『壹』 大数据在智慧交通中起了哪些作用
大数据用于智能交通的积极意义
第一,大数据的虚拟性可以解决跨越行政区域的限制。交通大数据的虚拟性,有利于其信息跨越区域管理,只要多方共同遵照相关的信息共享原则,就能在已有的行政区域下解决跨域管理问题。
第二,大数据具有信息集成优势和组合效率。大数据有助于建立综合性立体的交通信息体系,通过将不同范围、不同区域、不同领域的“数据仓库”加以综合,构建公共交通信息集成利用模式,发挥整体**通功能,这样才能发现新价值,带来新机会。例如气象、交通、保险部门的数据结合起来,可高效率地研究交通领域防灾减灾;IC卡数据结合抽样调查,能更快捷、更精确测得城市交通流分布状况。
第三,大数据的智能性能较好的配置交通资源。通过对大数据的分析处理,可以辅助交通管理制定出较好的统筹与协调解决方案。一方面减少各个交通部门运营的人力和物力,另一方面可有些提升道理交通资源的合理利用。如根据大数据结果确定多模式地面公交网络高效配置和客流组织方案,多层次地面公交主干网络绿波通行控制以及交通信号自适应控制。
第四,大数据的快速性和可预测性能提升交通预测的水平。在对各个部门的数据进行准确提炼和构建合适的交通预测模型后,可以有效模拟交通未来运行状态,验证技术方案的可行性。而在实时交通预测领域,大数据的快速信息处理能力,对于车辆碰撞、车辆换道、驾驶员行为状态检测等实时预测也有非常高的可靠性。
第五,提高交通运行效率。大数据技术能促进提高交通运营效率、道路网的通行能力、设施效率和调控交通需求分析。交通的改善所涉及工程量较大,而大数据的大体积特性有助于解决这种困境。
大数据的实时性,使处于静态闲置的数据被处理和需要利用时,即可被智能化利用,使交通运行的更加合理。大数据技术具有较高预测能力,可降低误报和漏报的概率,随时针对交通的动态性给予实时监控。因此,在驾驶者无法预知交通的拥堵可能性时,大数据亦可帮助用户预先了解。
第六,提高交通安全水平。主动安全和应急救援系统的广泛应用有效改善了交通安全状况,而大数据技术的实时性和可预测性则有助于提高交通安全系统的数据处理能力。在驾驶员自动检测方面,驾驶员疲劳视频检测、酒精检测器等车载装置将实时检测驾车者是否处于警觉状态,行为、身体与精神状态是否正常。同时,联合路边探测器检查车辆运行轨迹,大数据技术快速整合各个传感器数据,构建安全模型后综合分析车辆行驶安全性,从而可以有效降低交通事故的可能性。在应急救援方面,大数据以其快速的反应时间和综合的决策模型,为应急决策指挥提供辅助,提高应急救援能力,减少人员伤亡和财产损失。
第七,提供环境监测方式。大数据技术在减轻道路交通堵塞、降低汽车运输对环境的影响等方面有重要的作用。通过建立区域交通排放的监测及预测模型,共享交通运行与环境数据,建立交通运行与环境数据共享试验系统,大数据技术可有效分析交通对环境的影响。同时,分析历史数据,大数据技术能提供降低交通延误和减少排放的交通信号智能化控制的决策依据,建立低排放交通信号控制原型系统与车辆排放环境影响仿真系统。
『贰』 城市交通大数据可视化解决方案
作者 | 网络大数据
如今,城市交通拥堵状况日益严重。虽说智能交通布局在不断地完善,但交通管理仍旧收效甚微。数据独立存储难以融合应用、数据内在规律难寻、数据缺乏深度挖掘等诸多问题,其困难重重,该如何解决呢?不妨看看城市交通大数据可视化解决方案吧!
