㈠ 大数据可视化展现方式有哪些
一、面积&尺寸可视化
对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度版或面积加以区别权,来清晰的表达不同目标对应的目标值之间的比照。
这种办法会让阅读者对数据及其之间的比照一目了然。制作这类数据可视化图形时,要用数学公式核算,来表达准确的标准和份额。
二、颜色可视化
经过颜色的深浅来表达目标值的强弱和巨细,是数据可视化规划的常用办法,用户一眼看上去便可全体的看出哪一部分目标的数据值更突出。
三、图形可视化
在咱们规划目标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表愈加生动的被展示,更便于用户了解图表要表达的主题。
四、地域空间可视化
当目标数据要表达的主题跟地域有关联时,咱们一般会挑选用地图为大布景。
这样用户能够直观的了解全体的数据情况,同时也能够依据地理位置快速的定位到某一区域来查看详细数据。
五、概念可视化
经过将笼统的目标数据转换成咱们熟悉的简单感知的数据时,用户便更简单了解图形要表达的意义。
㈡ 如何实现大数据可视化
1.考虑用户
管理咨询公司Aspirent视觉分析实践主管Dan Gastineau表示,企业应使用颜色、形状、大小和布局来显示可视化的设计和使用。
Aspirent使用颜色来突出希望用户关注的分析方面。而大小可有效说明数量,但过多使用不同大小来传递信息可能会导致混乱。这里应该有选择地使用大小,即在咨询团队成员想要强调的地方。
2.讲述连贯的故事
与你的受众沟通,保持设计的简单和专注性。颜色到图表数量等细节可帮助确保仪表板讲述连贯的故事。MicroStrategy产品管理高级副总裁Saurabh
Abhyankar说:“仪表板就像一本书,它需要考虑读者的设计元素,而不仅仅是强制列出所有可访问的数据。”仪表板的设计将成为推动部署的因素。
3.迭代设计
应不断从视觉分析用户获得反馈意见。随着时间的推移,数据探索会引发新的想法和问题,而随时间和部署推移提高数据相关性会使用户更智能。
从你的受众征求并获取反馈意见可改善体验。谷歌云端数据工作室首席产品经理Nick
Mihailovski表示,快速构建概念、快速获取反馈意见并进行迭代可更快获得更好的结果。另外,还可将调查和表格整合到精美的报告中,也可以帮助确保大数据的可视化结果确实有助于目标受众。
4.个性化一切
应确保仪表板向最终用户显示个性化信息,并确保其相关性。并且,还应确保可视化在设计上反映其所在的设备,并为最终用户提供离线访问,这将让可视化走得更长远。Mihailovski说,通过精心设计的交互式可视化来吸引观众以及传播数据文化,这会使分析具有吸引力和富有乐趣。
5.从分析目标开始
应确保数据类型和分析目标可反映所选的可视化类型。Mihailovski称:“人们通常会采用相反的方法,他们先看到整洁或模糊的可视化类型,然后试图使其数据相匹配。”对于大数据项目的可视化,简单的表格或条形图有时可能是最有效的。
㈢ 如何布局提升大数据能力
业务篇
1.业务为核心,数据为王
· 了解整个产业链的结构
· 制定好业务的发展规划
· 了解衡量的核心指标
有了数据必须和业务结合才有效果。
需要懂业务的整体概况,摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。
2.思考指标现状,发现多维规律
· 熟悉产品框架,全面定义每个指标的运营现状对
· 比同行业指标,挖掘隐藏的提升空间
· 拆解关键指标,合理设置运营方法来观察效果
· 争对核心用户,单独进行产品用研与需求挖掘
业务的分析大多是定性的,需要培养一种客观的感觉意识。定性的分析则需要借助技术、工具、机器。而感觉的培养,由于每个人的思维、感知都不同,只能把控大体的方向,很多数据元素之间的关系还是需要通过数据可视化技术来实现。
3.规律验证,经验总结
发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。
技能篇
1.Excel是否精钻?
除了常用的Excel函数(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel图表(饼图、线图、柱形图、雷达图等)和简单分析技能也是经常用的,可以帮助你快速分析业务走势和异常情况;另外,Excel里面的函数结合透视表以及VBA功能是完善报表开发的利器,让你一键轻松搞定报表。
2.你需要更懂数据库
常用的数据库如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL语句的熟练使用,对于数据库的存储读取过程也要熟练掌握。在对于大数据量处理时,如何想办法加快程序的运行速度、减少网络流量、提高数据库的安全性是非常有必要的。
3.掌握数据整理、可视化和报表制作
数据整理,是将原始数据转换成方便实用的格式,实用工具有Excel、R、Python等工具。数据可视化,是创建和研究数据的视觉表现,方便业务方快速分析数据并定位具体问题,实用工具有Tableau、FineBI、Qlikview.
