导航:首页 > 网络数据 > 大数据编程书籍推荐

大数据编程书籍推荐

发布时间:2023-08-23 16:49:33

A. 对即将学习大数据专业的学生有什么建议和推荐的书籍

‍‍对于即将学习大数据专业的学生,个人认为主要取决于,自己对大数据的理解,其实很多人对大数据仅限于知道,而并非真正了解大数据,个人的主要建议就是,一定要明白什么是数据,大数据的入门基础,如果大数据的基本概念,都不明白,那怎么来学习。‍‍

B. 大数据新手入门的课程和书籍有什么推荐

目前大数据的技术体系已经非常庞大了,初学者要根据自己的发展规运备闭划来制定学习规划,入门大数据的方式也要结合自己的知识基础。

对于要进入IT互联网行业从事大数据开发岗位的同学来说,入门大数据可以先从编程语言开始,接着学习大数据平台知识,然后结合大数据平台来完成场景开发实践。在编程语言的选择上,可以重点考虑一下java语言,相对于其他编程语言来说,目前Java岗位的人才需求量相对大一些。

对于要从事算法岗的同学来说,入门大数据旁裂也可以分成三个阶段,第一个阶段是编程语言的学习,第二个阶段是学习算法基础,这个阶段需要学习一下统计学、机器学习相关知识,为后续奠定一个滚散基础,第三个阶段是结合场景来开展算法实践,这个阶段也需要掌握大数据平台的相关知识。

如果仅仅想通过学习大数据技术来提升自己的数据力,本身并没有从事大数据岗位的想法,那么入门大数据可以从学习Python语言开始,然后进一步学习基于Python语言来完成数据分析,这个过程同样要考虑到应用场景的问题,可以跟自己的专业方向相结合。

从整个大数据的技术体系结构来看,大数据技术涉及到数据采集、整理、存储、分析、呈现、应用和安全等领域,这些领域都可以采用单独学习的方式,比如既可以从数据采集开始学起,也可以从数据分析开始学起,但是不论从哪个领域开始学起,一定要重视与场景相结合,不能脱离场景来学习大数据技术。