交通动态看得见,交通管理更简便“大数据可视化”能够将城市运行核心系统的各项关键数据进行可视化呈现,通过贴合实战,从感官、操作、应用及数据四个维度解决交警个性化需求,构建业务场景深度应用,从而打通数据到决策的最短路径。交通管理者可以根据实战场景,利用各类图表、趋势图、视觉效果将庞杂枯燥的数据展现出来,进而深度挖掘内在数据规律,以此指导决策,助力城市交通健康的发展。
系统架构分明,场景动态清晰通过前端感知系统,实时获取城市交通动态信息。将各个子系统的数据录入数据可视化平台进行融合、分析后,呈现出不同场景下的交通信息个性化视图,从而为城市交通的管理和调控提供指导依据。
01强大的数据源整合能力
数据接入灵活多变,支持静态数据、API、数据库、本地数据四种数据对接模式,其中数据库类型支持主流的MySQL、Oracle、MPP,满足庞大、繁杂、多样数据的集中汇聚展示,从而实现不单单是海量数据表面的业务处理而是通过清洗杂乱数据,优化数据结构来进行深层次的信息挖掘,发现数据的真正含义。
02丰富的图表组件搭建工具
提供丰富多样化的图表组件工具,支持包括圆饼图、极区图、地图、柱状图等超过1100项效果配置,用户可以根据实际应用需求进行组合使用。通过结合大屏形成的组件搭配展示给人一种视觉冲击,不仅仅是简单的把数字用图表表示,而是帮助用户,发现数据背后的规律。
03多样化的场景模板
数据可视化平台提供多种应用场景模板,合理运用搭配色彩、布局以及组件,解决用户设计难题。简单的修饰即可使用,业务全景一目了然。
04图形化的编辑界面
用户也可以通过友好的图形化编辑模式完成样式编辑和数据配置,创建属于自己的个性化需求模板,并且可以进行分享,无需编程能力就能轻松搭建可视化应用。
数据可视功能强大,应用场景遍地开花从多个角度进行日常路网运行监测与协调管理、交通警情分析研判、重点人车管理,以满足常态下交通监测监管、应急状态下协同处置指挥调度的需要,满足交通行业各个场景的应用需求。
01交通态势可视化
通过对多项核心交通数据进行分析,实现交通态势评估,辅助交通管理部门依据交通评估结果动态跟踪、监测拥堵状态和预测变化趋势,为交通规划、交通优化的提供量化指标依据。
02设施运维管理
可视化运维基于系统中各种设备的运行状况,能及时直观的反映故障点位信息,包括设备在线情况、完好率以及设备故障类型,帮助运维人员解决问题、提高效率,让运维由繁化简,更加有效的保障智能交通系统的顺畅运行。
03重点车辆管控
通过构建重点车辆管控场景,可以帮助用户直观的了解到区域内所有重点车辆的类型和数量以及发放的通行证数量,实现对嫌疑车辆、布控车辆、涉案车辆、重点车辆等黑名单车辆实时监控告警强化交通管控力度。
04交通事件研判分析
针对历史交通流、交通违法、交通事故等数据进行分析汇总整合、专题化分析,达到科学细化管理目的,为交通管理部门在交通组织、警力部署、设备布设等方面的优化提供决策依据。
以上便是城市交通大数据可视化解决方案的有关介绍。
该方案不仅打通了各交警业务子系统间的数据壁垒,将交通大数据真正的价值发掘出来;更以丰富的视图展示满足了实战应用数据可视化场景需求,交通管理部门可通过清晰可视的交通动态图进行车流管控及警力调度,为城市交通的管理与健康发展带来极大的改善。
『叁』 基于大数据的轨道交通网络化运营管理
摘要:我国作为一个领土辽阔、海陆兼备的大国,幅员辽阔的最大特点就是在进行人员流动经济交流的过程中,对 交通运输力量有着巨大的考验,在改革开放初期,徐启斌先生就提出了“要致富,先修路”的口号,只有完善全面交通 网络运营,才能真正支持我国庞大的交通运力需求,而轨道交通作为陆地交通上最主要也是性价比最高的交通方式,是 我国经济建设的运输的主要运力。因此,如何将轨道进行网络化运营,成为提高当前轨道交通未来发展的主要方向。
