导航:首页 > 网络数据 > 大数据十大需求

大数据十大需求

发布时间:2023-08-21 13:32:06

❶ 移动营销在大数据时代的十大趋势

移动营销在大数据时代的十大趋势
我们已经进入了一个大数据的时代,在数字生活空间,用户每天上网产生大量的数据信息,这些非结构化的数据通过大数据挖掘技术和应用正在显现出巨大的商业价值。智能手机、平板电脑等移动终端设备的不断普及,正在深刻改变整个广告市场营销的生态,大数据、智能化、移动化必将主导未来的营销格局。在大数据时代,移动营销正在呈现出以下十大趋势。一、智能终端成为数字营销的主战场随着智能手机和平板电脑的普及,移动网络的访问量急剧增长,用户在智能手机和平板电脑平台上花费的时间也越来越多,中国移动广告市场呈现快速增长的态势。根据CNNIC发布的《第34次中国互联网络发展状况统计报告》数据显示,截至2014年6月,我国网民规模达6.32亿,手机网民规模达5.27亿,手机上网的网民比例为83.4%,手机上网比例首超传统PC上网比例(80.9%)。据调研公司eMarketer发布的最新报告显示,2014年全球数字广告市场规模将达到1460亿美元,而移动广告市场整体规模达到402亿美元,占数字广告市场规模的比例超过1/4,以阿里巴巴和网络为代表的中国公司的移动广告市场份额占到11.3%。2014年中国移动广告市场发展迅猛,增长近6倍至64亿美元,超越英国和日本成为全球第二大移动广告市场,未来的中国广告市场移动端支出将在所有数字广告版块起主导作用。智能终端将成为数字营销的主战场,广告主需要及时调整营销战略,合理分配营销预算,并结合企业自身特点,积极布局移动营销领域。二、大数据的应用让移动营销更精准依托大数据为驱动力将使得移动营销更加精准、投资回报率更高。大数据移动营销不仅仅是量上的,更多是数据背后对用户的感知。移动营销公司利用数据挖掘技术,分析受众的个人特征、媒介接触、消费行为甚至是生活方式等,帮助广告主找出目标受众,然后对广告信息、媒体和用户进行精准匹配,从而达到提升营销效果的目的。大数据的应用让移动营销更精准体现在三个方面:一是精准定制产品,通过对移动用户大数据的分析,企业可以了解用户需求,进而定制个性化产品;二是精准信息推送,避免向用户发送不相干的信息造成用户反感;三是精准推荐服务,通过对用户现有的浏览和搜索行为数据的分析,预测其当下及后续的需求,由此开展更精准和更实时的营销推广。三、移动电商改变整个市场营销生态如果说电子商务对实体店生存构成巨大挑战,那么移动电子商务则正在改变整个市场营销的生态。智能手机和平板电脑的普及,上网流量资费的降低,大量移动电商平台的创建,为消费者提供了更多便利的购物选择。移动电商购物良好的消费体验,例如比实体店更低的价格,丰富的产品选择,简便的购物流程,安全的支付系统,快捷的物流配送等,都为移动电商市场规模的扩大创造了条件。2014年11月11日,在天猫的571亿元成交额中,移动端交易额达到243亿元,占到总成交额的42.6%,为上一年度“双11”移动端交易额的4.5倍。这不仅令阿里成为全球最大的移动电商平台,也预示着移动电商时代的深刻变化已经来临。四、新型城镇和农村成移动新蓝海随着国家新型城镇化战略的实施和移动终端网络的不断普及,三四线城市、新兴城镇和农村市场成为移动电商的新蓝海。事实上,阿里,京东、1号店、苏宁云商等电商近年来已经大跨步进军三四线城市和农村市场。CNNIC的数据显示,截至去年6月,我国网民中农村人口占比为28.2%,规模达1.78亿。农村网购市场蕴含巨大的开发潜力。另据阿里研究院对农村网购市场规模的预测,2014年,中国农村网购市场规模将达到1800亿元人民币,预计2016年时市场总量突破4600亿元。农村居民对网购接受率达84.41%,人均年网购消费额在500-2000元人民币左右,主要集中在日用品、服装、家电等品类。随着新型城镇和农村智能手机及互联网普及率稳步提升,移动电商消费市场空间巨大。 五、App营销是移动营销主要形式现阶段移动互联网流量主要由各种App产生,App产生的流量占70%以上,App的数量在IOS和Android都在百万个以上,无疑,App成为移动营销的主要形式。庞大的App数量和广告形成两个巨大长尾市场,通过大数据分析可以让用户在合适的时间、合适的地点、合适的场景,看到合适的广告信息。易观智库监测数据显示,移动App广告占比逐年加大,2013年占比22.4%,2014年移动App广告占比将达28.6%,2016年预计达30.8%,仅次于移动搜索。