最后,如果有学习大数据相关的问题,可以向我发起咨询。

C. 大数据入门书籍有哪些

当年互联网疯狂发展的时候,很多人在观望和犹豫中错过了这班顺风车(没有尽早开个淘宝店,肠子都悔青了好几遍呢)。如今,同样的桥段上演,大数据时代,坚决不能再无动于衷!
于是,你着急,你迷茫,你很方……除了平时要加班加点的搬砖,牙缝里挤出来的的闲碎时间都贡献给度娘了,“小白如何学习大数据”,“大数据入门书籍有哪些”……
1:<大数据时代>
这是学习大数据必读的一本书,也是最系统的关于大数据概念的一本书,由维克托·迈尔-舍恩伯格和肯尼斯·库克耶编写,主要介绍了大数据理念和生活工作及思维变革的关系。
它被包括宽带资本董事长田朔宁、知名IT评论人谢文等专业读者鉴定为“大数据领域最好的著作没有之一,一本顶一万本”。有这么好吗?看完自己评价吧。这本书对这个大规模产生、分享和应用数据的新的大时代进行了阐述和厘清,作者围绕“要全体不要抽样、要效率不要绝对精确、要相关不要因果”三大理念,通过数十个商业和学术案例,剖析了万事万物数据化和数据复用挖掘的巨大价值。
2:<爆发>
由巴拉巴西编写,主要讲了在一个历史故事的连续讲述中,了解大数据的概念实质。从大数据的历史开始,能更深入的了解大数据的发展历程。
巴拉巴西整本书讲述的大数据根本目的,是预测。他甚至有零有整地判断,人类行为93%是可以预测的。打个比方,千百年前人类无法如今天般准确预测天气,以致某些大致预测的行为都被认为是“通神”,其实核心在于对天气数据的海量占有和分析能力。但假如全人类的所有基础及行为数据全部被占有全部能分析呢?比如通过智能终端LBS功能采集全部运动轨迹、通过金融系统采集所有支付记录、通过SNS采集所有社会关系和通过邮件、文档、社会视频监控和自我视频监测采集所有言行记录,24小时,每分每秒,一生,全地球70亿人,那会如何?
3:<大数据>
由徐子沛编写,看美国政府在大数据开放上的进程与反复,算是个案。如果能够基本了解这三本的观点,出门有底气,见人腰杆直,不再被忽悠。
全书讲述的,是大数据在美国政府管理中的应用,以及美国政府运行方式大数据变革的历史与斗争,其实也是故事性的。从奥巴马上台就颁布《信息公开法案》,到设立第一个美国政府首席信息官开始,讲述美国政府与民间在社会数据公开的斗争史,以及美国社会管理向大数据思维转变的过程。首先,这算是一个最详实的案例;其次,这代表的不是某种管理方式变革,深处是对民主运行机制的变革与进步。说好了,这本书用心良苦,远远超越科普技术领域;说坏了,其心可诛。有一段,民间斗争,逼迫奥巴马公布所有每日白宫全部日程,包括接见了谁、谈话的全部内容,这不就是个人大数据全公开在公众人物上的应用吗?这可比现在所谓官员公开财产的要求高了几十倍——这要求政府全部行为、全部数据、全部公开,全体公众随时可查——技术和成本上其实已经可以做到或至少努力接近——如果不这么做,不止是落后问题而是真正的其心可诛了。
4:<大数据基础与应用>
由陈明编写。看名字就知道,入门级别拯救小白的书。这本书共17章,第1章是对大数据的简单概述,第2章介绍大数据研究的方法论,第3、8、9、14章介绍大数据的生态环境,第17章介绍数据科学的内容,剩下的章节是本书重点,介绍大数据技术及应用方法。
身处大数据大环境下,身边的人经常讨论数据库、数据可视化、大数据预处理等等。这些词听得多了会让人产生错觉——自己已经知道里面的门道了。但事实上还是个“门外汉”。
举个例子,没有人肯在上千人规模的讲座上专门花半个小时教你怎样进行数据清洗。本书专门列了一章,详细介绍大数据预处理技术,包括数据清洗的实现方式,从步骤到检验,都做了用心的阐述。诸如此类,数据挖掘、大数据流式计算、Hadoop、NoSQL等等都从最基础的点做了详细介绍。耐心看完这些,再往深处进阶就不会那么吃力了。
5:<一本书读懂大数据>
进入大数据时代,让数据开口说话将成为司空见惯的事情,本书将从大数据时代的前因后果讲起,全面分析大数据时代的特征、企业实践的案例、大数据的发展方向、未来的机遇和挑战等内容,展现一个客观立体、自由开放的大数据时代。
5:<集体智慧编程>
入门,浅显易懂,里面每一章都是一个案例,但是很方便,有具体的代码,用来入门最好。
6:<社交网络的数据挖掘>
专门做社交网络的数据挖掘,案例很丰富,有代码。
7:<数据可视化之美>
致力于介绍各种可视化方案。
8:<鲜活的数据>
比较简单的可视化,不过内容丰富,有代码。
9:<数据挖掘导论完整版>
看完上述的书,对大数据产生很大的兴趣,已经初步入门了,现在开始理论方面的学习,数据挖掘入门教程,个人觉得写的很好,目前正在研究这本书,努力。。。
10:<统计学习方法>
这本书比较深,刚开始看的就是这一本,不过太深,看到一半,准备在导论看完之后,在看这本书提升一下自己。
11:<鸟哥私房菜—基础篇>
作为一个计算机专业linux那是必学的,而且Hadoop是建立在Linux基础上的,不求多么的精通,但是基础的操作要学会。
如果是没有任何编程语言基础的想入行大数据的话,是必须要学习java基础的,虽然大数据支持很多开发语言,但是企业用的最多的还是java,接下来学习数据结构,关系型数据库,linux系统操作,有了基础之后,在进入大数据学习,可以给小白学习的体系。
第一阶段
COREJAVA(加**的需重点熟练掌握,其他掌握)
Java基础**
数据类型
运算符、循环
算法
顺序结构程序设计
程序结构
数组及多维数组
面向对象**
构造方法、控制符、封装
继承**
多态**
抽象类、接口**
常用类
集合Collection、list**
HashSet、TreeSet、Collection
集合类Map**
异常
File
文件/流**
数据流和对象流**
线程(理解即可)
网络通信(理解即可)
第二阶段
数据结构
关系型数据库
Linux系统操作
Linux操作系统概述
安装Linux操作系统
图形界面操作基础
Linux字符界面基础
字符界面操作进阶
用户、组群和权限管理
文件系统管理
软件包管理与系统备份
Linux网络配置
(主要掌握Linux操作系统的理论基础和服务器配置实践知识,同时通过大量实验,着重培养学生的动手能力。使学生了解Linux操作系统在行业中的重要地位和广泛的使用范围。在学习Linux的基础上,加深对服务器操作系统的认识和实践配置能力。加深对计算机网络基础知识的理解,并在实践中加以应用。掌握Linux操作系统的安装、命令行操作、用户管理、磁盘管理、文件系统管理、软件包管理、进程管理、系统监测和系统故障排除。掌握Linux操作系统的网络配置、DNS、DHCP、HTTP、FTP、SMTP和POP3服务的配置与管理。为更深一步学习其它网络操作系统和软件系统开发奠定坚实的基础。与此同时,如果大家有时间把javaweb及框架学习一番,会让你的大数据学习更自由一些)
重点掌握:
常见算法
数据库表设计
SQL语句
Linux常见命令
第三阶段
Hadoop阶段
离线分析阶段
实时计算阶段
重点掌握:
Hadoop基础
HDFS
MapRece
分布式集群
Hive
Hbase
Sqoop
Pig
Storm实时数据处理平台
Spark平台
若之前没有项目经验或JAVA基础,掌握了第一阶段进入企业,不足以立即上手做项目,企业需再花时间与成本培养;
第二阶段掌握扎实以后,进入企业就可以跟着做项目了,跟着一大帮人做项目倒也不用太担心自己能不能应付的来,当然薪资不能有太高的要求;
前两个阶段都服务于第三阶段的学习,除了熟练掌握这些知识以外,重点需要找些相应的项目去做,不管项目大小做过与没有相差很多的哦!掌握扎实后可直接面对企业就业,薪资待遇较高!

