A. 大数据分析方法,求助!
现在大数据分析越来越受欢迎.首先,由于各种网络平台收集了越来越多的数据,如何郑伏整理这些数据,生成有用的东西?这就是大数据分析的目的.以下是一些常见的大数据喊缺携分析方法.
大数据挖掘:定义目标,分析问题.在开始大数据处理之前,必须确定处理数据的目标,然后开始数据挖掘.
例如,统计近三年毕业生的各种情况.应该收集有关毕业生的信息.大数据挖掘:建立模型,收集数据,通过网络爬虫类,或者通过往年的扮歼数据资料,建立相应的数据挖掘模型,收集数据,获得大量的原始数据.
大数据挖掘:导入并准备数据.通过工具和脚本,将原始转换为MySQL、数据文本等可处理的数据.大数据分析算法:机器学习用机器学习的方法处理收集的数据.根据具体问题来决定.
这里有很多方法.常见的方法是人工神经网络、随机森林树、LMS算法.
大数据分析目标:语义引擎.在处理大数据的时候,往往会花费大量的时间和费用,所以每次生成的报告后,都应该支持语音发动机功能,这样才能让数据自己说话,人们从中提交数据就可以了.
大数据分析目标:产生可视化报告,便于人工分析.通过软件处理大量数据后.然后可视化结果,便于人类分析.常见的软件有splunk等.
大数据分析目标:预测性.通过大数据分析算法,应该对数据进行一定的推断,这样的数据更具指导性.
B. 大数据分析需要学习什么知识呀
1、学习大数据首先要学习java基础
怎样进行大数据学习的快速入门?学大数据课程之前要先学习一种计算机编程语言。Java是大数据学习需要的编程语言基础,因为大数据的开发基于常用的高级语言。而且不论是学习hadoop,还是数据挖掘,都需要有编程语言作为基础。因此,如果想学习大数据开发,掌握Java基础是必不可少的。
2、学习大数据必须学习大数据核心知识
Hadoop生态系统;HDFS技术;HBASE技术;Sqoop使用流程;数据仓库工具HIVE;大数据离线分析Spark、Python语言;数据实时分析Storm;消息订阅分发系统Kafka等。
如果把大数据比作容器,那么这个容器的容量无限大,什么都能往里装,大数据离不开物联网,移动互联网,大数据还和人工智能、云计算和机器学习有着千丝万缕的关系,大数据海量数据存储要高扩展就离不开云计算,大数据计算分析采用传统的机器学习、数据挖掘技术会比较慢,需要做并行计算和分布式计算扩展。
3数学知识,数学知识是数据分析师的基础知识。对于数据分析师,了解一些描述统计相关的内容,需要有一定公式计算能力,了解常用统计模型算法。而对于数据挖掘工程师来说,各类算法也需要熟练使用,对数学的要求是最高的。
编程语言,对于想学大数据的同学,至少需要具备一门编程语言,比如SQL、hadoop、hive查询、Python等均可。
4、学习大数据可以应用的领域
大数据技术可以应用在各个领域,比如公安大数据、交通大数据、医疗大数据、就业大数据、环境大数据、图像大数据、视频大数据等等,应用范围非常广泛,大数据技术已经像空气一样渗透在生活的方方面面。大数据技术的出现将社会带入了一个高速发展的时代,这不仅是信息技术的终极目标,也是人类社会发展管理智能化的核心技术驱动力。
C. 数据挖掘需要学习哪些知识
1.统计知识
在做数据分析,统计的知识肯定是需要的,Excel、SPSS、R等是需要掌握的基本技能。如果我们做数据挖掘的话,就要重视数学知识,数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
2.概率知识
而朴素贝叶斯算法需要概率方面的知识,SKM算法需要高等代数或者区间论方面的知识。当然,我们可以直接套模型,R、Python这些工具有现成的算法包,可以直接套用。但如果我们想深入学习这些算法,最好去学习一些数学知识,也会让我们以后的路走得更顺畅。我们经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
3.数据挖掘的数据类型
那么可以挖掘的数据类型都有什么呢?关系数据库、数据仓库、事务数据库、空间数据库、时间序列数据库、文本数据库和多媒体数据库。关系数据库就是表的集合,每个表都赋予一个唯一的名字。每个表包含一组属性列或字段,并通常存放大量元组,比如记录或行。关系中的每个元组代表一个被唯一关键字标识的对象,并被一组属性值描述。
4.数据仓库
