A. 大数据的产生与发展现状研究
摘 要:大数据的产生给未来信息技术带来新的机遇与挑战。大数据对数据处理的有效性、实时性提出了更高要求,需要根据大数据的特点对当前数据处理技术实施变革,从而形成更有益于大数据采集、存储、处理、管理、分析、共享的新兴技术。本文从大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。
关键词 :大数据 物联网 信息处理 海量计算
一、大数据的产生与发展现状
随着物联网、云计算等信息技术的飞速发展,大数据技术(Big Data)也越发进入人们的视线。大数据是用传统方法或工具很难处理或分析的数据信息。目前,人们对大数据的理解还不够全面和深入,关于大数据的含义也没有一个统一的定义。亚马逊大数据科学家John Rauser认为:大数据是超过任何一台计算机处理能力的庞大数据量。Informatica 的中国区首席顾问但彬指出:大数据是海量数据与复杂类型的数据的结合。而维基网络则把大数据定义成诸多大而复杂的、难以用当前数据库处理的数据集合。
大数据研究受到国内外学术界和工业界的广泛关注,已成为当今信息时代全世界讨论的热点。2008年,Nature杂志就推出大数据专刊,计算社区联盟也在同一年发表了报告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,报告阐述了解决大数据问题所需的关键技术以及所面临的挑战。美国奥x政府于2012年3月在白宫网站发布了《大数据研究和发展倡议》,提出了通过收集、处理海量、复杂的数据信息,从而提升能力,加快科学和工程领域的创新步伐,转变学习教育模式,强化美国本土的安全”。2011年1月,微软公司同惠普公司合作开发了一系列能够提升生产力,同时提高决策速度的设备。此外,欧盟委员会也提出驾驳大数据浪潮的战略思路,日本发布的《面向 2020 的 ICT综合战略》也提出需要构造大量丰富的数据基础。
近年来,我国也积极开展对大数据的研究。2011年10月,工信部确认京沪深杭等 5 城市为“云计算中心”试点城市。2012年6月,中国计算机学会青年计算机科技论坛也举办了“大数据时代,智谋未来”学术报告研讨会。大数据及其科学研究方法涉及应用领域很广,并将与国计民生密切相关的科学决策、金融工程以及知识经济领域紧紧接合。
二、大数据的特点
目前,企业界和学术界都一致认为,大数据具有4个“V”特征,即:容量(Volume)、种类(Variety)、速度(Velocity)和至关重要的`价值(Value)。
(1) 容量(Volume)巨大。海量的数据集从TB 级别提升到PB 级别。
(2) 种类(Variety)繁多。大数据数据源有多种,数据格式和种类不同于以前所规定的结构化数据范畴。
(3)价值(Value)密度低。如视频的例子,在不间断连续监控的过程中,可能有意义的数据仅有一两秒。
(4)速度(Velocity)快。包含大量实时、在线数据处理分析的需求1秒钟定律。
三、大数据应用的领域
大数据产业的发展将推动全球经济由粗放型向集约型转变,这将对提升企业整体竞争力和政府监管能力具有意义深远的影响。
商业作为大数据的重要应用领域。沃尔玛公司通过对消费者购物行为等一系列非结构化数据的分析,了解不同顾客的购物习惯,公司从所销售的数据进行分析,从而选出适合在一起搭配出售的商品;淘宝也针对买家开设了大数据平台,为客户量身打造了一整套完善的网购体验产品。
大数据在金融业也起到了至关重要的作用。美国Equifax公司利用大数据技术,通过对其的数据库中与财务有关的记录海量信息进行索引处理和交叉分享,从而得到客户的个人信用等级,以推断出客户的支付需求与能力。
随着大数据在医疗与生命科学研究过程中的广泛应用和不断扩展。2010年,中国公布的《十二五规划》指出:要重点建设国家级、省级和地市级三级医疗卫生信息平台,建设电子病历和电子档案两个最为基础的数据库。各级医院也将在医疗信息仓库、数据中心等领域加大投入,医疗数据信息的存储将愈加被关注,医疗信息中心的关注焦点也将由传统的计算领域转为存储领域。