D. 本人想学习编程,需要哪些入门书籍

1、清华大学出版社出版的《C++程序设计教程》、《C++PRIMER》、谭浩强的《程序设计书》、《Effective C++》、《More Effective C++》、《Exceptional C++》 、《More Exceptional C++》、《深入探索c++对象模型》等

2、具体怎样学编程 :

①明确学习目的

学习编程对大多数IT业人员来说都是非常有用的。学编程,做一名编程人员,从个人角度讲,可以解决在软件使用中所遇到的问题,改进现有软件,可以为自己找到一份理想的工作添加重要得砝码,有利于在求职道路上谋得一个好的职位;从国家的角度,可以为中国的软件产业做出应有的贡献,一名优秀的程序员永远是被争夺的对象。

②打好基础

(1)数学基础 从计算机发展和应用的历史来看计算机的数学模型和体系结构等都是有数学家提出的,最早的计算机也是为数值计算而设计的。因此,要学好计算机就要有一定的数学基础,出学者有高中水平就差不多了。

(2)逻辑思维能力的培养学程序设计要有一定的逻辑思维能力,“逻思力”的培养要长时间的实践锻炼。要想成为一名优秀的程序员,最重要的是掌握编程思想。要做到这一点必须在反复的实践、观察、分析、比较、总结中逐渐地积累。

(3)选择一种合适的入门语言 面对各种各样的语言,应按什么样的顺序学呢?