什么是数据仓库呢?数据仓库就是通过数据清理、数据变换、数据集成、数据装入和定期数据刷新构造 。数据挖掘的工作内容是什么呢?数据分析更偏向统计分析,出图,作报告比较多,做一些展示。数据挖掘更偏向于建模型。比如,我们做一个电商的数据分析。万达电商的数据非常大,具体要做什么需要项目组自己来定。电商数据能给我们的业务什么样的推进,我们从这一点入手去思考。我们从中挑出一部分进行用户分群。
关于数据挖掘需要学习哪些知识,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
D. 餐饮企业如何做好大数据挖掘
般餐企会将客户分为四类:过客、散客、回头客、忠实客。在这四种客户中,过客和散客是不需要做过多营销的,并且能够带给餐企更多利润的是回头客和忠实客,这两类客户对品牌认可度高,且会介绍给朋友。也就是说,餐企必须要对客户进行进一步精准营销,培养更多的回头客和忠实客。
举个简单的例子,家门口有两家饭店,两个都是中餐馆,味道都是尚可。其中一家,从来不主动做营销,不会给任何点餐建议;而另外一家,进去之后就会有一种宾至如归的感觉,服务员能亲切地叫出客户名字,了解喜好,甚至知道是偏好甜还是咸,能根据客户喜好引导点餐,提供贴心的一站式服务。
那选择哪一家就不言而喻了。
而这家餐厅对客户的充分了解是建立在对客户资料以及消费情况得深度挖掘下。这就是数据挖掘的魅力。
系统分析整理好的数据进行再次发掘,将客户清晰分类。客户分类的目的就是为了增加回头客,壮大忠实客户群体。在这个基础上,客户进行进一步细分如理性消费者、冲动型消费者;偏爱折扣型,喜欢尝新型。针对这些不同的客户群体,餐企再次营销就可以更精准到位。
E. 大数据挖掘方法有哪些
谢邀。
大数据挖掘的方法:
神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。
遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
决策树方法
决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。
粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。
覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。
统计分析方法
在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。
模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。
F. 大数据挖掘技术涉及哪些内容
大数据挖掘技术涉及的主要内容有:模式跟踪,数据清理和准备,基于分类的数据挖掘技术,异常值检测,关联,聚类。
基于大环境下的数据特点,挖掘技术与对应:
1.数据来源多, 大数据挖掘的研究对象往往不只涉及一个业务系统, 肯定是多个系统的融合分析, 因此,需要强大的ETL技术, 将多个系统的数据整合到一起, 并且, 多个系统的数据可能标准不同, 需要清洗。
2.数据的维度高, 整合起来的数据就不只传统数据挖掘的那一些维度了, 可能成百上千维, 这需要降维技术了。
3.大数据量的计算, 在单台服务器上是计算不了的, 这就需要用分布式计算, 所以要掌握各种分布式计算框架, 像hadoop, spark之类, 需要掌握机器学习算法的分布式实现。
数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
想了解更多大数据挖掘技术,请关注CDA数据分析课程。CDA(Certified Data Analyst),即“CDA 数据分析”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。国家发展战略的要求,岗位人才的缺口以及市场规模的带动,都从不同方面体现了数据分析师职业的重要性。大数据挖掘技术的学习,有利于提高人在职场的信誉度,增加职场竞争力,提高自己的经济地位。点击预约免费试听课。
G. 大数据价值挖掘的三要素
大数据价值挖掘的三要素
如何充分利用大数据,挖掘大数据的商业价值,从而提升企业的竞争力,已经成为企业关注的一个焦点。
