1. 同一个人不同淘宝账号会存在大数据杀熟吗
会,
一般后台会根据用户的行为进行大数据判断,如果相似度达到80%以上则认定为同一个人。
2. 大数据十大经典算法之k-means
大数据十大经典算法之k-means
k均值算法基本思想:
K均值算法是基于质心的技术。它以K为输入参数,把n个对象集合分为k个簇,使得簇内的相似度高,簇间的相似度低。
处理流程:
1、为每个聚类确定一个初始聚类中心,这样就有k个初始聚类中心;
2、将样本按照最小距离原则分配到最邻近聚类
3、使用每个聚类中的样本均值作为新的聚类中心
4、重复步骤2直到聚类中心不再变化
5、结束,得到K个聚类
划分聚类方法对数据集进行聚类时的要点:
1、选定某种距离作为数据样本间的相似性度量,通常选择欧氏距离。
2、选择平价聚类性能的准则函数
用误差平方和准则函数来评价聚类性能。
3、相似度的计算分局一个簇中对象的平均值来进行
K均值算法的优点:
如果变量很大,K均值比层次聚类的计算速度较快(如果K很小);
与层次聚类相比,K均值可以得到更紧密的簇,尤其是对于球状簇;
对于大数据集,是可伸缩和高效率的;
算法尝试找出使平方误差函数值最小的k个划分。当结果簇是密集的,而簇与簇之间区别明显的时候,效果较好。
K均值算法缺点:
最后结果受初始值的影响。解决办法是多次尝试取不同的初始值。
可能发生距离簇中心m最近的样本集为空的情况,因此m得不到更新。这是一个必须处理的问题,但我们忽略该问题。
不适合发现非凸面形状的簇,并对噪声和离群点数据较敏感,因为少量的这类数据能够对均值产生较大的影响。
K均值算法的改进:
样本预处理。计算样本对象量量之间的距离,筛掉与其他所有样本那的距离和最大的m个对象。
初始聚类中心的选择。选用簇中位置最靠近中心的对象,这样可以避免孤立点的影响。
K均值算法的变种:
K众数(k-modes)算法,针对分类属性的度量和更新质心的问题而改进。
EM(期望最大化)算法
k-prototype算法
这种算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。
k均值算法用途:
图像分割;
衡量足球队的水平;
下面给出代码:
#include <iostream>
#include <vector>
//auther archersc
//JLU
namespace CS_LIB
{
using namespace std;
class Kmean
{
public:
//输入格式
//数据数量N 维度D
//以下N行,每行D个数据
istream& loadData(istream& in);
//输出格式
//聚类的数量CN
//中心维度CD
//CN行,每行CD个数据
//数据数量DN
//数据维度DD
//以下DN组,每组的第一行两个数值DB, DDis
//第二行DD个数值
//DB表示改数据属于一类,DDis表示距离改类的中心的距离
ostream& saveData(ostream& out);
//设置中心的数量
void setCenterCount(const size_t count);
size_t getCenterCount() const;
//times最大迭代次数, maxE ,E(t)表示第t次迭代后的平方误差和,当|E(t+1) - E(t)| < maxE时终止
void clustering(size_t times, double maxE);
private:
double calDistance(vector<double>& v1, vector<double>& v2);
private:
vector< vector<double> > m_Data;
vector< vector<double> > m_Center;
vector<double> m_Distance;
vector<size_t> m_DataBelong;
vector<size_t> m_DataBelongCount;
};
}
#include "kmean.h"
#include <ctime>
#include <cmath>
#include <cstdlib>
//auther archersc
//JLU
namespace CS_LIB
{
template<class T>
void swap(T& a, T& b)
{
T c = a;
a = b;
b = c;
}
istream& Kmean::loadData(istream& in)
{
if (!in){
cout << "input error" << endl;
return in;