③ 注意理解一些重要概念

一本程序设计的书看到的无非就是变量、函数、条件语句、循环语句等概念,但要真正能进行编程应用,需要深入理解这些概念,在理解的基础上应用,不要只简单地学习语法、结构,而要吃透针对这脊带些语法、结构的应用例子,做到举一反三,触类旁通。

④掌握编程思想

学习一门语言或开发工具,语法结构、功能调用是次要的,最主要是学习它的思想。例如学习 VC 就要学习 Windows 的内在机理、什么是线程......;学习 COM 就要知道 VTALBE 、类厂、接口、idl......,关键是学一种思想,有了思想,那么就可以触类旁樱雹芦通。

⑤多实践、多交流

掌握编程思想必须在编程实际工作中去实践和体会。编程起步阶段要经常自己动手设计程序,具体设计时不要拘泥于固定的思维方式,遇到问题要多想几种解决的方案。这就要多交流,各人的思维方式不同、角度各异,各有高招,通过交流可不断吸收别人的长处,丰富编程实践,帮助自己提高水平。亲自动手进行程序设计是创造性思维应用的体现,也是培养逻辑思维的好方法。

⑥养成良好的编程习惯

编程肆升入门不难,但入门后不断学习是十分重要的,相对来说较为漫长。在此期间要注意养成一些良好的编程习惯。编程风格的好坏很大程度影响程序质量。良好的编程风格可以使程序结构清晰合理,且使程序代码便于维护。如代码的缩进编排、变量命令规则的一致性、代码的注释等。

⑦上网学编程

在网上可以学到很多不同的编程思想、方法、经验和技巧,有大量的工具和作品及相关的辅导材料供下载。例如网站“编程课堂”()主要以 VB 和 Delph;教学和交流为主,提供大量实用技巧。

⑧加强计算机理论知识的再学习

学编程是符合“理论→实践→再理论→再实践”的一个认识过程。一开始要具有一定的计算机理论基础知识,包括编程所需的数学基础知识,具备了入门的条件,就可以开始编程的实践,从实践中可以发现问题需要加强计算机理论知识的再学习。程序人人皆可编,但当你发现编到一定程度很难再提高的时候,就要回头来学习一些计算机科学和数学基础理论。

E. 市面上大数据的书不少,如果只挑一本,哪本值得推荐

市场上大数据的说不少,但是你要挑一本的话,其实我还是觉得你在网络上选择一些自己可以公开的数据。因为每个人需要的每个程度的书是不一样的,你可以选择购买一些书的电子版本。电子版本反而比书籍会更好一点。

F. 有什么比较好的大数据入门的书推荐

1. 《大数据分析:点“数”成金》
你现在正坐在一座金矿上,这些金子或被埋于备份,或正藏在你眼前的数据集里,他们是提升公司效益、拓展新的商业关系、制定更直观决策的秘诀所在,足以使你的企业更上一层楼。你将明白如何利用、分析和驾驭数据来获得丰厚回报。作者Frank Ohlhorst厚积数十年的技术经验写了此书。该书介绍了如何将大数据应用于各行各业,你将了解到如何对数据进行挖掘,怎样从数据中揭示趋势并转化为竞争策略及提取价值的方法。这些更有意思也是更有效的方法能够提升企业的智能化水平,将有助于企业解决实际问题,提升利润空间,提高生产率并发现更多的商业机会。
2.《大数据时代》
《大数据时代》是国外大数据系统研究的先河之作,本书作者维克托被誉为”大数据商业应用第一人”,拥有再哈佛大学、牛津大学和新加坡国立大学等多个互联网研究重镇任教经历,早在2010年就在《经济学人》上发布了长达14页对大数据应用的前瞻性研究。该书主要讲了大数据时代的变革、商业变革和管理变革。《大数据时代》认为大数据的核心就是预测。大数据为人类的生活创造了前所未有的可量化的维度。大数据已经成为了新发明和新服务的源泉,而更多的改变正蓄势待发。
3.《云端时代杀手级应用:大数据分析》
《云端时代杀手级应用:大数据分析》分析了什么是大数据、大数据大商机、技术与前瞻三个部分。第一个部分介绍大数据分析的概念,以及企业、政府部门可应用的范畴。什么是大数据分析?与个人与企业有什么关系?将对全球产业造成什么样的冲击?第二部分完整介绍了大数据在各产业的应用实况,为企业及政府部门提供应用的方向。提供了全球各地的实际应用案例,涵盖了零售、金融、政府部门、能源、制造、娱乐等各个行业,充分展示了大数据分析产生的效益。第三部分则简单介绍了大数据分析所需要的技术及未来的发展趋势,为读者提供了应用与研究的方向。
4.《大数据》
本书通过讲述美国半个多世纪信息开放、技术创新的历史,以别开生面的经典案例奥巴马建设”前所未有的开放政府“的雄心、公开财务透明的曲折。《数据质量法》背后隐情,全国医改法案的波澜、统一身份证的百年纠结以及云计算、Facebook和推特等社交媒体等等,为您一一讲解数据创新给社会带来的种种变革和挑战。
5.《大数据互联网大规模数据挖掘与分布式处理》。
该书主要讲的是海量数集数据挖掘常用的算法。书中分析了海量数据集数据挖掘常用的算法,介绍了目前WEB端应用的许多重要话题等。