全面解决方案才能奏效
当前,越来越多企业将大数据的分析结果作为其判断未来发展的依据。同时,传统的商业预测逻辑正日益被新的大数据预测所取代。但是,我们要谨慎管理大家对大数据的期望值,因为海量数据只有在得到有效治理的前提下才能进一步发展其业务价值。
最广为人知的大数据定义是Gartner给出的大数据的3V特性:巨大的数据量(Volume)、数据的快速处理(Velocity)、多变的数据结构和类型(Variety)。根据这一定义,大家首先想到的是IT系统中一直难以处理却又不容忽视的非结构化数据。也就是说,大数据不仅要处理好交易型数据的分析,还把社交媒体、电子商务、决策支持等信息都融入进来。现在,分布式处理技术Hadoop和NoSQL已经能对非结构化数据进行存储、处理、分析和挖掘,但未能为满足客户的大数据需求提供一个全面的解决方案。
事实上,普遍意义上的大数据范围更加广泛,任何涉及海量数据及多数据源的复杂计算,均属大数据范畴,而不仅局限于非结构化数据。因此,诸如电信运营商所拥有的巨量用户的各类详细数据、手机开关机信息、手机在网注册信息、手机通话计费信息、手机上网详细日志信息、用户漫游信息、用户订阅服务信息和用户基础服务信息等,均可划归为大数据。
与几年前兴起的云计算相比,大数据实现其业务价值所要走的路或许更为长远。但是企业用户已经迫不及待,越来越多企业高层倾向于将大数据分析结果作为其商业决策的重要依据。在这种背景下,我们必须找到一种全面的大数据解决方案,不仅要解决非结构化数据的处理问题,还要将功能扩展到海量数据的存储、大数据的分布式采集和交换、海量数据的实时快速访问、统计分析与挖掘和商务智能分析等。
典型的大数据解决方案应该是具有多种能力的平台化解决方案,这些能力包括结构化数据的存储、计算、分析和挖掘,多结构化数据的存储、加工和处理,以及大数据的商务智能分析。这种解决方案在技术应具有以下四个特性:软硬集成化的大数据处理、全结构化数据处理的能力、大规模内存计算的能力、超高网络速度的访问。
软硬件集成是必然选择
我们认为,大数据解决方案的关键在于如何处理好大规模数据计算。过去,传统的前端数据库服务器、后端大存储的架构难以有效存储大规模数据并保持高性能数据处理。这时候,我们让软件和硬件更有效地集成起来进行更紧密的协作。也就是说,我们需要软硬一体化的专门设备来应对大数据的挑战。
一直以来,甲骨文公司在传统的关系型数据库领域占有绝对优势,但并未因此固步自封。面对大数据热潮,甲骨文公司根据用户的需求不断推陈出新,将在数据领域的优势从传统的关系型数据库扩展到全面的大数据解决方案,成为业界首个通过全面的、软硬件集成的产品来满足企业关键大数据需求的公司。
甲骨文公司以软硬件集成的方式提供大数据的捕获、组织、分析和决策的所有能力,为企业提供完整的集成化大数据解决方案,其中的核心产品包括Oracle大数据机、Exalytics商务智能云服务器和OracleExadata数据库云服务器。
Oracle大数据机用于多结构化大数据处理,旨在简化大数据项目的实施与管理,其数据加工结果可以通过超高带宽的InfiniBand网络连接到OracleExadata数据库云服务器中。OracleExadata可提供高效数据存储和计算能力,配备超大容量的内存和快速闪存,配合特有的软硬件优化技术,可对大数据进行高效的加工、分析和挖掘。同时,甲骨文公司在OracleExadata以及数据库软件层面提供了非常高效和便捷的高级数据分析软件,使数据能够更快、更高效地得到分析、挖掘和处理。
通过Oracle大数据机快速获得、组织大数据之后,企业还要根据对大数据全面、实时的分析结果做出科学的业务决策。OracleExalytics商务智能云服务器能以前所未有的速度运行数据分析应用,为客户提供实时、快速的可视分析。同样,它通过InfiniBand网络连接到OracleExadata上进行数据加载和读取,让大数据直接在内存中快速计算,满足大数据时代对数据分析展现的快速响应需求。OracleExalytics实现了新型分析应用,可用于异构IT环境,能存取和分析来自任何Oracle或非Oracle的关系型数据、OLAP或非结构化数据源的数据。
Oracle大数据机、OracleExalytics商务智能云服务器和OracleExadata数据库云服务器一起,组成了甲骨文最广泛、高度集成化系统产品组合,为企业提供了一个端到端的大数据解决方案,满足企业对大数据治理的所有需求。
