Ⅰ 国内有哪些公司能提供大数据服务
国内的大数据公司我知道的有阿里云,海致BDP,浪潮等,每个公司可能侧重点不一样。
Ⅱ 西安美林数据怎么样
我是今年刚来美林的,公司给的薪资和谈的薪资是一样的,试用期比80%稍微多一点,表现好的还能申请提前转正,我当时提前了1个月左右转正的,加班情况也还行,听部门其他同事说年底也是有奖金的,涨薪也是每年都有机会,也没有乱扣工资啥的
Ⅲ 大数据服务商有哪些
1. 数位大抄数据,拥有国袭内最大的线下动态数据数据库, 蚂蚁投资的,主要给运营商、零售、地产、移动互联网企业提供运营商网络优化、地产前策研判、零售经营分析、APP精准营销等大数据服务。
2. 神策数据,大数据用户行为分析产品,提供9大数据分析模型,提供在线数据分析Demo。
3. 极客数据,弹马多媒体数据分析平台集成了语音识别、图像识别等自动识别技术,进行数据识别、分析,最终形成数据报告。
Ⅳ 成都有哪些做大数据物联网比较好的公司
大数据物联网对于工业发展很重要,整理的成都大数据物联网公司,希望对你有所帮助:
卫士通
卫士通信息产业股份有限公司,国内知名密码产品、网络安全产品、互联网安全运营、行业安全解决方案综合提供商,首批商密产品研发、生产、销售资质单位,首批涉密信息系统集成甲级资质单位,国内专业从事网络信息安全的上市公司,专注网络信息安全,致力打造从芯片到系统的全生命周期安全解决方案,为党政军用户、企业级用户和消费者提供专业自主的网络信息安全解决方案、产品和服务。
排名不分先后!
Ⅳ 国内做大数据的公司有哪些
1、上海市大数据股份有限公司(简称“上海大数据股份”),是经上海市人民政府批准成立的国有控股混合所有制企业。
致力于成为智慧城市建设的主力军、国内大数据应用领域的领军企业和全球领先的公共大数据管理和价值挖掘解决方案提供商,满足政府对公共数据治理和提升城市管理及公共服务水平的要求,构建公共大数据与商业数据服务、以及政企数据融合的桥梁,促进社会经济发展。
2、辉略(上海)大数据科技有限公司,目前在中国交通(城市智能信号灯优化模型与平台,交通预算决策系统模型等)、环境(PM2.5污染检测和治理)、医疗(医院WIFI定位模型,病历匹配模型等)、汽车(用户购买转化率模型)等领域进行大数据项目运营与模型开发。
3、成都市大数据股份有限公司成立于2013年,作为成都市实施国家大数据发展战略的载体,2018年完成股份制改革并挂牌新三板,成都产业集团全资持股,主要涉及数据运营、投资并购、信息技术三大业务方向。
(5)大数据技术提供商扩展阅读:
大数据发展的一些趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
Ⅵ 成都做大数据的公司有哪些做的好的有哪几家
作者:小维斗
链接:https://www.hu.com/question/27933628/answer/96310427
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
关于成都做大数据的公司这几天小编特意整理出来了一份明细表,仅个人分享发表一下:
1、成都神鸟数据咨询有限公司 网址:
成都市场调研公司
成都神鸟数据咨询有限公司主营业务包括公共事务研究、商业研究、媒介研究和数据库建设及流程信息化建设,客户涵盖政府部门、公用事业单位、国内外知名企业,积累多行业研究经验,使神鸟数据的研究团队具备良好的跨行业、跨区域、跨专业的多元化视角和思维。
“神鸟数据”接受各企事业、政府机构和非政府机构的委托,独立完成市场调查、民意测验、政策性调查等各类定量与定性研究课题。多年的发展经验使本公司更了解客户的需求,从而为客户提供更有针对性的服务,“神鸟数据”研究领域涉及食品/饮料、公共事务、房地产、汽车、家电、IT、金融保险、媒体、商业服务、等多个行业,其中房地产、汽车、媒体、金融保险、快速消费品、公共事务是公司目前重点的研究领域。