G. 有哪些 Python 经典书籍

【Python从入门到精通经典书籍推荐】




《Python编程入门:从入门到实践》
【同时使用Python 2.X和3.X讲解】

Amazon编程入门类榜首图书,最值得关注的Python入门书

从基本概念到完整项目开发,帮助零基础读者迅速掌握Python编程,开发实际项目

这本书分两部分:
第一部分介绍用Python编程所必须了解的基本概念,包括matplotlib、NumPy和Pygal等强大的Python库和工具介绍,以及列表、字典、if语句、类、文件与异常、代码测试等内容;
第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的Python 2D游戏开发,如何利用数据生成交互式的信息图,以及创建和定制简单的Web应用,并帮读者解决常见编程问题和困惑。




《Python基础教程(第2版·修订版)》
【Python 2.5讲解,Python 3上也能运行】


各大网店最畅销的Python入门书

全书分为三部分。
第一部分讲述Python语法,没有废话,还掺入了一些Python 3.0要注意的细节。
第二部分介绍了常用的GUI、框架等应用,点到即止,算是为第三部分做铺垫了,从数目众多的应用中可以了解到Python的强大。
第三部分是Project,全书最大的亮点,大家肯定喜欢。
作者将前面讲述的内容应用到10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程,手把手教授Python开发。



《Python语言及其应用》
【Python 3.X】

语言风格轻松诙谐,讲解多种Python工具和第三方库

实例涉及商业、科研以及艺术领域使用Python开发各种应用

亚马逊最受欢迎的Python编程书之一,评分4.5

书中首先介绍了Python的基础知识,然后逐渐深入多种主题,结合教程和攻略式风格来讲解Python 3中的概念。每章结尾的练习可以帮助你巩固所学的知识。
本书会为你学习Python打下坚实的基础,包括测试、调试、代码复用的最佳实践以及其他开发技巧。


《Python编程入门(第3版)》
【Python 3.X 】

从算术运算、字符串、变量,到函数、数据结构、输入输出和异常处理,应有尽有


《父与子的编程之旅:与小卡特一起学Python》
【Python 2.X 】

原版Amazon 最受欢迎的青少年编程图书

最简单易学的内容组织方式,老少皆宜

第一版获Jolt大奖

本书中,Warren和Carter父子以亲切的笔调、通俗的语言,透彻全面地介绍了计算机编程世界。
他们以简单易学的Python语言为例,通过可爱的漫画、有趣的例子,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等编程的基本概念。
只要懂得计算机的基本操作,如启动程序、保存文件,任何人都可以跟随本书,由简入难,学会编写程序,甚至制作游戏。
本书内容经过教育专家的评审,经过孩子的亲身检验,并得到了家长的认可。

《编程导论》
【Python 2.7】

以麻省理工学院开放式课程(OpenCourseWare)中最受欢迎的计算机科学课程为基础,旨在培养读者的编程思维,使读者拥有计算机科学家的视野

本书涵盖了Python的大部分特性,重点介绍如何使用Python这门语言,共包含编程基础、Python程序设计语言、理解计算的关键概念、计算问题的解决技术等四个方面。
本书将Python语言特性和编程方法贯穿全书,目的是帮助读者在学习Python的同时掌握如何使用计算来解决有趣的问题。