如果常用excel,那需要用PPT展示,这项技能也需要琢磨透。如果用tableau、FineBI之类的工具做数据可视化,FineBI有推送查看功能,也就是在企业上下建立一套系统,通过权限的分配让不同的人看到权限范围内的报表。
4.多学几项技能
大多数据分析师都是从计算机、数学、统计这些专业而来的,也就意味着数学知识是重要基础。尤其是统计学,更是数据分析师的基本功,从数据采集、抽样到具体分析时的验证探索和预测都要用到统计学。
现在社会心理学也逐渐囊括到数据分析师的能力体系中来了,尤其是从事互联网产品运营的同学,需要了解用户的行为动向,分析背后的动机。把握了整体方向后,数据分析的过程也就更容易。
㈣ 大数据时代,云展会如何做
2020年4月7日召开的国务院常务会议决定,第127届中国进出口商品交易会(简称“广交会”)将于6月中下旬在网上举办。这将是中国历史悠久的贸易盛会首次以网络形式举办,让中外客商足不出户下订单,做生意。我们以广交会打造的云展会为例介绍。
1.选主题。指在特定市场、行业内选定主题,定义本次展会目标、方向及核心价值。
2.聚资源。根据主题,通过传统展会模式聚集资源。
3.建平台、做活动,促交互。包括以下三部分内容:展示平台、严肃交互场景和自由交流场景。其中,云展会展示平台是指还原展会中企业形象展示、展品展示的功能模块,可参考B2B平台,可以结合视频、直播、VR等新技术。严肃交互场景是指展会中严肃正式的商业活动,比如开幕式、高峰论坛、行业研讨会等,这类活动一般是单向的,可通过直播方式进行。自由交流场景是指展会中人与人面对面的交流,比如客商交流、互动、小范围会议等,这类活动一般来说是双向或多向的,可通过即时通讯和会议工具实现。
【注意】
1.主题要精准。对于传统线下展会来说,一般都会设置几个大主题,但在云展会,选定主题时应该避免这样选题,首先不建议设置多个大主题,选定一个就好, 与此同时,选定的主题越专、精,效果越好。互联网有一个词—“跳出率”,是指在只访问了入口页面就离开的访问量与所产生总访问量的百分比。主题越精准,观众就越容易找到想看的东西,跳出率就越低,效果越好。
2.展期要限定。很多会展策划方案都在讲:原来是3天的展会,上线后就是365天了。这个说法没错,展示的确可以365天,但非展期一定没多少流量,效果非常有限。展会有一条核心逻辑是某段时间内聚集了海量资源,如果去掉时间限制,资源就会从时间维度分散,也就谈不上聚集资源了。不过,展商的企业展现和产品展示变成线上365天后,打破了线下展会的时间边界,达成有效补充。同样,“云展会”平台中的供需信息也是365天展示的,能长期服务于展会参与者及上下游产业链,这也符合互联网的长尾理论。
㈤ 企业想要成功布局大数据的七大关键步骤
企业想要成功布局大数据的七大关键步骤
在这个大数据已经成为市场一个美味的“大蛋糕”的今日,大多数企业都很想要分得一块。大多数企业正做好了布局大数据的准备,那么,该怎么做才能成功去布局?