坚持开放的战略
从当前的情况来看,在大数据应用领域,仅靠一家厂商的产品难以解决所有问题。因此对于大数据解决方案供应商来说,采用开放的策略是必然选择。甲骨文公司坚持全面、开放、集成的产品策略。这一策略在大数据领域同样适用。
这首先体现在大数据战略在技术上支持Hadoop和开源软件。除了集成化产品,甲骨文公司还拥有一系列领先技术,以帮助用户全面应对大数据应用的挑战,其中包括OracleNoSQL数据库,以及针对Hadoop架构的系列产品。
OracleNoSQL数据库专门为管理海量数据而设计,可以帮助企业存取非结构化数据,并可横向扩展至数百个高可用性节点。同时,该产品能够提供可预测的吞吐量和延迟时间,而且更加容易安装、配置和管理,支持广泛的工作负载。
而专门针对Hadoop架构的产品,能够帮助企业应对在组织和提取大数据方面所面临的挑战,包括Oracle数据集成Hadoop应用适配器、OracleHadoop装载器以及OracleSQL Connector等。
此外,OracleR Enterprise实现了R开源统计环境与Oracle数据库11g的集成,为进行更进一步的数据分析提供了一个企业就绪的、深度集成的环境。
值得一提的是,除对产品和解决方案不断投入,甲骨文公司还致力于和合作伙伴合作开发大数据解决方案。目前,几乎所有的甲骨文合作伙伴都在关注和测试大数据解决方案。甲骨文公司正积极寻找更多本地合作伙伴,为客户提供更加定制化的产品和解决方案。
总而言之,大数据已经和云计算、社交化、移动化一起,成为现阶段驱动企业IT模式变革的重要因素。Oracle大数据解决方案可以横跨IT架构的所有层面,与其他产品进行创新集成,并凭借卓越的可靠性、可扩展性和可管理性,为企业的IT发展,甚至业务发展提供理想的IT基础支持。
H. 大数据时代的数据怎么挖掘
3月13日下午,南京邮电大学计算机学院、软件学院院长、教授李涛在CIO时代微讲座栏目作了题为《大数据时代的数据挖掘》的主题分享,深度诠释了大数据及大数据时代下的数据挖掘。
众所周知,大数据时代的大数据挖掘已成为各行各业的一大热点。
一、数据挖掘
在大数据时代,数据的产生和收集是基础,数据挖掘是关键,数据挖掘可以说是大数据最关键也是最基本的工作。通常而言,数据挖掘也称为DataMining,或知识发现Knowledge Discovery from Data,泛指从大量数据中挖掘出隐含的、先前未知但潜在的有用信息和模式的一个工程化和系统化的过程。
不同的学者对数据挖掘有着不同的理解,但个人认为,数据挖掘的特性主要有以下四个方面:
1.应用性(A Combination of Theory and Application):数据挖掘是理论算法和应用实践的完美结合。数据挖掘源于实际生产生活中应用的需求,挖掘的数据来自于具体应用,同时通过数据挖掘发现的知识又要运用到实践中去,辅助实际决策。所以,数据挖掘来自于应用实践,同时也服务于应用实践,数据是根本,数据挖掘应以数据为导向,其中涉及到算法的设计与开发都需考虑到实际应用的需求,对问题进行抽象和泛化,将好的算法应用于实际中,并在实际中得到检验。
2.工程性(An Engineering Process):数据挖掘是一个由多个步骤组成的工程化过程。数据挖掘的应用特性决定了数据挖掘不仅仅是算法分析和应用,而是一个包含数据准备和管理、数据预处理和转换、挖掘算法开发和应用、结果展示和验证以及知识积累和使用的完整过程。而且在实际应用中,典型的数据挖掘过程还是一个交互和循环的过程。
3.集合性(A Collection of Functionalities):数据挖掘是多种功能的集合。常用的数据挖掘功能包括数据探索分析、关联规则挖掘、时间序列模式挖掘、分类预测、聚类分析、异常检测、数据可视化和链接分析等。一个具体的应用案例往往涉及多个不同的功能。不同的功能通常有不同的理论和技术基础,而且每一个功能都有不同的算法支撑。
4.交叉性(An Interdisciplinary Field):数据挖掘是一门交叉学科,它利用了来自统计分析、模式识别、机器学习、人工智能、信息检索、数据库等诸多不同领域的研究成果和学术思想。同时一些其他领域如随机算法、信息论、可视化、分布式计算和最优化也对数据挖掘的发展起到重要的作用。数据挖掘与这些相关领域的区别可以由前面提到的数据挖掘的3个特性来总结,最重要的是它更侧重于应用。