《流畅的Python》
【兼顾Python 3和Python 2】

PSF研究员、知名PyCon演讲者心血之作

Python核心开发人员担纲技术审校

全面深入,对Python语言关键特性剖析到位

大量详尽代码示例,并附有主题相关高质量参考文献和视频链接

本书致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,避免重复劳动,同时写出简洁、流畅、易读、易维护,并且具有地道Python风格的代码。本书尤其深入探讨了Python语言的高级用法,涵盖数据结构、Python风格的对象、并行与并发,以及元编程等不同的方面。

《Python项目开发实战(第2版)》
【Python 2.7】

网罗Python项目开发中的流程,让你的编程事半功倍

Python项目与封装/团队开发环境/问题驱动开发/源码管理(Mercurial) Jenkins持续集成(CI)/环境搭建与部署的自动化(Ansible)/Django框架……

这是一本偏工程的图书,没怎么讲Python语言基础知识,直接告诉你怎么搭建开发环境,做好代码管理和文档管理以及缺陷管理等工作。


《Python网络编程攻略》
【Python 2.7】

可作为任何一门网络编程课程中培养实践技能的补充材料

需要读者对Python语言及TCP/IP等基本的网络概念有了解,但即使不精通也能通过本书理解相关概念

本书全面介绍了Python网络编程涉及的重要问题,包括网络编程、系统和网络管理、网络监控以及Web应用开发。作者通过70多篇攻略,清晰简明地描述了各种网络任务和问题,提出了可用于多种场景的解决方案,并细致地分析了整个操作过程。


《Python网络编程(第3版)》
【Python 3.X】

涵盖网络编程所有经典话题,提供大量代码清单及示例

从应用开发角度介绍网络编程基本概念、模块以及第三方库

本书针对想要深入理解使用Python来解决网络相关问题或是构建网络应用程序的技术人员,结合实例讲解了网络协议、网络数据及错误、电子邮件、服务器架构和HTTP及Web应用程序等经典话题。
具体内容包括:全面介绍Python3中最新提供的SSL支持,异步I/O循环的编写,用Flask框架在Python代码中配置URL,跨站脚本以及跨站请求伪造攻击网站的原理及保护方法,等等。


《Python性能分析与优化》
【Python 2.X】

全面掌握Python代码性能分析和优化方法

消除性能瓶颈,迅速改善程序性能

本书首先介绍什么是性能分析,性能分析如何在项目开发周期中发挥作用,以及通过在项目中进行性能分析实践能够取得的效果。
紧接着介绍分析性能所需的核心工具(性能分析器和可视化性能分析器)。
然后介绍一系列性能优化技术,最后一章会介绍一个具有实际意义的优化案例。


《精通Python设计模式》
【Python 3.X】

用现实例子展示各模式的关键特性

16种基本设计模式,轻松解决软件设计常见问题

本书分三部分,共16章介绍一些常用的设计模式。
第一部分介绍处理对象创建的设计模式,包括工厂模式、建造者模式、原型模式;
第二部分介绍处理一个系统中不同实体(类、对象等)之间关系的设计模式,包括外观模式、享元模式等;
第三部分介绍处理系统实体之间通信的设计模式,包括责任链模式、观察者模式等。


《Flask Web开发:基于Python的Web应用开发实战》
【Python 2.7和3.3】

从安装与环境设置讲起,一步一步搭建服务器端Web应用

全流程讲解Web应用开发,给出最佳实践

本书共分三部分,全面介绍如何基于Python微框架Flask进行Web开发。
第一部分是Flask简介,介绍使用Flask框架及扩展开发Web程序的必备基础知识。
第二部分则给出一个实例,真正带领大家一步步开发完整的博客和社交应用Flasky,从而将前述知识融会贯通,付诸实践。
第三部分介绍了发布应用之前必须考虑的事项,如单元测试策略、性能分析技术、Flask程序的部署方式等。


《Python Web开发:测试驱动方法》
【(Django、Selenium)相关部分使用Python 3.3讲解】

亚马逊4.8星评好书

实战式TDD开发指南,使用Django等流行框架开发现代Web应用!