关键词:大数据;轨道交通;网络化运营
在轨道交通网络化中,构建大数据的关键点之一是利 用全面的全球战略为轨道交通构建大数据管理平台。轨道 交通数据管理平台的基本内容是重组和优化现有轨道交通 服务的各种工作流程。如果轨道交通服务成功建立了大数 据管理平台,则可以确保系统信息清晰可靠,并使不同业 务之间的系统通信变得方便,有利于决策信息的形成,提 高轨道交通服务信息管理效率,降低运营成本,增加利润。
1 大数据在轨道交通网络化运营管理方面的不 足之处
1.1 轨道交通统计信息收集系统存在的问题 在大多数发达的西方国家,随着大数据领域计算机技 术的发展,轨道交通已逐渐实现可操纵和自动化的模型。 新模式给轨道交通带来的变化非常重要,这主要归功于轨 道交通的建设。集成的管理系统以及每个子系统到原始生 产系统的集成,形成了一个具有统计和分析功能的信息管 理平台。近年来,中国的轨道交通部门在计算机化建设方 面也取得了进展,但是大数据系统无法满足所有业务功能 的需求。随着轨道交通部门的长期发展,数据系统也拥有 大量数据,但所使用的数据仍然不足以容纳数据存储容量。 随着中国轨道交通服务计算机化需求的增长,数据的发展 也发生了革命性的变化。随着电子信息技术的飞速发展, 轨道交通的运输统计部门在全球范围内发挥着越来越重要 的作用,而轨道交通的统计信息系统在道路上不足以满足 需求。
1.2 轨道交通数据处理中的问题
大型轨道交通统计服务的数据收集过程分为三个层 次,即基站、各个运输办公室和总部。根据不同的统计系 统,如旅客运输的堆场系统、货运票务系统、车站行李系 统和其他主要业务系统的收集方法、每日数据量和总交易 量非常大,日均业务处理任务重。说明轨道交通统计数据 规模巨大,随着轨道交通计算机化的发展,可能涉及轨道 交通统计服务的数据不限于该系统,并且更经常涉及外部 系统,例如铁路客运系统当中 12306 客户服务中心的开放 运营以及轨道交通信息资源的不断扩展,给轨道交通统计 系统带来了巨大压力。 多样化的数据类型在轨道交通计算机化过程中不仅有 结构化的数据(例如报告),还有半结构化和非结构化数 据(如语音、视频和图像)。这些不同类型的数据特征显 示了交通统计特性的变化。不同业务系统之间几乎不可能 有相同的内存、存储方法和数据管理模式,特别是对于非 机构数据。如何从不同的结构化数据中提取有价值的业务 信息,并详细分析不同数据的相关程度是现阶段轨道交通 统计服务面临的问题。
1.3 轨道交通数据索引系统中的问题
轨道交通数据指标体系的现状轨道交通的统计指标可 以反映轨道交通服务生产过程的直接绩效、财政收支、资 源管理等方面,各项活动的指标密切相关、相互补充,并 汇总到一个统计数据指标体系中。轨道交通数据统计指标 的最基本要求是能够反映轨道交通服务的当前运行状况。 总结从初步工作中获得的结果可以发现当前系统中的各种 问题,以便为下一步的部署提供可靠的计划。轨道交通统 计指标体系基于不同类型的专业人员,并在各种基准报告 的基础上,已经形成了 12 个专业,涵盖客运、货运、行李、 机车、乘用车、卡车、设备、人工、材料、节能、环保和 投资。从数据指标来看,这些数据指标之间的关系比较复 杂,数据的口径很难统一,这使得轨道交通系统中大数据 的统一管理更加复杂。
1.4无法满足轨道交通统计的新需求
随着轨道交通商业化进程的不断加快,在现代货运 组织变革、高铁运输方式变革等一系列转型发展形势下, 传统的以报代报的统计模式越来越不合适。随着现代轨 道交通的发展和管理,轨道交通统计的功能正通过大数 据技术的发展模式逐渐发生变化。由于大数据技术的应 用,轨道交通统计的功能越来越丰富。以大数据为框架, 对统计活动的需求和发展进行深入科学分析,开发现代 化、综合化的轨道交通统计数据,通过高级数据处理架 构获得信息。管理平台最大化基准统计数据,打破传统 的统计业务流程,轨道交通统计信息系统的运行过程发 生了根本性的变化。传统的数据集成处理方式取代传统 车站和轨道交通局的基础部分,再移交给铁路公司,报 告方法浪费了很多时间。