综上所述,应用性是数据挖掘的一个重要特性,是其区别于其他学科的关键,同时,其应用特性与其他特性相辅相成,这些特性在一定程度上决定了数据挖掘的研究与发展,同时,也为如何学习和掌握数据挖掘提出了指导性意见。如从研究发展来看,实际应用的需求是数据挖掘领域很多方法提出和发展的根源。从最开始的顾客交易数据分析(market basket analysis)、多媒体数据挖掘(multimedia data mining)、隐私保护数据挖掘(privacy-preserving data mining)到文本数据挖掘(text mining)和Web挖掘(Web mining),再到社交媒体挖掘(social media mining)都是由应用推动的。工程性和集合性决定了数据挖掘研究内容和方向的广泛性。其中,工程性使得整个研究过程里的不同步骤都属于数据挖掘的研究范畴。而集合性使得数据挖掘有多种不同的功能,而如何将多种功能联系和结合起来,从一定程度上影响了数据挖掘研究方法的发展。比如,20世纪90年代中期,数据挖掘的研究主要集中在关联规则和时间序列模式的挖掘。到20世纪90年代末,研究人员开始研究基于关联规则和时间序列模式的分类算法(如classification based on association),将两种不同的数据挖掘功能有机地结合起来。21世纪初,一个研究的热点是半监督学习(semi-supervised learning)和半监督聚类(semi-supervised clustering),也是将分类和聚类这两种功能有机结合起来。近年来的一些其他研究方向如子空间聚类(subspace clustering)(特征抽取和聚类的结合)和图分类(graph classification)(图挖掘和分类的结合)也是将多种功能联系和结合在一起。最后,交叉性导致了研究思路和方法设计的多样化。
前面提到的是数据挖掘的特性对研究发展及研究方法的影响,另外,数据挖掘的这些特性对如何学习和掌握数据挖掘提出了指导性的意见,对培养研究生、本科生均有一些指导意见,如应用性在指导数据挖掘时,应熟悉应用的业务和需求,需求才是数据挖掘的目的,业务和算法、技术的紧密结合非常重要,了解业务、把握需求才能有针对性地对数据进行分析,挖掘其价值。因此,在实际应用中需要的是一种既懂业务,又懂数据挖掘算法的人才。工程性决定了要掌握数据挖掘需有一定的工程能力,一个好的数据额挖掘人员首先是一名工程师,有很强大的处理大规模数据和开发原型系统的能力,这相当于在培养数据挖掘工程师时,对数据的处理能力和编程能力很重要。集合性使得在具体应用数据挖掘时,要做好底层不同功能和多种算法积累。交叉性决定了在学习数据挖掘时要主动了解和学习相关领域的思想和技术。
因此,这些特性均是数据挖掘的特点,通过这四个特性可总结和学习数据挖掘。
二、大数据的特征
大数据(bigdata)一词经常被用以描述和指代信息爆炸时代产生的海量信息。研究大数据的意义在于发现和理解信息内容及信息与信息之间的联系。研究大数据首先要理清和了解大数据的特点及基本概念,进而理解和认识大数据。
研究大数据首先要理解大数据的特征和基本概念。业界普遍认为,大数据具有标准的“4V”特征:
1.Volume(大量):数据体量巨大,从TB级别跃升到PB级别。
2.Variety(多样):数据类型繁多,如网络日志、视频、图片、地理位置信息等。
3.Velocity(高速):处理速度快,实时分析,这也是和传统的数据挖掘技术有着本质的不同。
4.Value(价值):价值密度低,蕴含有效价值高,合理利用低密度价值的数据并对其进行正确、准确的分析,将会带来巨大的商业和社会价值。
上述“4V”特点描述了大数据与以往部分抽样的“小数据”的主要区别。然而,实践是大数据的最终价值体现的唯一途径。从实际应用和大数据处理的复杂性看,大数据还具有如下新的“4V”特点:
5.Variability(变化):在不同的场景、不同的研究目标下数据的结构和意义可能会发生变化,因此,在实际研究中要考虑具体的上下文场景(Context)。
6.Veracity(真实性):获取真实、可靠的数据是保证分析结果准确、有效的前提。只有真实而准确的数据才能获取真正有意义的结果。