学习Django、Selenium、Git、jQuery和Mock,以及其他当前流行Web开发技术

“这本书很棒、很有趣,所讲的全都是重点知识。如果有人想用Python做测试、学习Django或者想使用Selenium,我极力推荐这本书。要使开发者保持头脑清醒,测试可谓至关重要。Harry完成了一项不可思议的工作,他不仅吸引了我们对测试的关注,而且还探索了切实可行的测试实践方案。”

——Michael Foord,Python核心开发者,unittest维护者



《数据科学入门》
【Python 2.7】

Google数据科学家、软件工程师Joel Grus作品

用Python从零开始讲解数据科学的重量级读本

数据科学、机器学习、模式识别领域必备

本书从零开始讲解数据科学。
具体内容包括Python简介,可视化数据,线性代数,统计,概率,假设与推断,梯度下降法,如何获取数据,k近邻法,朴素贝叶斯算法等。
作者借助大量具体例子以及数据挖掘、统计学、机器学习等领域的重要概念,通过讲解基础数据科学工具和算法实现,带你快速跨入数据科学大门。
书中含大量数据科学领域的库、框架、模块和工具包。


《机器学习实战》
【Python 2.7】

最畅销机器学习图书

介绍并实现机器学习的主流算法

面向日常任务的高效实战内容

全书通过精心编排的实例,切入日常工作任务,摒弃学术化语言,利用高效的可复用Python代码来阐释如何处理统计数据,进行数据分析及可视化。
通过各种实例,读者可从中学会机器学习的核心算法,并能将其运用于一些策略性任务中,如分类、预测、推荐。另外,还可用它们来实现一些更高级的功能,如汇总和简化等。


《机器学习系统设计》
【Python 2.7及以上】

微软Bing核心团队成员推出

聚焦算法编写和编程方式

结合大量实例学会解决实际问题

本书将向读者展示如何从原始数据中发现模式,首先从Python与机器学习的关系讲起,再介绍一些库,然后就开始基于数据集进行比较正式的项目开发了,涉及建模、推荐及改进,以及声音与图像处理。通过流行的开源库,我们可以掌握如何高效处理文本、图片和声音。同时,读者也能掌握如何评估、比较和选择适用的机器学习技术。


《Python数据处理》
【Python 2.7】

将数据处理过程自动化!

全面掌握用Python进行爬虫抓取以及数据清洗与分析的方法,轻松实现高效数据处理!

本书采用基于项目的方法,介绍用Python完成数据获取、数据清洗、数据探索、数据呈现、数据规模化和自动化的过程。
主要内容包括:Python基础知识,如何从CSV、Excel、XML、JSON和PDF文件中提取数据,如何获取与存储数据,各种数据清洗与分析技术,数据可视化方法,如何从网站和API中提取数据。


《Python数据分析基础教程:NumPy学习指南(第2版)》
【Python 2.7】

NumPy中文入门教程,Python数据分析首选

从最基础的知识讲起,手把手带你进入大数据挖掘领域

囊括大量具有启发性与实用价值的实战案例

本书从NumPy安装讲起,逐渐过渡到数组对象、常用函数、矩阵运算、线性代数、金融函数、窗函数、质量控制等内容,致力于向初中级Python编程人员全面讲述NumPy及其使用。
另外,通过书中丰富的示例,你还将学会Matplotlib绘图,并结合使用其他Python科学计算库(如SciPy和Scikits),让工作更有成效,让代码更加简洁而高效。


《Python数据挖掘入门与实践》
【Python 3.4】

全面释放Python的数据分析能力

掌握大数据时代核心技术,轻松入门数据挖掘技术并将其应用于实际项目

本书使用简单易学且拥有丰富第三方库和良好社区氛围的Python语言,由浅入深,以真实数据作为研究对象,真刀实枪地向读者介绍Python数据挖掘的实现方法。通过本书,读者将迈入数据挖掘的殿堂,透彻理解数据挖掘基础知识,掌握解决数据挖掘实际问题的最佳实践!