智能手机和平板电脑的App分为两种,一是线下安装,二是主动下载。无论是线下安装还是用户主动下载的App,都需要增强用户体验,提供奖励优惠,激励用户参与,建立情景消费联想。 六、本地化移动营销市场空间广阔本地化移动营销是人、位置、移动媒体三者的结合。由于广告主及数字广告代理商不断寻求一种既具有高度本地化有高度相关性的传递商品信息的方式,本地化移动营销得以快速发展。本地化移动营销的核心发展主要体现在以下三个领域:一是增强现实,二是移动支付,三是游戏化。比方说网络地图和麦当劳联合推出的樱花甜筒跑酷活动。打开网络地图,或是使用“附近”、“搜索”功能,会看到一个漂浮在地图上的甜筒标识。这是网络地图结合大数据分析和智能推送技术,对麦当劳甜品站周边三公里的用户进行匹配,挑选部分用户推送了“樱花甜筒跑酷0元抢”的优惠信息。用户在规定时间内跑到麦当劳甜品站,就可以免费领取樱花甜筒。这种两家企业结合自身优势推广的活动,很快引起了“樱花风暴”,实现了共赢。 七、移动营销打造O2O营销新模式移动O2O营销模式充分利用了移动互联网跨地域、无边界、海量信息、海量用户的优势,同时充分挖掘线下资源,进而促成线上用户与线下商品服务的交易。在移动互联时代,企业需要思考如何将线上和线下有效整合,将线上的推广活动转化为实际的销售。例如,星巴克曾推出一款“早安闹钟”App与目标消费者深度沟通,用户下载星巴克“早安闹钟”App后,设定起床闹铃,闹铃响起后的1小时内,走进任意一家星巴克门店,可享受早餐新品半价的优惠。又比如,杜蕾斯和iPhone推出的“宝贝计划”。这是一款养小孩App,两部手机相互摩擦后就可以进入模拟养小孩的程序,如果消费者想终止该游戏,就必须买一包杜蕾斯并扫描其上的二维码。星巴克和杜蕾斯的O2O移动营销新模式,不仅调动了移动用户的参与热情,同时也大大提升了企业的销量。八、RTB成移动广告投放主导模式RTB(Real Time Bidding)实时竞价,是一种利用第三方技术在数以百万计的网站上针对每一个用户展示行为进行评估以及出价的竞价技术。与大量购买投放频次不同,实时竞价规避了无效的受众到达,针对有意义的用户进行购买。据调研公司eMarketer预测,在美国,程序化广告投放将继续作为相关的显示广告投放中的最大份额,而RTB广告投放将占程序化投放的最大份额。2014年,美国RTB占到显示广告投放的34%,同时非RTB程序广告投放占29%的份额。但是到2017年,RTB将增长占到显示广告投放的52%,而非RTB程序化广告将占31%,非程序化广告投放较为平稳。中国移动广告市场RTB日益成为广告投放的主导模式,多盟、有米、芒果、木瓜移动等众多国内领先的移动广告公司均已推出了实时竞价广告交易平台(AdExchange)和需求方平台(DSP)。九、多屏整合成移动营销必然趋势根据最新发布的调查报告显示,中国消费者使用智能手机、平板电脑等多屏媒体的频率要高于世界上任何其他地区。多屏整合将成为移动营销的主导方向。这里的多屏整合包含两层含义:一是多屏整合的大数据分析。用户可以同时使用手机屏、iPad屏、电脑屏、电视屏、户外屏等终端,数字广告平台需要知道用户在多屏上浏览的信息和行为模式,从而通过跨屏来修正和完善对消费者的认知,让移动广告投放更精准更有效。事实上,网络、阿里巴巴和腾讯等互联网巨头已经开始在做跨屏的数据分析。二是多屏的整合营销。即将智能手机与PC电脑、电视、户外广告等进行较好的关联和互动,实现线上线下的整合推广。例如,1号店在地铁站做户外广告,根据地铁站的人流来判断大家喜欢买什么样的产品,你在上下地铁时,用手机扫描二维码并完成购买,等你到家,东西可能已经送到家里了。十、建立战略联盟是移动营销平台方向大数据时代,大数据、技术和创意将是移动数字营销公司的核心竞争优势。建立战略联盟是移动营销平台发展的必然选择,数字营销公司建立战略联盟可以通过以下途径:一是大型互联网企业之间的战略联盟。例如,2014年10月30日,阿里巴巴集团和优酷土豆集团在京举办联合战略发布会,双方宣布展开全面合作,共同推进中国营销领域的DT化进程(Data Technology)。优酷土豆和阿里妈妈还分别发布了基于大数据的精准营销方案。二是数字广告平台与移动媒体之间的战略联盟。例如,与多盟合作的App媒体超过7.7万,日均PV1.8亿,与App媒体的深度合作,奠定了多盟在移动广告平台领域的领导地位。大数据时代对于广告产业而言是一个极富挑战的时代,也是一个充满机会的时代,亟需广告公司调整经营战略,快速布局数字营销和移动营销。