2 大数据在轨道交通网络化运营管理中的问题 和策略
2.1 轨道交通统计信息系统建设策略 轨道交通服务具有关联的大数据系统和构建大数据的 一般设计缺陷,需要不断尝试以实现管理平台统一管理的 目标。从轨道交通公司的角度来看,应将业务和统计信息 有机地集成在一起,使其可以成为有效的信息管理平台, 重塑统计工作流程并最大限度地保证原始数据的准确性和 及时性,为轨道交通业的未来改革和创新提供坚实的决策 基础。
2.2 轨道交通业务系统数据分析策略 尽管在建设轨道交通统计服务信息方面已经取得了一 些进展,但尚未建立系统的整体数据中心,也没有统一的 统计管理方法,因此统计系统可以提供的决策内容相对薄 弱,现有的统计数据没有得到充分利用。该信息主要存在 以下问题:
(1)数据质量差。地方轨道交通单位的计算机化水 平不高,监督管理工作水平不高。通常由于手工填写表格、 输入数据和操作错误而导致统计数据错误。在高精度和错 误的情况下,没有明确的统计积分方法,这大大降低了输 入数据的质量。 (2)数据收集的粒度极好。当前,生成轨道交通统 计数据统计分析最终内容的过程是使用现有指标进行收 集,并通过不同级别之间的几次汇总获得最终结果。但是, 在轨道交通部门实施细化工作之后,很难满足某些原始数 据和信息的细化要求。只有借助更多完善的数据,才能顺 利完成统计工作内容的完善。
(3)数据利用率低。通常,轨道交通的统计方法包 括处理原始数据。实际的信息使用率不高,可能无法提供 最佳的信息价值。轨道交通服务已经满足了使用大数据技 术的客观条件,下一步是通过创建信息管理平台并寻找尽 可能多的信息背后的机会和价值,从而进行深度数据挖 掘、分析和决策,以激活统计服务,生产报告将成为强大 的目标。
2.3 轨道交通统计指标体系问题分析策略 目前轨道交通统计指标的范围能够满足现阶段的基本 统计要求,但统计指标体系存在的问题不容小觑。新时期, 轨道交通统计信息化建设的关键步骤之一就是如何创新重 构统计指标体系,使之能够全面、科学地反映轨道交通企 业的综合实力。
2.4 大数据驱动业务策略 建立完整的统计数据管理平台,以通过统计数据仓库 以统一,标准化和兼容的方式集成不同业务系统之间的数 据。逐步将原始数据信息整合到信息平台中,根据数据格 式、存储要求、数据共享等方式保存有价值的信息。建立 规则库以指定类别、解释、量表、计算方法等,提高数据 管理质量,统计数据质量是核心,统计数据管理水平需要 不断提高。由于掌握了数据处理过程,为了验证每个源点 的信息,必须根据统计规则对数据进行随时间的修改,以 保证统计数据的质量。在数据校正方面,坚持避免人工干 预,尽量使用计算机化的自动处理和校正功能,尽可能地 辅助特殊问题的手工处理。
3 结束语 轨道交通系统的发展需要强大的统计信息服务集成平 台。通过功能集成以及数据和活动的功能开发,可以提高 统计信息的处理水平,提高统计人员的效率,并提高管理 和决策水平和领导者的指挥能力。由于时间和容量的限 制,笔者只能从概念上讨论大数据在轨道交通网络化运营 中的优势,而未在应用程序级别进行广泛的分析和研究。 大数据的好处虽然显而易见,但仍处于初步研究阶段,其 实施需要高层科学的设计和合理的发展。相信大数据信息 管理系统可以促进轨道交通统计的发展,具有良好的发展 前景。
参考文献:
[1]王洪臣. 基于数据驱动的城市轨道交通智慧出行服务研究[J]. 轨道交通装备与技术,2021(4):54-56.