7.Volatility(波动性)/Variance(差异):由于数据本身含有噪音及分析流程的不规范性,导致采用不同的算法或不同分析过程与手段会得到不稳定的分析结果。
8.Visualization(可视化):在大数据环境下,通过数据可视化可以更加直观地阐释数据的意义,帮助理解数据,解释结果。
综上所述,以上“8V”特征在大数据分析与数据挖掘中具有很强的指导意义。
三、大数据时代下的数据挖掘
在大数据时代,数据挖掘需考虑以下四个问题:
大数据挖掘的核心和本质是应用、算法、数据和平台4个要素的有机结合。
因为数据挖掘是应用驱动的,来源于实践,海量数据产生于应用之中。需用具体的应用数据作为驱动,以算法、工具和平台作为支撑,最终将发现的知识和信息应用到实践中去,从而提供量化的、合理的、可行的、且能产生巨大价值的信息。
挖掘大数据中隐含的有用信息需设计和开发相应的数据挖掘和学习算法。算法的设计和开发需以具体的应用数据作为驱动,同时在实际问题中得到应用和验证,而算法的实现和应用需要高效的处理平台,这个处理平台可以解决波动性问题。高效的处理平台需要有效分析海量数据,及时对多元数据进行集成,同时有力支持数据化对算法及数据可视化的执行,并对数据分析的流程进行规范。
总之,应用、算法、数据、平台这四个方面相结合的思想,是对大数据时代的数据挖掘理解与认识的综合提炼,体现了大数据时代数据挖掘的本质与核心。这四个方面也是对相应研究方面的集成和架构,这四个架构具体从以下四个层面展开:
应用层(Application):关心的是数据的收集与算法验证,关键问题是理解与应用相关的语义和领域知识。
数据层(Data):数据的管理、存储、访问与安全,关心的是如何进行高效的数据使用。
算法层(Algorithm):主要是数据挖掘、机器学习、近似算法等算法的设计与实现。
平台层(Infrastructure):数据的访问和计算,计算平台处理分布式大规模的数据。
综上所述,数据挖掘的算法分为多个层次,在不同的层面有不同的研究内容,可以看到目前在做数据挖掘时的主要研究方向,如利用数据融合技术预处理稀疏、异构、不确定、不完整以及多来源数据;挖掘复杂动态变化的数据;测试通过局部学习和模型融合所得到的全局知识,并反馈相关信息给预处理阶段;对数据并行分布化,达到有效使用的目的。
四、大数据挖掘系统的开发
1.背景目标
大数据时代的来临使得数据的规模和复杂性都出现爆炸式的增长,促使不同应用领域的数据分析人员利用数据挖掘技术对数据进行分析。在应用领域中,如医疗保健、高端制造、金融等,一个典型的数据挖掘任务往往需要复杂的子任务配置,整合多种不同类型的挖掘算法以及在分布式计算环境中高效运行。因此,在大数据时代进行数据挖掘应用的一个当务之急是要开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
之前提到一个数据挖掘有多种任务、多种功能及不同的挖掘算法,同时,需要一个高效的平台。因此,大数据时代的数据挖掘和应用的当务之急,便是开发和建立计算平台和工具,支持应用领域的数据分析人员能够有效地执行数据分析任务。
2.相关产品
现有的数据挖掘工具
有Weka、SPSS和SQLServer,它们提供了友好的界面,方便用户进行分析,然而这些工具并不适合进行大规模的数据分析,同时,在使用这些工具时用户很难添加新的算法程序。
流行的数据挖掘算法库
如Mahout、MLC++和MILK,这些算法库提供了大量的数据挖掘算法。但这些算法库需要有高级编程技能才能进行任务配置和算法集成。
最近出现的一些集成的数据挖掘产品
如Radoop和BC-PDM,它们提供友好的用户界面来快速配置数据挖掘任务。但这些产品是基于Hadoop框架的,对非Hadoop算法程序的支持非常有限。没有明确地解决在多用户和多任务情况下的资源分配。
3.FIU-Miner
为解决现有工具和产品在大数据挖掘中的局限性,我们团队开发了一个新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一个用户友好并支持在分布式环境中进行高效率计算和快速集成的数据挖掘系统。与现有数据挖掘平台相比,FIU-Miner提供了一组新的功能,能够帮助数据分析人员方便并有效地开展各项复杂的数据挖掘任务。