}
size_t dCount, dDim;
in >> dCount >> dDim;
m_Data.resize(dCount);
m_DataBelong.resize(dCount);
m_Distance.resize(dCount);
for (size_t i = 0; i < dCount; ++i){
m_Data[i].resize(dDim);
for (size_t j = 0; j < dDim; ++j){
in >> m_Data[i][j];
}
}
return in;
}
ostream& Kmean::saveData(ostream& out)
{
if (!out){
cout << "output error" << endl;
return out;
}
out << m_Center.size();
if (m_Center.size() > 0)
out << << m_Center[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Center.size(); ++i){
for (size_t j = 0; j < m_Center[i].size(); ++j){
out << m_Center[i][j] << ;
}
out << endl;
}
out << endl;
out << m_Data.size();
if (m_Data.size() > 0)
out << << m_Data[0].size();
else
out << << 0;
out << endl << endl;
for (size_t i = 0; i < m_Data.size(); ++i){
out << m_DataBelong[i] << << m_Distance[i] << endl;
for (size_t j = 0; j < m_Data[i].size(); ++j){
out << m_Data[i][j] << ;
}
out << endl << endl;
}
return out;
}
void Kmean::setCenterCount(const size_t count)
{
m_Center.resize(count);
m_DataBelongCount.resize(count);
}
size_t Kmean::getCenterCount() const
{
return m_Center.size();
}
void Kmean::clustering(size_t times, double maxE)
{
srand((unsigned int)time(NULL));
//随机从m_Data中选取m_Center.size()个不同的样本点作为初始中心。
size_t *pos = new size_t[m_Data.size()];
size_t i, j, t;
for (i = 0; i < m_Data.size(); ++i){
pos[i] = i;
}
for (i = 0; i < (m_Data.size() << 1); ++i){
size_t s1 = rand() % m_Data.size();
size_t s2 = rand() % m_Data.size();
swap(pos[s1], pos[s2]);
}
for (i = 0; i < m_Center.size(); ++i){
m_Center[i].resize(m_Data[pos[i]].size());
for (j = 0; j < m_Data[pos[i]].size(); ++j){
m_Center[i][j] = m_Data[pos[i]][j];
}
}
delete []pos;
double currE, lastE;
for (t = 0; t < times; ++t){
for (i = 0; i < m_Distance.size(); ++i)
m_Distance[i] = LONG_MAX;
for (i = 0; i < m_DataBelongCount.size(); ++i)
m_DataBelongCount[i] = 0;
currE = 0.0;
for (i = 0; i < m_Data.size(); ++i){
for (j = 0; j < m_Center.size(); ++j){
double dis = calDistance(m_Data[i], m_Center[j]);
