『壹』 大数据发展主要分为几个阶段
六个:阶段1 技术试验阶段、阶段2 自动化阶段、阶段3 投入生产阶段、阶段4 数据管理阶段、阶段5 重视安全性阶段、阶段6 云基础架构的大数据阶段
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长枝手60%。大数据就是互联网发展到现今阶段的一埋搭正种表象或特征而已,没有必要神话它或对它保持敬畏之心。
『贰』 内部审计中的大数据分析程序包括哪些阶段
内部审计中的大数据分析程序包括数据的线上化、数据的可采集以及数据可用的阶段。
1、数据线上化:大数据审计最重要的基础就是数据的线上化,可以说如果数据没有线上化就无法通过计算机做大量、全量的数据分析,就更不要提大数据审计。
2、数据可采集:只有数据线上化是不够的,不同系统后台数据的形式是各不相同的,而且不能在系统后台中直接做数据分析,而是需要将系统后台的数据采集到本机,转化成我们需要的格式(通常为XLS或CSV格式)进行分析。
3、数据可用:有些系统由于未做输入限制或输入校验,导致在数据的采集过程中会得到一些无效数据(如借方金额的字段中包合字母、符号、空值等对分析造成影响的数据)。
大数据规则分析
通过规则模型的应用,可实时将系统中符合模型设定条件的数据提取出来,及时传递给审计人员,以审查核实异常。在审计项目中,针对有的数据,使用数据分析的方法找出异常数据,进而确认问题的一种方法。
与传统的抽样审计方法相比,大数据审计通常使用的是全量分析的方式,更加关注数据之间的整体性与关联性,而不局限于某个个体的单独特性。
『叁』 数据分析五大步骤
(一)问题识别
大数据分析的第一步是要清晰界定需要回答的问题。对问题的界定有两个标准,一是清晰、二是符合现实。
(二)数据可行性论证
论证现有数据是否足够丰富、准确,以致可以为问题提供答案,是大数据分析的第二步,项目是否可行取决于这步的结论。
(三)数据准备
数据准备环节需要梳理分析所需每个条目的数据,为下一步建立模型做好从充分预备。这种准备可以分为数据的采集准备和清洗整理准备两步。
(四)建立模型
大数据分析项目需要建立的模型可以分为两类。对于这两类模型,团队都需要在设立模型、论证模型的可靠性方面下功夫。
(五)评估结果
评估结果阶段是要评估上述步骤得到的结果是否足够严谨可靠,并确保数据分析结果能够有利于决策。评估结果包括定量评估和定性评估两部分。
大数据的应用
大数据可应用于各行各业,将人们收集到的庞大数据进行分析整理,实现资讯的有效利用。举个本专业的例子,比如在奶牛基因层面寻找与产奶量相关的主效基因,我们可以首先对奶牛全基因组进行扫描,尽管我们获得了所有表型信息和基因信息,但是由于数据量庞大,这就需要采用大数据技术,进行分析比对,挖掘主效基因。
大数据的意义和前景
总的来说,大数据是对大量、动态、能持续的数据,通过运用新系统、新工具、新模型的挖掘,从而获得具有洞察力和新价值的东西。以前,面对庞大的数据,我们可能会一叶障目、可见一斑,因此不能了解到事物的真正本质,从而在科学工作中得到错误的推断,而大数据时代的来临,一切真相将会展现在我么面前。
大数据发展战略
传统的数据方法,不管是传统的 OLAP技术还是数据挖掘技术,都难以应付大数据的挑战。首先是执行效率低。传统数据挖掘技术都是基于集中式的底层软件架构开发,难以并行化,因而在处理 TB级以上数据的效率低。其次是数据分析精度难以随着数据量提升而得到改进,特别是难以应对非结构化数据。
在人类全部数字化数据中,仅有非常小的一部分(约占总数据量的1%)数值型数据得到了深入分析和挖掘(如回归、分类、聚类),大型互联网企业对网页索引、社交数据等半结构化数据进行了浅层分析(如排序),占总量近60%的语音、图片、视频等非结构化数据还难以进行有效的分析
卤鹅
『肆』 大数据生命周期的多个阶段分析
大数据生命周期的多个阶段分析
如今,各个企业对于大数据的应用都甚为积极,但企业在建立大数据的生命周期时应注意,其中包括了这些部分:大数据组织、评估现状、制定大数据战略、数据定义、数据收集、数据分析、数据治理、持续改进这几方面,下面就来详细了解下。