除此之外,大数据在制造业领域也有着广阔的应用。制造业企业积累了广泛的数据信息,在开展对业务数据进行技术管理的同时,企业需要通过大数据处理技术来帮助决策者从数据库储存的海量信息中找到有价值的信息,并且对其进行分析处理,从而增强决策的正确性、规避风险。
四、大数据所面临的挑战
大数据技术使人们能够更好地利用之前不能使用的各个数据类型,找出被忽略的信息,促进企业组织更加高效、智能。但随着对大数据研究的不断深入,人们也更加意识到当大数据技术向人们敞开“方便之门”的同时,也带来了众多的挑战:
(1)大数据需要更为专业化的管理技术人才。
(2) 大数据的合理利用需要解决容量大、类别多和时效性高的数据处理问题。
(3)大数据的利用对信息安全提出了更高要求。
(4)大数据的集成与管理问题。
这些挑战已成为关系到未来大数据发展的重要因素,同时也成为未来引领大数据发展的推动力。
五、结束语
大数据已经逐步渗透到人们工作生活的诸多领域中,对于大数据的研究也在不断的深化。本文针对大数据的产生与发展、特征、主要应用以及大数据所带来的挑战等方面进行阐述与分析。大数据的发展还处于初级阶段,还有更为广阔的空间需要人们不断开拓,如何合理地利用大数据、更加高效地处理大数据来为人们服务仍需要广大研究者不断地研究和探索。
参考文献:
[1]刘智慧,张泉灵.大数据技术研究综述[J].浙江大学学报,2014,46(6):957- 972.
[2]严霄凤,张德馨.大数据研究[J].计算机技术与发展,2013,23(4):168-172.
[3]刘俊.基于大数据流的Multi-Agent系统模型研究[J].计算机技术与发展, 2007,17(5):166-169.
B. 大数据时代的市场研究方法
大数据时代的市场研究方法
大数据时代新的市场研究方法使“无干扰”真实还原消费过程成为可能,智能化的信息处理技术使低成本、大样本的定量调研成为现实,这将推动消费行为及消费心理研究达到一个新的高度,帮助快速消费品企业更为精准地捕捉商机。
大数据时代的市场研究方法
1.基于互联网进行市场调研提高了效率,降低了成本。
网络调研具有传统调研方法无可比拟的便捷性和经济性。快速消费品企业在其门户网站建立市场调研板块,再将新产品邮寄给消费者,消费者试用后只要在网站上点击即可轻松完成问卷填写,其便利性大大降低了市场调研的人力和物力投入,也使得消费者更乐于参与市场调研。同时,网络调研的互动性使得企业在新产品尚处于概念阶段即可利用3D拟真技术进行产品测试,通过与消费者互动,让消费者直接参与产品研发,从而更好地满足市场需求。
2.挖掘网络社交平台信息成为研究消费态度及心理的新手段。
脸谱、QQ、微博、微信等社交平台已日渐成为新生代消费群体不可或缺的社交工具,快速消费品的消费者往往有着极高的从众性,因此针对社交平台的信息挖掘成为研究消费潮流趋势的新手段。例如,通过微博评论可以统计分析消费者对某种功能型产品的兴趣及偏好,这对研究消费态度及心理有非常大的帮助。更重要的是,这类信息属于消费者主动披露,与访谈形式的被动挖掘相比信息的真实性更高。
3.移动终端提供了实时、动态的消费者信息。
随着3G网络及智能手机普及,市场研究已渗透到移动终端领域。大量的手机APP应用(例如二维码扫描等)为实时采集消费信息提供了可能性,移动终端的信息分析在购买时点、产品渗透率及回购率、奖励促销效果评估等方面将发挥不可估量的作用。
智能化信息采集、储存及分析
1.超大容量的数据仓库。
数据仓库具有容量大、主题明确、高度集成、相对稳定、反映历史变化等特点,可以有效地支撑快速消费品企业进行大数据研究与应用。数据仓库可以更有效地挖掘数据资源,并可以按照日、周、月、季、年等周期提供分析报表,有助于营销人员更有效地制定营销战略。
2.专业、高效的搜索引擎。
旅游搜索、博客搜索、购物搜索、在线黄页搜索等专业搜索引擎已经得到了广泛应用,快速消费品企业可以根据自己的特点构建专业化的搜索引擎,对相关的企业信息、产品信息、消费者评价信息、商业服务信息等数据进行智能化检索、分类及搜集,形成高度专业化、综合性的商业搜索引擎。