if (dis < m_Distance[i]){
m_Distance[i] = dis;
m_DataBelong[i] = j;
}
}
currE += m_Distance[i];
m_DataBelongCount[m_DataBelong[i]]++;
}
cout << currE << endl;
if (t == 0 || fabs(currE - lastE) > maxE)
lastE = currE;
else
break;
for (i = 0; i < m_Center.size(); ++i){
for (j = 0; j < m_Center[i].size(); ++j)
m_Center[i][j] = 0.0;
}
for (i = 0; i < m_DataBelong.size(); ++i){
for (j = 0; j < m_Data[i].size(); ++j){
m_Center[m_DataBelong[i]][j] += m_Data[i][j] / m_DataBelongCount[m_DataBelong[i]];
}
}
}
}
double Kmean::calDistance(vector<double>& v1, vector<double>& v2)
{
double result = 0.0;
for (size_t i = 0; i < v1.size(); ++i){
result += (v1[i] - v2[i]) * (v1[i] - v2[i]);
}
return pow(result, 1.0 / v1.size());
//return sqrt(result);
}
}
#include <iostream>
#include <fstream>
#include "kmean.h"
using namespace std;
using namespace CS_LIB;
int main()
{
ifstream in("in.txt");
ofstream out("out.txt");
Kmean kmean;
kmean.loadData(in);
kmean.setCenterCount(4);
kmean.clustering(1000, 0.000001);
kmean.saveData(out);
return 0;
}
3. 大数据算法:分类算法
KNN算法,即K近邻(K Nearest Neighbour)算法,是一种基本的分类算法。其主要原理是:对于一个需要分类的数据,将其和一组已经分类标注好的样本集合进行比较,得到距离最近的K个样本,K个样本最多归属的类别,就是这个需要分类数据的类别。下面我给你画了一个KNN算法的原理图。
图中,红蓝绿三种颜色的点为样本数据,分属三种类别 、 、 。对于待分类点 ,计算和它距离最近的5个点(即K为5),这5个点最多归属的类别为 (4个点归属 ,1个点归属 ),那么 的类别被分类为 。
KNN的算法流程也非常简单,请看下面的流程图。
KNN算法是一种非常简单实用的分类算法,可用于各种分类的场景,比如新闻分类、商品分类等,甚至可用于简单的文字识别。对于新闻分类,可以提前对若干新闻进行人工标注,标好新闻类别,计算好特征向量。对于一篇未分类的新闻,计算其特征向量后,跟所有已标注新闻进行距离计算,然后进一步利用KNN算法进行自动分类。
读到这你肯定会问,如何计算数据的距离呢?如何获得新闻的特征向量呢?
KNN算法的关键是要比较需要分类的数据与样本数据之间的距离,这在机器学习中通常的做法是:提取数据的特征值,根据特征值组成一个n维实数向量空间(这个空间也被称作特征空间),然后计算向量之间的空间距离。空间之间的距离计算方法有很多种,常用的有欧氏距离、余弦距离等。
对于数据 和 ,若其特征空间为n维实数向量空间 ,即 , ,则其欧氏距离计算公式为
这个欧式距离公式其实我们在初中的时候就学过,平面几何和立体几何里两个点之间的距离,也是用这个公式计算出来的,只是平面几何(二维几何)里的n=2,立体几何(三维几何)里的n=3,而机器学习需要面对的每个数据都可能有n维的维度,即每个数据有n个特征值。但是不管特征值n是多少,两个数据之间的空间距离的计算公式还是这个欧氏计算公式。大多数机器学习算法都需要计算数据之间的距离,因此掌握数据的距离计算公式是掌握机器学习算法的基础。
欧氏距离是最常用的数据计算公式,但是在文本数据以及用户评价数据的机器学习中,更常用的距离计算方法是余弦相似度。