《Python科学计算基础教程》
【Python 2.7及以上】

精彩案例展示Numpy等科学计算模块的强大功能和广泛应用

剖析Python关于并行与大数据计算的方法

总结科学计算的任务、难点以及最佳实践经验

本书是将Python用于科学计算的实用指南,既介绍了相关的基础知识,又提供了丰富的精彩案例,并为读者总结了最佳实践经验。
其主要内容包括:科学计算的基本概念与选择Python的理由,科学工作流和科学计算的结构,科学项目相关数据的各个方面,用于科学计算的API和工具包,如何利用Python的NumPy和SciPy包完成数值计算,用Python做符号计算,数据分析与可视化,并行与大规模计算,等等。


《Python数据分析实战》
【Python 2.X】

了解Python在信息处理、管理和检索方面的强大功能

学会如何利用Python及其衍生工具处理、分析数据

三个真实Python数据分析案例,将理论付诸实践

《Python数据分析实战》展示了如何利用Python 语言的强大功能,以最小的编程代价进行数据的提取、处理和分析,主要内容包括:数据分析和Python 的基本介绍,NumPy 库,pandas 库,如何使用pandas 读写和提取数据,用matplotlib 库和scikit-learn 库分别实现数据可视化和机器学习,以实例演示如何从原始数据获得信息、D3 库嵌入和手写体数字的识别。


《Python网络数据采集》
【Python 3.X】

原书4.6星好评,一本书搞定数据采集

涵盖数据抓取、数据挖掘和数据分析

提供详细代码示例,快速解决实际问题

本书介绍网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。
第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。
第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。


《Python计算机视觉编程》
【Python 2.6及以上】

亚马逊计算机视觉类图书No.1

详细剖析多种计算机视觉工具

大量示例极易上手

本书是计算机视觉编程的权威实践指南,通过Python语言讲解了基础理论与算法,并通过大量示例细致分析了对象识别、基于内容的图像搜索、光学字符识别、光流法、跟踪、3D重建、立体成像、增强现实、姿态估计、全景创建、图像分割、降噪、图像分组等技术。

H. 有什么好的大数据书籍推荐吗

1、舍恩伯格的《大数据时代》;
2、巴拉巴西的《爆发》;
3、涂子沛的《大数据》
这几本书都不错,可以看看!

I. 自学编程需要哪些入门书籍 这三本入门级别的书可以作为首选

1、C语言-------《C语言设计》作者:谭浩强。

大多数人都推荐谭浩强这本书,羡槐弯谭浩强的C语言程序设计,我觉得更适合当教科书,主要是篇幅没有那么大,书本的内容不是很全,由老师带入门是最好的。

2、《CPrimerPlus》第五版作者:StephenPrata。

这本书比较厚,内容也比较基础,扩展的也比较广,自学容易上手,唯一的缺陷在于它是外国人编写,而明哪国内的翻译往往让人难以满意,如果你兄闷有较好的英语水平,最好阅读英文版的。

3、《C语言入门经典》第四版作者:IvorHorton。主要内容是关于c语言的编程方式,可以为以后学习c++和成为程序员打基础。

阅读全文

与大数据编程书籍推荐相关的资料

热点内容
哪里买麦田app 浏览:79
tif修改工具 浏览:982
苹果tv怎样设置密码 浏览:651
java开发没人教 浏览:683
图片取消不了隐藏文件 浏览:97
word复制批注 浏览:725
安卓迅雷30老版本 浏览:14
651代码错误什么意思 浏览:582
2017迅雷闪退win10 浏览:338
华为手机删除app如何在设置中找回来 浏览:900
原子贷app最新版本 浏览:633
压缩的文件怎么打开 浏览:658
高唐哪里能学编程 浏览:893
集成电路封装控制程序 浏览:304
打开word加密文档 浏览:412
微信聊天文件如何转为笔记 浏览:962
图片编程软件有哪些 浏览:384
西部数据移动硬盘加密码 浏览:166
苹果wifi设置dns更快 浏览:182
qq红包设置尾数金额 浏览:310

友情链接