❷ 大数据在哪些领域有应用前景

1、电商行业
电商行业是最早将大数据用于精准营销的行业,它可以根据消费者的习惯提前生产物料和物流管理,这样有利于美好社会的精细化生产。随着电子商务的越来越集中,大数据在行业中的数据量变得越大,并且种类非常多。在未来的发展中,大数据在电子商务中有大多的想象,其中主要包括预测趋势,消费趋势,区域消费特征,顾客消费习惯,消费者行为,消费热点和影响消费的重要因素。
2、金融行业
大数据在金融行业的使用是非常广泛的,主要使用在交易过程中。现在许多股权交易都是使用大数据算法进行的。这些算法能够越来越多地考虑社交媒体和网站新闻,并且决定接下来的几秒内是选择购买还是出售。
3、生物技术
基因技术是人类未来挑战疾病的重要武器。科学家可以利用大数据技术的应用,这样能够加速他们自己的基因和其他动物基因的研究过程,并且还能成为人类未来克服疾病的重要武器之一。技术不仅可以改良作物,还可以利用遗传技术培育人体器官,消灭细菌等。

❸ 中国大数据的十大商业应用

中国大数据的十大商业应用

在未来的几十年里,大数据都将会是一个重要都话题。大数据影响着每一个人,并在可以预见的未来继续影响着。大数据冲击着许多主要行业,包括零售业、金融行业、医疗行业等,大数据也在彻底地改变着我们的生活。现在我们就来看看大数据给中国带来的十商业应用场景,未来大数据产业将会是一个万亿市场。

1、智慧城市

如今,世界超过一半的人口生活在城市里,到2050年这一数字会增长到75%。政府需要利用一些技术手段来管理好城市,使城市里的资源得到良好配置。既不出现由于资源配置不平衡而导致的效率低下以及骚乱,又要避免不必要的资源浪费而导致的财政支出过大。大数据作为其中的一项技术可以有效帮助政府实现资源科学配置,精细化运营城市,打造智慧城市。

城市的道路交通,完全可以利用GPS数据和摄像头数据来进行规划,包括道路红绿灯时间间隔和关联控制,包括直行和左右转弯车道的规划、单行道的设置。利用大数据技术实施的城市交通智能规划,至少能够提高30%左右的道路运输能力,并能够降低交通事故率。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。

城市公共交通规划、教育资源配置、医疗资源配置、商业中心建设、房地产规划、产业规划、城市建设等都可以借助于大数据技术进行良好规划和动态调整。

大数据技术可以了解经济发展情况,各产业发展情况,消费支出和产品销售情况,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理,具有极大的想象空间。

