的是这样一种现象:互联网公司在日常运营中生成、累积的用户网络行为数据。这些数据的规模是如此庞大,以至于不能用G或T来衡量。
大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手机为37.8万台,高于全球每天出生的婴儿数量37.1万……[1]
截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。国际数据公司(IDC)的研究结果表......>>

问题八:简述什么是大数据时代 一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据 *** ,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

问题九:什么是大数据时代。什么又叫做云商。? 随着分布式计算技术的成熟,大公司已经有了分析处理大数据的能力。这也让数据挖掘等数据分析技术逐渐成熟,以往只能采取抽样数据分析而现在可以分析所有的数据了。分析结果随着数据量的增加也越来越精确,范围也越来越广,而数据也随之越来越有价值这就造成几乎所有公司开始拼命搜集各类数据以提高自己的服务。
云商也叫智慧云商。信息 + 应用+ 基础设施无处不在 = 平台应用跨地域、跨终端、跨系统、跨平台。

问题十:马云说大数据时代已经开始到来,那么大数据是指什么内容呢?想深入学习这方面的知识 您好,看你选择什么行业了,我先说说大数据概念包含几个方面的内涵吧 1. 数据量大,TB,PB,乃至EB等数据量的数据需要分析处理。 2. 要求快速响应,市场变化快,要求能及时快速的响应变化,那对数据的分析也要快速,在性能上有更高要求,所以数据量显得对速度要求有些“大”。 3. 数据多样性:不同的数据源,非结构化数据越来越多,需要进行清洗,整理,筛选等操作,变为结构数据。 4. 价值密度低,由于数据采集的不及时,数据样本不全面,数据可能不连续等等,数据可能会失真,但当数据量达到一定规模,可以通过更多的数据达到更真实全面的反馈。 很多行业都会有大数据需求,譬如电信行业,互联网行业等等容易产生大量数据的行业,很多传统行业,譬如医药,教育,采矿,电力等等任何行业,都会有大数据需求。 随着业务的不断扩张和历史数据的不断增加,数据量的增长是持续的。 如果需要分析大数据,则可以Hadoop等开源大数据项目,或Yonghong Z-Suite等商业大数据BI工具。 随着互联网和移动的快速发展,大数据在各个领域不断增加应用。也越来越面向个人大数据应用。

❽ 大数据是怎么被提到的

3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代APP微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。

众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。

❾ 大数据的数据类型有哪些

大数据常见的类型有哪几种?
1)传统公司数据(Traditionalenterprisedata)
包括CRMsystems的消费者数据,传统的ERP数据,库存数据以及账目数据等。
2)机器和传感器数据(Machine-generated/sensordata)
包括呼叫记载(CallDetailRecords),智能仪表,工业设备传感器,设备日志(通常是Digitalexhaust),交易数据等。
3)外交数据(Socialdata)
包括用户做法记载,反应数据等。如Twitter,Facebook这么的外交媒体途径。
透过大数据的三种类型,我们可以了解到,大数据是数据计算技术的展开,是一种简略的数据计算到计算运算技术的展开,大数据有关技术的展开与立异,使得大数据现已从简略的数据计算展开到了关于数据的开掘、分析、运用才干的立异上,大数据时代对人类的数据驾御才干提出了新的应战,也为我们获得更为深入、全部的洞悉才能供应了史无前例的空间与潜力。

阅读全文

与大数据social相关的资料

热点内容
haier电视网络用不了怎么办 浏览:361
苹果6手机id怎么更改 浏览:179
米家扫地机器人下载什么app 浏览:82
如何在编程猫代码岛20种树 浏览:915
手机基础信息存储在哪个文件 浏览:726
如何查找手机备份文件 浏览:792
内存清理工具formac 浏览:323
iphone过滤骚扰电话 浏览:981
wap网络如何使用微信 浏览:699
手机迅雷应用盒子在哪个文件夹 浏览:351
windows8网络连接 浏览:442
怎么快速增加qq群人数 浏览:919
锤子视频播放器文件不存在 浏览:707
苹果手机怎么清理app缓存 浏览:682
花园战争2豪华升级包 浏览:517
电脑无法向u盘传输文件 浏览:823
bpn配置文件 浏览:932
501完美越狱工具 浏览:119
中间夹菜单里面不能显示压缩文件 浏览:952
如何指导小学生参加编程比赛 浏览:275

友情链接