[2]张静萱, 刘兵, 李晓璐, 等. 城市轨道交通网络运营安全的综合评估[J]. 科学技术与工程,2021,21(17):7340-7347.
[3] [3] 何跃齐, 王路萍, 徐文, 等. 城市轨道交通网络运营信息一体化模型研究[J]. 都市快轨交通,2015,28(2):53-56+60.
『肆』 城市交通大数据行业发展现状剖析
城市交通大数据行业发展现状剖析
人们在城市中生活每天产生大量的数据,有结构化的也有非结构化的,有一些与交通出行密切相关,而有一些又看似与交通出行没有什么关系,这些数据分布在不同的行政管理部门、互联网公司或者传统运营企业。举个例子来说,随着智慧城市建设热潮,很多城市中已经布满了传感设备(交叉口进口道地磁、电子警察、卡口等),通过地磁可以采集到一定时间间隔交叉口进口道交通流量、速度以及占有率;通过电子警察或卡口可以实时获取经过卡口的车辆车牌号、通过时间以及地点车速,这些数据基本都汇聚在地方交警部门。互联网公司通过为城市居民提供即时通信、导航以及共享服务,可以通过客户终端定位实时获取居民的位置。传统运营企业范围也很广泛,包括了公交公司客运企业、出租车公司、通信运营商等,公交公司和客运企业汇聚了客流数据(IC卡、第三方支付以及零票)、车辆定位数据等,出租车公司汇聚了出租车定位数据、而通信运营商则可以汇聚客户手机MAC地址。上述列举的数据,都可以为城市交通规划、政策制定、设计以及管理提供数据支持。后续笔者会结合自身十几年的理论研究以及交通工程经验,阐述每种数据未来的应用场景及潜在价值。
城市交通系统分析是一个复杂巨系统,尤其是在交通供需矛盾日益突出的当下,如何提高整个交通系统效率、提升居民出行品质是对每个交通管理者、研究者、工程师的挑战。交通科学自诞生之日起,就与数据结下不解之缘,这是一门基于统计学的工程科学。
互联网公司最早认识到了数据在交通领域的应用价值,也极大推动了云计算、大数据等新一代信息技术在交通领域的应用。高德、滴滴拥堵排名、阿里城市大脑就是互联网公司借助自身的数据资源开展交通领域大数据应用的探索。
互联网公司进军传统智能交通行业,一边是互联网公司频频发布基于大数据分析的各种报告,另一边也开始产生了各种质疑的声音。当前城市交通已经有一只脚迈入了大数据时代,而另外一只脚则需要传统交通理论与移动互联数据有效融合进行驱动。拨开当前交通大数据行业的繁华伪装,我们以冷静的眼光去审视,看到当前还存在很多问题,今天就略谈一二:
第一、所谓的交通大数据基本还是针对单一数据源开展分析,分析精度有待进一步提高,应用场景有待进一步丰富。大部分的研究集中在基于车载GPS数据以及视频数据提取车辆描述信息、交通流状态信息,研究拥堵的表征指标以及交警执法应用;
第二、城市交通传感设备布局并未从交通大数据的视角进行优化分析。城市智能交通系统规划一个重要的任务就是研究城市交通采集设备布局方案,目前,较少有人从城市交通规划与管理智库顶层设计的高度,对检测器的分布进行研究。此外,提高传感设备的适用性以及稳定性,也是有效提高当前数据质量的重要手段。
第三、城市交通大数据缺乏统一的数据标准。前面也论述了当前可以用于交通系统分析的数据,这些数据来源不同,要想未来能够将上述数据利用起来,打破数据壁垒,形成城市交通数据池,就需要共同探讨数据共享机制,并制定统一数据标准;此外,形成城市数据池后,城市交通数据治理将是一项复杂而艰巨的任务。