余弦相似度的值越接近1表示其越相似,越接近0表示其差异越大,使用余弦相似度可以消除数据的某些冗余信息,某些情况下更贴近数据的本质。我举个简单的例子,比如两篇文章的特征值都是:“大数据”“机器学习”和“极客时间”,A文章的特征向量为(3, 3, 3),即这三个词出现次数都是3;B文章的特征向量为(6, 6, 6),即这三个词出现次数都是6。如果光看特征向量,这两个向量差别很大,如果用欧氏距离计算确实也很大,但是这两篇文章其实非常相似,只是篇幅不同而已,它们的余弦相似度为1,表示非常相似。
余弦相似度其实是计算向量的夹角,而欧氏距离公式是计算空间距离。余弦相似度更关注数据的相似性,比如两个用户给两件商品的打分分别是(3, 3)和(4, 4),那么两个用户对两件商品的喜好是相似的,这种情况下,余弦相似度比欧氏距离更合理。
我们知道了机器学习的算法需要计算距离,而计算距离需要还知道数据的特征向量,因此提取数据的特征向量是机器学习工程师们的重要工作,有时候甚至是最重要的工作。不同的数据以及不同的应用场景需要提取不同的特征值,我们以比较常见的文本数据为例,看看如何提取文本特征向量。
文本数据的特征值就是提取文本关键词,TF-IDF算法是比较常用且直观的一种文本关键词提取算法。这种算法是由TF和IDF两部分构成。
TF是词频(Term Frequency),表示某个单词在文档中出现的频率,一个单词在一个文档中出现的越频繁,TF值越高。
词频:
IDF是逆文档频率(Inverse Document Frequency),表示这个单词在所有文档中的稀缺程度,越少文档出现这个词,IDF值越高。
逆文档频率:
TF与IDF的乘积就是TF-IDF。
所以如果一个词在某一个文档中频繁出现,但在所有文档中却很少出现,那么这个词很可能就是这个文档的关键词。比如一篇关于原子能的技术文章,“核裂变”“放射性”“半衰期”等词汇会在这篇文档中频繁出现,即TF很高;但是在所有文档中出现的频率却比较低,即IDF也比较高。因此这几个词的TF-IDF值就会很高,就可能是这篇文档的关键词。如果这是一篇关于中国原子能的文章,也许“中国”这个词也会频繁出现,即TF也很高,但是“中国”也在很多文档中出现,那么IDF就会比较低,最后“中国”这个词的TF-IDF就很低,不会成为这个文档的关键词。
提取出关键词以后,就可以利用关键词的词频构造特征向量,比如上面例子关于原子能的文章,“核裂变”“放射性”“半衰期”这三个词是特征值,分别出现次数为12、9、4。那么这篇文章的特征向量就是(12, 9, 4),再利用前面提到的空间距离计算公式计算与其他文档的距离,结合KNN算法就可以实现文档的自动分类。
贝叶斯公式是一种基于条件概率的分类算法,如果我们已经知道A和B的发生概率,并且知道了B发生情况下A发生的概率,可以用贝叶斯公式计算A发生的情况下B发生的概率。事实上,我们可以根据A的情况,即输入数据,判断B的概率,即B的可能性,进而进行分类。
举个例子:假设一所学校里男生占60%,女生占40%。男生总是穿长裤,女生则一半穿长裤一半穿裙子。假设你走在校园中,迎面走来一个穿长裤的学生,你能够推断出这个穿长裤学生是男生的概率是多少吗?
答案是75%,具体算法是:
这个算法就利用了贝叶斯公式,贝叶斯公式的写法是:
意思是A发生的条件下B发生的概率,等于B发生的条件下A发生的概率,乘以B发生的概率,除以A发生的概率。还是上面这个例子,如果我问你迎面走来穿裙子的学生是女生的概率是多少。同样带入贝叶斯公式,可以计算出是女生的概率为100%。其实这个结果我们根据常识也能推断出来,但是很多时候,常识受各种因素的干扰,会出现偏差。比如有人看到一篇博士生给初中学历老板打工的新闻,就感叹读书无用。事实上,只是少见多怪,样本量太少而已。而大量数据的统计规律则能准确反映事物的分类概率。
贝叶斯分类的一个典型的应用场合是垃圾邮件分类,通过对样本邮件的统计,我们知道每个词在邮件中出现的概率 ,我们也知道正常邮件概率 和垃圾邮件的概率 ,还可以统计出垃圾邮件中各个词的出现概率 ,那么现在一封新邮件到来,我们就可以根据邮件中出现的词,计算 ,即得到这些词出现情况下,邮件为垃圾邮件的概率,进而判断邮件是否为垃圾邮件。
现实中,贝叶斯公式等号右边的概率,我们可以通过对大数据的统计获得,当有新的数据到来的时候,我们就可以带入上面的贝叶斯公式计算其概率。而如果我们设定概率超过某个值就认为其会发生,那么我们就对这个数据进行了分类和预测,具体过程如下图所示。
训练样本就是我们的原始数据,有时候原始数据并不包含我们想要计算的维度数据,比如我们想用贝叶斯公式自动分类垃圾邮件,那么首先要对原始邮件进行标注,需要标注哪些邮件是正常邮件、哪些邮件是垃圾邮件。这一类需要对数据进行标注才能进行的机器学习训练也叫作有监督的机器学习。