2、金融行业

大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。中国金融行业大数据应用开展的较早,但都是以解决大数据效率问题为主,很多金融行业建立了大数据平台,对金融行业的交易数据进行采集和处理。

金融行业过去的大数据应用以分析自身财务数据为主,以提供动态财务报表为主,以风险管理为主。在大数据价值变现方面,开展的不够深入,这同金融行业每年上万亿的净利润相比是不匹配的。现在已经有一些银行和证券开始和移动互联网公司合作,一起进行大数据价值变现,其中招商银行、平安集团、兴业银行、国信证券、海通证券和TalkingData在移动大数据精准营销、获客、用户体验等方面进行了不少的尝试,大数据价值变现效果还不错,大数据正在帮助金融行业进行价值变现。大数据在金融行业的应用可以总结为以下五个方面:

(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐

(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈

(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制

(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度

(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品

3、医疗行业

医疗行业拥有大量病例、病理报告、医疗方案、药物报告等。如果这些数据进行整理和分析,将会极大地帮助医生和病人。在未来,借助于大数据平台我们可以收集疾病的基本特征、病例和治疗方案,建立针对疾病的数据库,帮助医生进行疾病诊断。

如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。

医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法起大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府是推动这一趋势的重要动力,未来市场将会超过几千亿元。

4、农牧业

农产品不容易保存,合理种植和养殖农产品对农民非常重要。借助于大数据提供的消费能力和趋势报告,政府将为农牧业生产进行合理引导,依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。

农业生产面临的危险因素很多,但这些危险因素很大程度上可以通过除草剂、杀菌剂、杀虫剂等技术产品进行消除。天气成了影响农业非常大的决定因素。过去的天气预报仅仅能提供当地的降雨量,但农民更关心有多少水分可以留在他们的土地上,这些是受降雨量和土质来决定的。Climate公司利用政府开放的气象站的数据和土地数据建立了模型,他们可以告诉农民可以在哪些土地上耕种,哪些土地今天需要喷雾并完成耕种,哪些正处于生长期的土地需要施肥,哪些土地需要5天后才可以耕种,大数据技术可以帮助农业创造巨大的商业价值。

5、零售行业

零售行业比较有名气的大数据案例就是沃尔玛的啤酒和尿布的故事,以及Target通过向年轻女孩寄送尿布广告而告知其父亲,女孩怀孕的故事。

零售行业可以通过客户购买记录,了解客户关联产品购买喜好,将相关的产品放到一起增加来增加产品销售额,例如将洗衣服相关的化工产品例如洗衣粉、消毒液、衣领净等放到一起进行销售。根据客户相关产品购买记录而重新摆放的货物将会给零售企业增加30%以上的产品销售额。

零售行业还可以记录客户购买习惯,将一些日常需要的必备生活用品,在客户即将用完之前,通过精准广告的方式提醒客户进行购买。或者定期通过网上商城进行送货,既帮助客户解决了问题,又提高了客户体验。

电商行业的巨头天猫和京东,已经通过客户的购买习惯,将客户日常需要的商品例如尿不湿,卫生纸,衣服等商品依据客户购买习惯事先进行准备。当客户刚刚下单,商品就会在24小时内或者30分钟内送到客户门口,提高了客户体验,让客户连后悔等时间都没有。

利用大数据的技术,零售行业将至少会提高30%左右的销售额,并提高客户购买体验。

6、大数据技术产业

进入移动互联网之后,非结构化数据和结构化数据呈指数方式增长。现在人类社会每两年产生的数据将超过人类历史过去所有数据之和。进入到2015年,人类社会所有的数据之和有望突破5泽B(5ZB),这些数据如何存储和处理将会成为很大的问题。

这些大数据为大数据技术产业提供了巨大的商业机会。据估计全世界在大数据采集、存储、处理、清晰、分析所产生的商业机会将会超过2000亿美金,包括政府和企业在大数据计算和存储,数据挖掘和处理等方面等投资。中国2014年大数据产业产值已经超过了千亿人民币,本届贵阳大数据博览会就吸引了400多家厂商来参展,充分说明大数据产业的未来的商业价值巨大。