最近,电子科技大学教授,云基地大数据实验室合伙人周涛在接受采访时提出,对于普通企业要通过修炼成为大数据企业,关键要做好7个步骤:
1.要实现数据化。企业要为此做好计划,到底需要保存什么样的数据,以人为中心的数据还是以产品为中心,还是更关注企业运营,需要做好这样的计划,然后再将企业生产经营中的数据保存下来,即便是现在看来没什么用的数据,未来也可能产生巨大的价值。比如说像售楼处、体验店客户的来访数据,就有必要完整的记录下来。包括怎么过来的,一个人来还是几个人,有老人和小孩吗,穿什么样的衣服等等,还有客户的情绪,看了什么,问了什么问题,最后买了什么东西,都是非常重要的数据。
另外,企业内部人力资源的各个方面也都可以记录下来,这些可以进行挖掘和分析的数据。他举例说,长虹公司在自己的生产线设置了很多传感器,监测温度、湿度、震动、噪音、颗粒等等因素,希望了解到生产过程中哪些因素会对员工产生明显影响。他们此前都认为温度和颗粒可能对于员工操作和产品质量影响最大,但是事实上最终数据分析的结果,温度是没有什么影响的,恒温的控制对于生产效率和合格率的贡献并不像想象中那么大,反而是噪音对于员工情绪以及生产的影响非常重要。要成为大数据企业,第一步企必须要实现数据化。
2.企业要自己培养一些大数据理念,或者是小数据挖掘的团队。做大数据,企业的规模不一样,要求也不一样。如果企业规模足够大,比如说是电信运营商或者电力、银行这样的行业,可能会形成一个大数据的团队。如果不是,比如说就是简单的服务企业,那么形成理念就可以了。现在我们认为比较好的数据科学家,也不是说就是特别擅长或适应网络,这样的人不重要了,重要的是要有武器,什么样的问题来了知道怎么解决。
关键我们认识是要培养四种理念:
(1)除了结构化数据以外还有文本、音频、图像、遥感、网络、行为轨迹、时间数据,这些数据怎么处理,它存在的大挑战是什么。
(2)一定要懂预测,因为绝大部分的大数据应用回到预测中,预测里面很多方法都是基准学习的,而基准学习目前最火的方向是集群学习。
(3)要走分布式存储计算,这绝对不是说我知道给Hadoop 、Maprece、Hbase就够了,关键问题是首先要知道怎么样去搭一个混合式的,你的数据来了,我到底是应该牺牲我的一致性还是牺牲操作性,大概的成本多少,哪些数据挖掘的重要算法我要把他Hadoop、Maprece实现,哪些算法要通过SPTA,可变逻辑治理是在硬件里面,从而替代CPU、GPU。
(4)需要整个数据向外的发展,知道哪些数据可能在外部产生什么样的重要价值,或者外部的数据能够在你的企业产生什么样的重要价值。企业应该培养出这四个能力,建立起企业数据挖掘的人才团队。
3.企业一定要做好自己的外部数据储备。我们都说“书到用时方恨少”,很多的企业,比如说像服装销售这样的传统行业,我要进的货在淘宝、天猫上卖的怎么样?在淘宝、天猫哪一个店铺怎么样?它的竞争品牌是什么样售价,怎么样销售的?对于这样一些数据,如果到需要的时候才去找,往往都来不及了。同样的道理。比如银行给中小企业发放贷款的时候,希望了解到它的用水、用电、生产、交通数据,例如通过摄像头就能知道这个企业到底有多少车运行,这些数据可能对于中小企业发放贷款决策都很重要。但是当你要发贷款的时候,再去问已经没有机会了,或者说成本太高了。我们建议,企业应该学会通过公共渠道或者数据交换的方法,根据自己的业务需求来量身定做自己的外部数据和战略数据。
4.企业要建设自己的大数据管理与应用平台。对于很多企业,做大数据并不是意味着要自己去建设数据中心。随着云计算和云数据中心出现,使用外部数据中心的成本已经非常低了,数据存储的费用也是在成倍的下降。但是,企业要做大数据,必须要在IT基础设施方面具有比较好的数据处架构,要用大一些工具比如数据分布式存储、Hadoop等等。很关键的企业不仅要具备一个数据中心的硬件,还要考虑和企业业务方向结合,不仅就是包括了数据的采集、数据库架构,向上的分析模块,再往上的API数据出口,以及横向的一些业务模块和出口这些东西。要做成企业的大数据管理应用平台,我们强调一定要从企业的业务出发,量体裁衣,企业首先必须要搞清楚自己的业务形态是什么。
5.大企业一定要有数据侦测的能力,需要有创新思维的人随时思考这些问题,比如企业占有的数据到底在外部能够产生什么样大的作用。就像我们经常拿雅昌艺术中心的例子,它存了很多艺术品的数据,所以最后它可以发布艺术指数。同样国家电网也发布两个指数,一个叫重工业用电指数,一个叫轻工业用电指数。淘宝网有它的CPI指数,还有很多企业的一些数据,实际上都可以发挥想象不到的价值。
6.一个大数据企业包括未来现代化企业,一定要有开放共享的态度。一方面需要企业把自己的很多问题社会化,另一方面企业要尽量去通过一些平等办法,通过数据交换的方式互相共享形成数据化。
7.企业还要做好数据方面的战略投资。我认为有三种比较先进的模式。
一种模式叫做产业链布局,比如说海尔、长虹可以投物联网,对物联网企业创新进行投入。比如说中信集团可以关注医疗,在这个方面寻找相关的数据应用。
第二个方面就是技术,你要知道哪些是硬技术创新,特别是在基础术设施层面的,比如加速存储,云计算的一些技术,比如数据挖掘,垂直应用分析,这个方面集中了很多创新也可以形成很大的规模。
第三种模式是数据集方面的投资,我们知道阿里巴巴投资高德是为了数据,它投资新浪微博不仅是要投钱还要花钱买数据,所有这一切本质还是想把数据流动起来做更大的事情。这种投资就是集成数据,强调数据流动性。这些投资里面有几点是需要注意的,一是要去关注企业的数据价值,其次要关注早期的投资,去长期指引而不是短期追逐回报率,最后还要多关注传统行业。
周涛教授提出,大数据的本质不在于数据量有多少,也不在于是否是异构的数据,而是在于数据是关联的,整体的数据可以流动起来。他认为,跨领域关联,通过一加一产生远大于二的价值才是大数据的精髓。
当然,数据本身并不产生价值,只有通过大数据的分析去解决难题才是价值,而大数据对于企业营销的作用是可大可小的,不过在这个把大数据作为概念的时代,企业还是要做好布局大数据的准备,向大数据企业修炼。
㈥ 大数据可视化大屏图表设计经验,教给你!