与传统的数据挖掘平台相比,它提供了一些新的功能,主要有以下几个方面:
A.用户友好、人性化、快速的数据挖掘任务配置。基于“软件即服务”这一模式,FIU-Miner隐藏了与数据分析任务无关的低端细节。通过FIU-Miner提供的人性化用户界面,用户可以通过将现有算法直接组装成工作流,轻松完成一个复杂数据挖掘问题的任务配置,而不需要编写任何代码。
B.灵活的多语言程序集成。允许用户将目前最先进的数据挖掘算法直接导入系统算法库中,以此对分析工具集合进行扩充和管理。同时,由于FIU-Miner能够正确地将任务分配到有合适运行环境的计算节点上,所以对这些导入的算法没有实现语言的限制。
C.异构环境中有效的资源管理。FIU-Miner支持在异构的计算环境中(包括图形工作站、单个计算机、和服务器等)运行数据挖掘任务。FIU-Miner综合考虑各种因素(包括算法实现、服务器负载平衡和数据位置)来优化计算资源的利用率。
D.有效的程序调度和执行。
应用架构上包括用户界面层、任务和系统管理层、逻辑资源层、异构的物理资源层。这种分层架构充分考虑了海量数据的分布式存储、不同数据挖掘算法的集成、多重任务的配置及系统用户的交付功能。一个典型的数据挖掘任务在应用之中需要复杂的主任务配置,整合多种不同类型的挖掘算法。因此,开发和建立这样的计算平台和工具,支持应用领域的数据分析人员进行有效的分析是大数据挖掘中的一个重要任务。
FIU-Miner系统用在了不同方面:如高端制造业、仓库智能管理、空间数据处理等,TerraFly GeoCloud是建立在TerraFly系统之上的、支持多种在线空间数据分析的一个平台。提供了一种类SQL语句的空间数据查询与挖掘语言MapQL。它不但支持类SQL语句,更重要的是可根据用户的不同要求,进行空间数据挖掘,渲染和画图查询得到空间数据。通过构建空间数据分析的工作流来优化分析流程,提高分析效率。
制造业是指大规模地把原材料加工成成品的工业生产过程。高端制造业是指制造业中新出现的具有高技术含量、高附加值、强竞争力的产业。典型的高端制造业包括电子半导体生产、精密仪器制造、生物制药等。这些制造领域往往涉及严密的工程设计、复杂的装配生产线、大量的控制加工设备与工艺参数、精确的过程控制和材料的严格规范。产量和品质极大地依赖流程管控和优化决策。因此,制造企业不遗余力地采用各种措施优化生产流程、调优控制参数、提高产品品质和产量,从而提高企业的竞争力。
在空间数据处理方面,TerraFly GeoCloud对多种在线空间数据分析。对传统数据分析而言,其难点在于MapQL语句比较难写,任务之间的关系比较复杂,顺序执行之间空间数据分许效率较低。而FIU-Miner可有效解决以上三个难点。
总结而言,大数据的复杂特征对数据挖掘在理论和算法研究方面提出了新的要求和挑战。大数据是现象,核心是挖掘数据中蕴含的潜在信息,并使它们发挥价值。数据挖掘是理论技术和实际应用的完美结合。数据挖掘是理论和实践相结合的一个例子。
I. 大数据挖掘需要学习哪些技术大数据的工作
首先
我由各种编程语言的背景——matlab,R,java,C/C++,python,网络编程等
我又一定的数学基础——高数,线代,概率论,统计学等
我又一定的算法基础——经典算法,神经网络,部分预测算法,群智能算法等
但这些目前来讲都不那么重要,但慢慢要用到
Step 1:大数据理论,方法和技术
大数据理论——啥都不说,人家问你什么是大数据时,你能够讲到别人知道什么是大数据
大数据方法——然后别人问你,那怎么实现呢?嗯,继续讲:说的是方法(就好像归并排序算法:分,并)。到目前外行人理解无障碍
大数据技术——多嘴的人继续问:用的技术。
这阶段只是基础,不涉及任何技术细节,慢慢看慢慢总结,积累对“大数据”这个词的理解。
Step 2:大数据思维
Bang~这是继Step 1量变发展而来的质变:学了那么久“大数据”,把你扔到制造业,你怎么办?
我想,这就是“学泛”的作用吧,并不是学到什么具体东西,而是学到了对待事物的思维。
----------------------------------------------------------------------
以下阶段我还没开始=_=,不好误导大家
Step 3:大数据技术基础
Step 4:大数据技术进阶
Step 5:打实战
Step 6:大融合