未来中国的大数据产业将会呈几何级数增长,在5年之内,中国的大数据产业将会形成万亿规模的市场。不仅仅是大数据技术产品的市场,也将是大数据商业价值变现的市场。大数据将会在企业的精准营销、决策分析、风险管理、产品设计、运营优化等领域发挥重大的作用。

大数据技术产业将会解决大数据存储和处理的问题,大数据服务公司将利用自身的数据将解决大数据价值变现问题,其所带来的市场规模将会超过千亿人民币。中国目前拥有大数据,并提供大数据价值变现服务的公司除了我们众所周知的BAT和移动运营商之外,360、小米、京东、TalkingData、九次方等都会成为大数据价值变现市场的有力参与者,市场足够大,期望他们将市场做大,帮助所有企业实现大数据价值变现。

7、物流行业

中国的物流产业规模大概有5万亿左右,其中公里物流市场大概有3万亿左右。物流行业的整体净利润从过去的30%以上降低到了20%左右,并且下降的趋势明显。物流行业很多的运力浪费在返程空载、重复运输、小规模运输等方面。中国市场最大等物流公司所占的市场份额不到1%。因此资源需要整合,运送效率需要提高。

物流行业借助于大数据,可以建立全国物流网络,了解各个节点的运货需求和运力,合理配置资源,降低货车的返程空载率,降低超载率,减少重复路线运输,降低小规模运输比例。通过大数据技术,及时了解各个路线货物运送需求,同时建立基于地理位置和产业链的物流港口,实现货物和运力的实时配比,提高物流行业的运输效率。借助于大数据技术对物流行业进行的优化资源配置,至少可以增加物流行业10%左右的收入,其市场价值将在5000亿左右。

8、房地产业

中国房地产业发展的高峰已经过去,其面临的挑战逐渐增加,房地产业正从过去的粗放发展方式转向精细运营方式,房地产企业在拍卖土地、住房地产开发规划、商业地产规划方面也将会谨慎进行。

借助于大数据,特别是移动大数据技术。房地产业可以了解开发土地所在范围常驻人口数量、流动人口数量、消费能力、消费特点、年龄阶段、人口特征等重要信息。这些信息将会帮助房地商在商业地产开发、商户招商、房屋类型、小区规模进行科学规划。利用大数据技术,房地产行业将会降低房地产开发前的规划风险,合理制定房价,合理制定开发规模,合理进行商业规划。大数据技术可以降低土地价格过高,实际购房需求过低的风险。已经有房地产公司将大数据技术应用于用户画像、土地规划、商业地产开发等领域,并取得了良好的效果。

9、制造业

制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,合理规划产品生产,避免生产过剩。

例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥。

大数据技术还可以根据社交数据和购买数据来了解客户需求,帮助厂商进行产品开发,设计和生产出满足客户需要的产品。

10、互联网广告业

2014年中国互联网广告市场迎来发展高峰,市场规模预计达到1500亿元左右,较2013年增长56.5%。数字广告越来越受到广告主的重视,其未来市场规模越来越大。2014年美国的互联网广告市场规模接近500亿美元,参考中国的人口消费能力,其市场规模会很快达到2000亿人民币左右。

过去到广告投放都是以好的广告渠道+广播式投放为主,广告主将广告交给广告公司,由广告公司安排投放,其中SEM广告市场最大,其他的广告投放方式也是以页面展示为主,大多是广播式广告投放。广播式投放的弊端是投入资金大,没有针对目标客户,面对所有客户进行展示,广告的转化率较低,并存在数字广告营销陷阱等问题。

大数据技术可以将客户在互联网上的行为记录下来,对客户的行为进行分析,打上标签并进行用户画像。特别是进入移动互联网时代之后,客户主要的访问方式转向了智能手机和平台电脑,移动互联网的数据包含了个人的位置信息,其360度用户画像更加接近真实人群。360度用户画像可以帮助广告主进行精准营销,广告公司可以依据用户画像的信息,将广告直接投放到用户的移动设备,通过用户经常使用的APP进行广告投放,其广告的转化可以大幅度提高。利用移动互联网大数据技术进行的精准营销将会提高十倍以上的客户转化率,广告行业的程序化购买正在逐步替代广播式广告投放。大数据技术将帮助广告主和广告公司直接将广告投放给目标用户,其将会降低广告投入,提高广告的转化率。