2、成都探码科技有限公司
首页 | 探码科技
成都探码科技有限公司(简称探码科技)于2015年9月成立,公司总部位于成都,并在美国设立分公司服务海外客户。由清华海归创业团队组建,具有10多年国内外项目研发积累,擅长美国互联网前沿技术,崇尚硅谷创业模式,自主研发有核心技术。 是国内比较早的ROR开发团队,并在网络数据采集,大数据解析方面具有突出的能力。将在国内推出一系列面向政务、企业的创新型大数据研究项目与合作,为各大企业提供高端信息技术咨询服务。
2015年与北京大数据研究院成为战略合作伙伴专研大数据服务。
2016年开发DB智能数据服务平台,一款基于Hadoop开源计算框架,集成了Apache社区几十个成熟的Hadoop子项目,整合了数据ETL和流程管理功能模块,融合了十几个可直接调用的应用模版而最终形成的面对大数据进行存储、计算、查询、挖掘四大应用方向的基础平台产品
3、数联铭品
成都数联铭品科技有限公司
数联铭品是行业领先的大数据解决方案提供商,商业大数据行业标准COSR数据服务框架的制定者。公司总部位于成都,在北京、贵州、深圳设有子公司,同时在新加坡设立了子公司服务海外客户。已经为金融行业、传媒行业、旅游行业、制造业和体育产业提供了具有产业化和产品化能力的领先大数据整体解决方案。
4、成都数之联科技有限公司
成都数之联科技集团
成都数之联科技有限公司成立于2012年,公司致力于帮助政府和企业设计大数据顶层规划,为客户提供数据采集、存储、治理、分析、挖掘、应用和可视化等大数据全产业链综合服务。数之联业务覆盖多个行业,参控股成都数联寻英科技有限公司、成都数联易康科技有限公司、国信优易数据有限公司,提供人力资源、医疗健康、数据交易等多个行业的大数据垂直解决方案,先后服务了包括阿里巴巴、腾讯、中国联通、中国工商银行、中国银联、海尔、五粮液集团、三泰控股、置信集团等近百家知名企业。
5、成都崇信大数据服务有限公司 暂无网站
成都崇信大数据服务有限公司(简称:崇信公司)是专注于大数据建设的国有独资企业,成立于2006年,是四川省首家国资大数据公司。崇信公司专注于数据处理和存储服务,信息系统集成服务,信息技术咨询服务集成电路设计,数字内容服务,信息化基础设施建设,计算机网络系统工程服务,软件开发,非金融性项目投资,资产管理。
6、成都勤智数码科技股份有限公司
数据说-大数据全网整合营销平台
以“大数据技术”为基础,从社交网站和电商平台等渠道收集海量数据,结合企业已有数据,从产品、品牌、客户、营销四个维度,完成相应的数据清洗、提取、整合,并进行科学、准确的数据分析。
Ⅶ 大数据供应商
大数据供应商
大数据供应商,事实表明,越来越多的企业采用数据分析来应对供应链中断,并加强供应链管理(SCM),目前有几项重大中断正在影响供应链。以下分享大数据供应商,一起来看看。
全球大数据市场的主要供应商包括微软(美国)、Teradata(美国)、IBM(美国)、甲骨文(美国)、SAS Institute(美国)、谷歌(美国)、Adobe(美国)、Talend(美国)、Qlik(美国)、TIBCO Software(美国)、Alteryx(美国)、Sisense(美国)、Informatica(美国)、Cloudera(美国)、Splunk(美国)、Palantir Technologies(美国)