大数据的现状评估和差距分析
在定战略之前,先要做必要的现状评估,评估前的调研包括三个方面:一是对外调研:了解业界大数据有哪些最新的发展,行业顶尖企业的大数据应用水平如何?行业的平均尤其是主要竞争对手的大数据应用水准如何?二是对内客户调研。管理层、业务部门、IT部门自身、我们的最终用户,对我们的大数据业务有何期望?三是自身状况摸底,了解自己的技术、人员储备情况。最后对标,作差距分析,找出gap。找出gap后,要给出成熟度现状评估。一个公司的大数据应用成熟度可以划分为四个阶段:初始期;探索期;发展期;成熟期。
大数据的发展战略
有了大数据组织、知道了本公司大数据现状、差距和需求,企业就可以制定大数据的战略目标了。大数据战略的制定是整个大数据生命周期的灵魂和核心,它将成为整个组织大数据发展的指引。大数据战略的内容,没有统一的模板,但有一些基本的要求:
要现实,这个目标经过努力是能达成的。
要简洁,又要能涵盖公司内外干系人的需求。
要明确,以便清晰地告诉所有人我们的目标和愿景是什么。
对于大数据的定义
如果不对大数据进行定义,你将无法采集到它,你没法采集它就不能分析它;而不能分析它,你就不能衡量它的价值,既然不能衡量它的价值,你也就无法真正的控制它;如果你不能很好的控制它,那么你就无法管理并且利用它。在需求和战略明确之后,数据定义就是一切数据管理的前提。
『伍』 大数据分析项目需要经历哪些阶段
发现(目标定义):把业务问题转化为分析目标,制定初始假设。
数据准备:准备好分析沙盘版,对分权析沙盘中的数据执行ETL或ELT,转化成使用和分析的格式,逐步治理数据
规划模型:了解数据之间的关系,确定模型的关键变量,和合适的分析模型
模型建立:创建测试数据集,学习数据集,和生产数据集。运行模型,修正参数,测试模型的可用性,和对运行环境的要求
沟通结果:评判是否达到第一阶段的目标,是否满足业主的要求,是否可以上线运行。
实施:在生产环境部署和实施一个试点项目,应用项目模型。
关于大数据分析项目需要经历哪些阶段的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
『陆』 大数据应用的三个阶段是什么
1、大数据应用的第一阶段:辅助产品
最初的应用比较简单,就是用以辅助产品人员和市场人员做判断。过去的实体产品做一次调研很麻烦。比如饮料公司,调研人员要用各种方式观看他们喝饮料的场景和步骤。
问卷是最常见的,但不准。所以会组织各种各样专业的现场试验,要搭建环境(一般是有单面玻璃或摄像头的)、邀请志愿者,然后引导他们按照日常的习惯去完成一些操作。
比如通过摄像头监视观察室。显然这种办法非常笨重。而现在的互联网产品则根本无须这么麻烦。用户所有的使用数据、行为,都是记录在案的,想知道什么,瞬间就能分析出来。
2、大数据应用的第二阶段:创造价值
在数据的数量和质量达到一定程度后,事情开始变化了。元数据将不仅作为产品的辅助,而是变成了最有价值的产生本身。很简单的,全中国最熟悉老百姓消费习惯的是工商局吗?是哪个协会吗?是哪个科研机构吗?都不是,是淘宝。
拥有最全面的个人信用信息的,是人事局吗?是银行吗?是咨询公司吗?都不是,是支付宝。道理也简单得很,所有行为(消费、交易)发生在了这个平台上,而这个平台又有所有数据的记录,那这些数据就能产生巨大的价值。
3. 大数据应用的第二阶段:创造价值
在数据的数量和质量达到一定程度后,事情开始变化了。元数据将不仅作为产品的辅助,而是变成了最有价值的产生本身。
春节的时候,支付宝为什么要和微信争抢小额支付和社交场景的支付?不是为了那点手续费,就是为了它缺失的社交支付这一块。这块数据的价值,远超想象。
未来我们每个人的衣食住行、生活起居,都将有大量的数据记录。我们的行为会变成一串串数字成为可量化的数据,成为描述我们的信息。我们工作用云笔记、吃饭用饿了么、打车用滴滴、搜东西用网络、社交用微信,每一步都事无巨细被记了下来。
关于大数据应用的三个阶段是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据应用的三个阶段是什么?的相关内容,更多信息可以关注环球青藤分享更多干货