目前影响大数据产业发展主要有两个大问题,一个是大数据应用场景,一个是大数据隐私保护问题。

大数据商业价值的应用场景,大数据公司和企业正在寻找,目前在移动互联网的精准营销和获客、360度用户画像、房地产开发和规划、互联网金融的风险管理、金融行业的供应链金融,个人征信等方面已经取得了进步,拥有了很多经典案例。

但在有关大数据隐私保护以及大数据应用过程中个人信息保护方面还停滞不前,大家都在摸石头过河,不知道哪些事情可以做,哪些事情不可以做。国家在大数据隐私保护方面正在进行立法,估计不久的将来,大数据服务公司和企业将会了解大数据隐私保护方面的具体要求。在没有明确有关大数据隐私保护法规前,我们可以参考国外的隐私法,严格遵守国际上通用的个人隐私保护法,在实施大数据价值变现的过程中,充分保护所有相关方的个人利益。

最后纵观人类历史,在任何领域,如果我们可以拿到数据进行分析,我们就会取得进步。如果我们拿不到数据,无法进行分析,我们注定要落后。我们过去因数据不足导致的错误远远好过那些根本不用数据的错误,因此我们需要掌握大数据这个武器,利用好它,帮助人类社会加速进化,帮助企业实现大数据的价值变现。

以上是小编为大家分享的关于中国大数据的十大商业应用的相关内容,更多信息可以关注环球青藤分享更多干货

❹ 大数据学习有什么要求

大数据专业专业课程难度大,有本科学历要求!

大数据学习内容主要有:

①内JavaSE核心技术容;

②Hadoop平台核心技术、Hive开发、HBase开发;

③Spark相关技术、Scala基本编程;

④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;

⑤大数据项目开发实战,大数据系统管理优化等。

你可以考察对比一下南京课工场、北大青鸟、中博软件学院等开设有大数据专业的学校。祝你学有所成,望采纳。

北大青鸟中博软件学院大数据课堂实拍

❺ 在大数据中心需要什么样的技术

大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。1. Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型的语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的。

2. Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3. Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapRece,HDFS为海量的数据提供了存储,MapRece为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4. Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5. Avro与Protobuf

Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。

6. ZooKeeper

ZooKeeper是Hadoop和Habase的重要组件,是一个分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。7. HBase

HBase是一个分布式的、面向列的开源数据库,他不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8.phoenix

Phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9.Redis

Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。

10.Flume

Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。

11.SSM

SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时,再使用SSM进行整合操作。

12.Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和是用方法及相关功能的实现!

13.Scala

Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!

14.Spark

Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、sparkjob部署与资源分配、SparkshuffleSpark内存管理、Spark广播变量、SparkSQL SparkStreaming以及 Spark ML等相关知识。

15.Azkaban

Azkaban是一个批量工作流任务调度器,可用于在一个工作流内以一个特定的顺序运行一组工作和流程,可以利用Azkaban来完成大数据的任务调度,大数据开发需掌握Azkaban的相关配置及语法规则。

❻ 大数据有哪些职业方向

当下,大数据方面的就业主要有三大方向:一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。
大数据就业前景
在就业“钱景”方面,各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。以基本的Hadoop开发工程师为例,入门月薪已经达到了8K以上,工作1年月薪可达到12K以上,资深的hadoop人才年薪可达到30万—50万。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据开发工程师
数据仓库开发、实时计算开发、大数据平台开发一般都会被称作大数据开发,其实这是3个岗位,各自要求也不尽相同。
大数据分析师
基于各种分析手段,利用大数据技术对大数据进行科学分析、挖掘、展现并用于决策支持。
数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。
算法工程师
数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