1010data(美国)、Hitachi Vantara(美国)、Fusionex(马来西亚)、Information Builders(美国)、AWS(美国)、SAP(德国)、Salesforce(美国)、Micro Focus(英国)、HPE(美国)、MicroStrategy(美国)、ThoughtSpot(美国)、和黄鳍金枪鱼(澳大利亚)。
这些供应商采取了各种有机和无机增长策略,例如新产品发布、合作伙伴关系和合作以及并购,以扩大其在全球大数据市场的影响力。
AWS(美国)以 Web 服务的形式提供云计算服务。该公司为遍布 190 个国家/地区的客户提供广泛的产品和服务。亚马逊的产品组合包括计算、存储、数据库、迁移、网络和内容交付、开发人员工具、管理工具、媒体服务、机器学习 和分析等部分。此外,解决方案部门提供网站和网络应用程序、移动服务、备份、存储和存档、金融服务和数字媒体。
它迎合了各种垂直行业,例如媒体和娱乐、汽车、教育、BFSI、游戏技术、政府、医疗保健和生命科学、制造、零售、电信、石油和天然气以及电力公用事业。在大数据市场,其产品包括 Amazon QuickSight、Amazon S3、Amazon Glacier、AWS Glue
全面解析大数据给供应链带来的益处
时下,大数据已经完全跨越概念炒作,而成为很多行业业务发展中实实在在应用的重要武器,但是在供应链管理领域,大数据技术的应用产业发展则处于起步阶段,但是相信伴随其他行业大数据的快速发展,供应链管理中的大数据也会迅速跟上来,那么人们势必会问大数据到底能够为供应链带来哪些益处呢,下面请随乾元坤和我一同了解大数据给供应链带来的好处。
大数据与供应链
1、库存优化。比如,SAS独有的功能强大的库存优化模型可以实现在保持很高的客户满意度基础上,把供应成本降到最低并提高供应链的反应速度。
其库存成本第一年就可下降15%~30%,预测未来的准确性则会上升20%,由此带来的是其整体营收会上升7%~10%。当然还有一些其他的潜在好处,如提升市场份额等。此外,运用SAS系统,产品质量会得到显著提升,次品率也会因此减少10%~20%。
2、创造经营效益,从供应链渠道,以及生产现场的仪器或传感器网络收集了大量数据。利用大数据对这些数据库进行更紧密的整合与分析,可以帮助改善库存管理、销售与分销流程的效率,以及对设备的连续监控。制造业要想发展,企业必须了解大数据可以产生的成本效益。对设备进行预测性维护,现在就具备采用大数据技术的条件。制造业将是大数据营业收入的主要来源。
3、B2B电商供应链整合。强大的电商将引领上游下游生产计划-下游销售对接,这种对接趋势是上游制造业外包供应链管理Supply-Chain,只专注于生产Manufacturing,ProctionChain(R&D)。
物流外包上升到供应链外包是一个巨大的飞跃,体现了电商的强大竞争力和整合能力,海量数据支持和跨平台、跨公司的对接成为可能。B-B供应链整合具有强大的市场空间,能够改善我国产业布局、产业链优化、优化产能分配、降低库存、降低供应链成本、提高供应链效率。
4、物流平台规模发展,B-C商业模式整合已经成为现实,但是物流执行平台的建设是拖后腿的瓶颈。多样产品的销售供应链的整合有很大的技术难题,如供货周期、库存周期、配送时效、物流操作要求等,这样的物流中心难度很大。
大数据平台建设将驱动整体销售供应链整合;中国的还有的现实问题跨区域物流配送、城乡差异等,政府的管制是一大难点/疑难杂症,大数据平台有助于政府职能调整到位。
5、产品协同设计,过去大家最关心的是产品设计。可是现在,在产品设计和开发过程中,相关人员相互协同,工厂与制造能力也在同步设计和开发中。当前的压力在于向市场交付更具竞争力、更高配置、更低价格、更高质量的.产品,而同时满足所有这些要求,是制造和工程企业的下一个重大的价值所在。这也正是大数据的用武之地。
企业如何部署大数据?