3.基于云计算的数学分析模型。
市场研究的关键是洞察消费者需求,基于云计算的数学分析模型可以将碎片化信息还原为完整的消费过程信息链条,更好地帮助营销人员研究消费行为及消费心理。这些碎片化的信息包括消费者在不同时间、不同地点、不同网络应用上发布的消费价值观信息、购买信息、商品评论信息等。基于云计算的智能化分析,一方面可以帮助市场研究人员对消费行为及消费心理进行综合分析,另一方云计算成本低、效率高的特点非常适合快速消费品企业数据量庞大的特性。
大数据运用中的问题
传统的市场研究包括定性研究及定量研究,以座谈会为主的定性研究受制于主持人的访谈技巧,以街头拦截访问为主的定量研究虽然以严谨的抽样理论为基础,但同样不能完全代表总体的客观情况。而大数据时代革命性的调研方法为市场研究人员提供了以“隐形人”身份观察消费者的可能性,超大样本量的统计分析使得研究成果更接近市场的真实状态。
与此同时,大数据时代的新方法、新手段也带来新的问题,一是如何智能化检索及分析文本、图形、视频等非量化数据,二是如何防止过度采集信息,充分保护消费者隐私。虽然目前仍然有一定的技术障碍,但不可否认的是大数据市场研究有着无限广阔的应用前景。
C. 三大市场研究方法 让你彻底掌握大数据
三大市场研究方法 让你彻底掌握大数据
大数据的到来为企业开拓了新的视野,不少企业意识到智能化信息处理的低成本和好处,因而对其十分重视。然而,从目前大数据的市场发展来看,企业对大数据的研究依然停留在最底层,这就意味着不少企业手里空有大量有价值信息却不知道如何却挖掘。对此,业内人士提出了三大市场研究方法,帮助企业更好的掌握大数据。
一、互联网调查成本更低
作为新兴的行业,大数据的收集和研究成本并不低,这也导致不少中小企业有心利用大数据,但是无力去承担巨额的成本支出。对此,业内人士建议最好采用互联网对其进行市场调研。
互联网调查要比传统的调查方式更便捷更具有经济性,不仅能够将新产品快速通知消费者,同时还能够将消费者使用后的反馈意见及时收集上来,从而对产品的研发做出一定的参考。另外,网络调研的便利性也大大降低了企业在市场调研中的人力、物力投入,加强与消费者的互动,从而更好的满足市场的需求。
二、网络社交平台成为新手段
无论是QQ、微信、微博还是脸谱等社交平台已经成为现代人社交不可缺少的工具平台,在这些平台当中,有大量的消费者和供应商,而消费者往往也更具有从众性,因而针对这些平台人群研发的产品往往更受欢迎。
不仅如此,通过这些平台收集的用户评价要比其他途径的评价更具参考价值,而且对消费者心态和行为的分析也有极大的帮助。最重要的是,这种平台调研中,消费者往往是主动参与,不会产生叛逆和排斥心理,回答问题过程中也会多几分思考,从而让调研更具真实性。
三、移动终端更实时、动态
移动设备的出现和发展也给企业带来更多的发展渠道,市场调研的方向也由最开始的网络延伸到移动终端。大量的APP应用不仅可以为企业提供时效性较强的信息,更能为企业产品的渗透以及各种销售手段的使用发挥巨大的促进作用。
以上三种市场调研方法虽然看起来简单,但是实际操作中效果甚好。不仅深受企业的欢迎,消费者也是十分喜欢。在此,专业人士也提醒企业,市场研究是发展必不可少的一部分。即使是大数据时代也不能完全脱离市场研究存在。
以上是小编为大家分享的关于三大市场研究方法 让你彻底掌握大数据的相关内容,更多信息可以关注环球青藤分享更多干货
D. 工业大数据市场现状及前景调研
我国工业大数据处于起步阶段
工业大数据是指在工业领域信息化应用中所产生的数据,是工业互联网的核心,是工业智能化发展的关键。工业大数据是基于网络互联和大数据技术,贯穿于工业的设计、工艺、生产、管理、服务等各个环节,使工业系统具备描述、诊断、预测、决策、控制等智能化功能的模式和结果。
工业大数据从类型上主要分为现场设备数据、生产管理数据和外部数据。
更多数据来来源及分析请参考于前瞻产业研究院《中国工业大数据产业发展前景与投资战略规划分析报告》。