❼ 未来大数据的主要应用领域包括哪些

大数据不仅意味着海量、多样、迅捷的数据处理,更是一种颠覆的思维方式、一项智能的基础设施、一场创新的技术变革。
大数据不仅意味着海量、多样、物联网、智慧城市、增强现实(AR)与虚拟现实(VR)、区块链技术、语音识别、人工智能、数字汇流是大数据未来应用的七大发展方向。
趋势一:物联网
物联网:把所有物品通过信息传感设备与互联网连接起来,进行信息交换,即物物相息,以实现智能化识别和管理。
物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。
物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;
其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。
趋势二:智慧城市
智慧城市就是运用信息和通信技术手段感测、分析、整合城市运行核心系统的各项关键信息;对包括民生、环保、公共安全、城市服务、工商业活动在内的各种需求做出智能响应。其实质是利用先进的信息技术,实现城市智慧式管理和运行,进而为城市中的人创造更美好的生活,促进城市的和谐、可持续成长。这项趋势的成败取决于数据量跟数据是否足够,这有赖于政府部门与民营企业的合作;此外,发展中的5G网络是全世界通用的规格,如果产品被一个智慧城市采用,将可以应用在全世界的智慧城市。
趋势三:增强现实(AR)与虚拟现实(VR)
拟现实技术是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境;是一种多源信息融合的、交互式的三维动态视景和实体行为的系统仿真使用户沉浸到该环境中。这两个技术最近开始降价跟提升质量,走向大众市场。VR应用一开始以电玩为主,现在的应用却超越电玩,可以用来教学,靠着VR设备,把家里的插头电线完成配线,就像有水电技师在教学一样。
趋势四:区块链技术
区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点之间建立信任、获取权益的数学算法。 区块链技术是指一种全民参与记账的方式。所有的系统背后都有一个数据库,你可以把数据库看成是就是一个大账本。区块链有很多不同应用方式,美国几乎所有科技公司都在尝试如何应用,最常见的应用是比特币跟其他加密货币的交易。
趋势五:语音识别技术
人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。很多专家都认为语音识别技术是2000年至2010年间,信息技术领域十大重要的科技发展技术之一。语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等。这项产业有个很大优点,就是发展技术的公司都打算把这项技术商品化。像是google、Amazon跟苹果的语音识别技术都可透过授权,使用在其他业者的硬件服务上。
趋势六:人工智能(AI)
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能需要被教育,汇入很多信息才能进化,进而产生一些意想不到的结果。AI影响幅度很大,例如媒体业,现在计算机跟机器人可以写出很好的文章,而且1小时产出好几百篇,成本也低。
AI对经济发展会产生剧烈影响,很多知识产业跟白领工作也可能被机器人取代。但他对于AI的态度很正面,这会让生活更好,例如自驾车绝对比人驾车更安全。
趋势七:数字汇流
大约从1995年左右,就陆续有人在讨论所谓“数位汇流”,在不同的使用情境之下,我们还是会需要很不一样的数位装置—光是萤幕大小就有好多种选项,音响效果、摄影机,都需要不同的配套。
所以数位比较像是“iCloud”,也就是说所有的装置会存取同一个远端资料库,让你的数位生活可以完全同步,随时、无缝的切换使用情境。
但除了“载具”的汇流,我们更应关心的是另一个数位汇流,一个网路商业模式的汇流,或者更明确的说,数字汇流就是“内容”与“电子商务”的汇流。

阅读全文

与大数据十大需求相关的资料

热点内容
压缩文件怎么压缩电影 浏览:915
iphone6彻底删除照片 浏览:370
github代码泄露 浏览:943
微软系统升级win10系统 浏览:343
查看电脑微信聊天记录文件夹 浏览:158
手机数据线传到电脑的视频在哪里 浏览:918
linux内核消息队列 浏览:702
微信支付提示交易取消 浏览:792
ps的配置文件是什么意思 浏览:483
js原生翻页实现翻页 浏览:554
自控系统招标文件 浏览:931
文件共享自动开启 浏览:215
沃尔学院快速升级 浏览:90
文件格式化是不是全部内容都没了 浏览:769
一个香蕉图案的APP是什么 浏览:623
mac文件创建时间 浏览:855
东芝笔记本初始密码 浏览:525
安卓手柄改按键设置 浏览:297
如何应用夸克打开压缩文件 浏览:137
mac网络偏好设置打不开 浏览:531

友情链接