要让数据发挥价值,首先要处理大数据,要能够共享、集成、存储和搜索来自众多源头的庞大数据。而就供应链而言,这意味着要能够接受来自第三方系统的数据,并加快反馈速度。
其整体影响是增强协同性、加快决策制定和提高透明度,这对所有相关人员都有帮助。传统供应链已经在使用大量的结构化数据,企业部署了先进的供应链管理系统,将资源数据,交易数据,供应商数据,质量数据等等存储起来用于跟踪供应链执行效率,成本,控制产品质量。
大数据给供应链带来的好处
而当前大数据的概念则超出了传统数据产生、获取、转换、应用分析和存储的概念,出现非结构化数据,数据内容也出现多样化,大数据部署将面临新的挑战。
针对如今所生成、传输和存储的海量信息进行简单处理所带来的挑战。当前,数据量呈爆炸式增长,而随着M2M(机器对机器的通讯)的应用,此趋势仍将持续下去。
但是,如若能够解决这些挑战,将可以打开崭新的局面?核心在两个方面:
1、解决数据的生成问题,即如何利用物联网技术M2M获取实时过程数据,虚拟化供应链的流程。通过挖掘这些新数据集的潜力,并结合来源广泛的信息,就可能获得全新的洞见。如此,企业可以开发全新的流程,并与产品全生命周期的各个方面直接关联。与之集成的还有报告和分析功能,为流程提供反馈,从而创建一个良性的强化循环。
2、解决数据应用的问题,如何让供应链各个价值转换过程产生的数据发生商业价值,是发挥数据部署的革命性生产力的根本。大数据在供应链的应用已经不是简单的交易状态可视,支撑决策库存水平,传统ERP结构是无法承担的。因此企业必须重新做好数据应用的顶层设计,建立强大全面的大数据应用分析模型,才能应对复杂海量的数据如何发挥价值的挑战。
大数据在供应链领域的应用刚刚起步,随着供应链的迅速发展,大数据分析,数据管理,大数据应用,大数据存储在供应链领域蕴含巨大的发展潜力,大数据的投资也只有与供应链结合,才能产生可持续、规模化发展的产业
供应链案例分析的方法
一、供应链案例的类型
供应链案例可以是从原材料供应一直到最终产品送到最终用户手中的整个供应链的案例,也可以是只涉及供应链一个环节或只关注于单一的物流活动的案例。无论哪一种案例,在分析时都应该从供应链整体的角度进行,要考虑单一环节的变化对供应链中其他环节产生的影响。
二、供应链案例分析的目标
提高客户服务水平和降低总的运作成本是供应链管理的两大目标,在案例分析时,必须牢记这两大目标。
三、供应链案例分析的方法
供应链案例分析可分为这样几步进行:
第一,分析供应链现状。
首先分析供应链的结构,在分析时可绘制一个从原材料或零配件供应的起点开始,通过生产制造环节和分销配送环节,直到最终用户手中的货物流动示意图,示意图目的是为了描述供应链中各固定节点(如工厂、仓库)的结构和货物在这些节点之间的流动模式。即货物流。
然后分析支撑货物移动的信息流和信息系统,包括订单信息处理、需求预测信息、管理信息和计算机系统。其次对现行的供应链绩效进行分析,这对改进措施的提出是非常有效的,绩效分析可包括供应链的总体绩效、供应链的相对绩效和单项物流功能的绩效。
第二,在现状分析的基础上找出问题。
这常常是案例分析最困难的也是最重要的一步。因为如果无法正确地鉴别出主要问题,也就无法作出正确的选择。在分析时要注意症状与原因的区分,通常在分析时症状是比较容易明确的。
例如,经理可能认为仓储能力短缺是一个问题,实际上,这可能仅仅是一个症状,造成的原因可能是库存管理不良或生产安排不合理而使得库存的大大超过了实际需求。因此在分析时,必须找到真正造成问题的原因。
第三,设想并提出解决问题方案
解决方案的提出是和现状分析紧密联系在一起的,一个好的现状分析能够对主要问题进行清晰的确定,从而指出正确的解决问题或行动路线。提出解决问题方案时通常可从三个层面上考虑:具体功能部门层面;公司层面,在公司内实行跨部门的改革;供应链层面,同一供应链上的公司间相互配合上进行改革。
最后对提出的方案应当做全面的说明。
以上是对分析供应链问题提供一个思考分析的框架,这不是一个应用于所有供应链问题的万能方法,而是列出了在分析问题时可考虑的因素,案例分析时应根据实际问题确定相关的研究因素。