第四、大数据时代城市交通理论的创新面临巨大挑战。传统的交通理论基本都是基于统计学,也就是基于样本开展研究,而大数据时代的到来变革了交通理论数据来源,使得数据由抽样变为了全样,数据由有针对性的调查变为从大数据中抽取有用信息。因此,交通需求预测、交通通行能力分析、交通管控等基本理论将产生巨大变革,交通学者们应当既要仰望天空又要脚踏实地,在基础领域研究中投入更多的精力,不应被当前的浮云遮住望眼。
城市交通系统理论与大数据技术的融合发展任重而道远,也期望与广大交通工程师以及研究人员共同探讨、共同进步。
『伍』 交通大数据分析会对智慧交通产生那些影响
随着这些年我国城市化发展的加速,城市交通拥堵、交通污染日益严重,交通事故频繁发生。众所周知,智能交通成为改善城市交通的关键策略。因此,及时、准确获取交通大数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。
交通行业现状
我国智能交通发展始于上世纪90年代,在“十二五”规划中,我国交通部进一步明确未来智能交通运输的发展目标,例如,感知识别、网络传输、智能处理和数据挖掘等。在改善结构调整和城际沟通的支撑、引领双重作用,成为城市交通最重要的发展领城。包括大数据等现代先进技术的应用,提高整个交通运输系统的发展水平、质量和管理及服务水平,实现能力供给增加、安全保障性以及经济、环保等的提高。而且,大数据的应用在地铁网络化、大客流运营常态下愈发凸现其对地铁安全、高效运行和乘客服务方面的重要价值。
我国新型城镇化将需要形成城市群内部城市之间、城市内部的轨道交通系统,交通运输环境进一步改善。包括大数据等现代先进技术的应用,目的在于提高整个交通运输系统的发展水平、质量和管理及服务水平,实现能力供给增加、安全保障性以及经济、环保等的提高。而且,大数据的应用在地铁网络化、大客流运营常态下愈发凸现其对地铁安全、高效运行和乘客服务方面的重要价值。
目前遇到的问题
1、海量数据
轨道交通系统每时每刻都在产生大量数据,来自故障维修系统、实时监控系统、项目实施进度系统、物资物料统计系统等,且数据增长速度越来越快,这些数据的价值在哪?该如何利用提升地铁运营效率,确保项目交付的及时监控。
2.数据认知
大多数传统系统,故障维修系统,实时监控系统,物资物料统计系统中,已有简单的分析统计图表,但数据格式比较单一,灵活性差,交互性低,管理者难以对数据有很好的认知。
3、管理决策
大数据运营在地铁网络化、大客流运营常态下愈发凸现其对轨道交通安全、高效运行和乘客服务方面的重要作用,能迅速从底层数据中提取关键数据,以数据驱动运营方向,对决策提供科学支撑。
现在很多地方的交通大数据系统都用的BI平台,比如永洪科技,一般的大数据分析系统分为3个层次:
1、数据层以及建模层:整合交通行业各信息系统,打破信息孤岛,实现数据共享。数据决策方面、销售方面、运营方面关心的指标,建立不同分析主题集市。
2、业务层:梳理交通行业指标,将分析结果推送至展现层。
3、展现层:以丰富美观的图表展现方式,灵活多变的交互方式,将分析结果呈现给各角色管理人员。
基本上现在的大数据分析平台都可以做到以下几个方面:
1、基于交通数据分析平台,决策层、管理层可能洞察轨交运行状况。
2、应对轨交各系统数据量的迅速增长,基于明细数据,任意业务的计算及展现,可达到秒级响应。
3、运营和分析部门都能做部分自服务分析,以满足实时探索分析需求。
4、能够快速响应新的分析需求和变化,提高工作效率 。