E. 企业在利用大数据分析进行市场调研时最重要的是什么
为企业营销决策提供依据,发现市场机遇
F. 大数据系统和市场调研信息系统有啥区别和联系
1.区别:
大数据系统是一种能够处理大量复杂数据的信息系统,它戚厅早可以通过对数据进行分析、挖掘和可视化等技术手段来提取有价值的信息。而市场调研信息系统则是一伏晌种专门用于收集、整理、分析和报告市场数据的信息系统,它主要用于帮助企业了解市场需求和竞争状高雀况等信息,从而做出决策。
2.联系:
虽然大数据系统和市场调研信息系统的目的不同,但是它们也有很多相似之处。在市场调研中,大数据系统可以帮助企业更全面地了解市场情况,包括市场规模、消费者行为、竞争对手等方面的信息。同时,市场调研信息系统也可以提供大量的数据源,为大数据系统提供支持。
此外,大数据系统和市场调研信息系统都需要采用一些相同的技术手段,如数据挖掘、机器学习、人工智能等等。这些技术手段都可以帮助企业更好地利用数据,提高决策的准确性和效率。
综上所述,大数据系统和市场调研信息系统虽然有一些区别,但是它们也有很多联系。通过充分利用它们之间的联系,企业可以更好地了解市场情况,提高决策的质量和效率。
G. 大数据对市场调研有甚么作用
在以往的市场调研工作中,数据统计分析能够帮助我们发掘出数据中隐藏
因此,科学技术的进步与发展对大数据的支持起侧重要的作用,大数据的
H. 大数据分析时代对市场营销的影响研究
下面我为你准备的关于市场营销的论文,欢迎阅读借鉴,希望对大家有帮助。
一、数据分析时代演变历程
(一)数据1.0时代
数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。
(二)数据2.0时代
2.0时代开始于2005年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。
(三)数据3.0时代
又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。
二、大数据营销的本质
随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。
(一)大数据时代消费者成为市场营销的主宰者
传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。
(二)大数据时代企业精准营销成为可能
在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。
(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”
传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。
三、基于数据营销案例研究――京东
京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的JD Phone的计划。
JD Phone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。
四、大数据营销的策略分析
(一)数据分析要树立以人为本的思维
“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。
(二)正确处理海量数据与核心数据的矛盾
大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。
(三)整合价值链以共享数据的方式实现价值创造
I. 1.市场调查和大数据的采用对研究消费者行为有哪些方面的意义
大数据是研究抄员通过互联袭网获取的大样本,可以帮助研究员看的更远、更全,寻找关联性,以及趋势性的洞察。
大数据可以收集一些消费者行为属于相关性的数据,比如消费者喜欢看什么节目,买什么东西。而一些关于消费者的态度和感受的精细数据,在很多情况下还是需要通过传统的调查方式来获得。