自从跟大家分享第一篇 《大数据可视化大屏设计经验,教给你!》 ,很多小伙伴都会问我一些相关的问题,看了小伙伴给我发的视觉稿,整体都还不错,但是发现图表的设计都有一些问题,大家可能对数据可视化的图表设计经验少一些,所以这篇文章就挖掘一下图表的细节表现,分享我曾经遇到过的坑和对图表设计的理解。
图表设计
图表设计概念
图表设计是数据可视化的一个分支领域,是对数据进行二次加工,用统计图表的方式进行呈现,也是数据可视化的核心表现,图表设计既要保证图表本身数据清晰准确、直观易懂,又要在找准用户关注的核心内容进行适当的突显,帮助用户通过数据进行决策。
下面分析三种常用的可视化图表设计:
折线图
折线图常用于表示数据的变化和趋势,坐标轴的不同对折线的变化幅度有很大的影响。
左图坐标轴设定的太低,折线变化过于陡峭,图中数值区间为(10-34)数据可视化的表现过于夸大了折线变化的趋势。
右图坐标轴的数值设定的太高,则折线变化过于平缓,无法清晰的表现折线的变化。
合理的折线图应当占据图表的三分之二的茄卜位置,图表的X轴数值范围应根据折线的数值增减变化而变化,这需要跟前端小哥哥小姐姐说明,做成动态计算。
折线图的折线粗细要合理,过细的折线会降低数据表现,过粗的折线会损失折线中的大纳孝数据波动细节,视觉上较难精准找到折线点的相应数值!我通常用两个像素的线,看起来比较合适!
右图刻度线颜色过重,影响图表数据的表现,零基线跟图表内的刻度线对比不够明显,整体很乱。零基线是强调起始位置的,一般要比图表内的线颜色凸出一些。
条形图/柱状图
理想很丰满,现实很骨感。这个案例是我之前在工作中遇到的问题,数据进来后,被吓到了,问题的原因是没有跟前端小哥姐沟通好,他们把X轴写死,导致出现这种问题,其实应该情况要把这些图表的取值范围写成动态计算的。
例如,以现在数值范围为例,数据的最高值为18,X轴最高数值应该为25,当数据又上升一定的高度后,X轴再上升到相应的数值高度,这滚稿样避免了如右图的问题。
坐标轴的标签文字最好能水平排列, 当X轴标签文字过多时,不建议倾斜排列、上下排列、换行排列 文字多了这样的展示大大降低了阅读性!下图给出两个解决方案,大大提高标签文字的阅读性!
解决方案
柱子之间过于分散就会失去数据之间的关联性,过密就会变得数据之间没有独立性更不利于舒适阅读。
当柱子为n时,柱子直接的距离建议与n相差不要太大,柱子靠边的距离,最好是柱子之间的一半的距离,这样视觉上最为舒适。
饼图
左1图,不建议在饼图内与百分比数值一起显示,饼图本身的形状和大小,文字过多时容易溢出,如果出现一个2%一个1%,就很难辨别图形指向,这样也就失去了数据可视化的意义,PPT通常有这样的设计样式,因为是个死图。
左3图,人的阅读习惯是从左到右,从上到下,所以数据从大到小排列,更有助于阅读,图形也更具美感!
当饼图为检出率,或者一些重要信息检测的重点关注数据,就不建议大小数据顺时针排列,左1图这种情况一般很少出现,因为关注的是检出数值,展示未检出数据实为鸡肋,可能是极少情况的需要吧!
右图对于类似检出率的数据最为合适,直观清晰,没有无用数据干扰!
当饼图的标签维度过多时,就不适合把数据围绕饼图一周展示,会很乱,不易阅读,解决方案如右图!
图表分类图
分享一张图表分类大全,保存起来,设计数据可视化产品,会有重要参考价值!
这张图由设计师Abela对图表的各种特征进行了大致的概括总结。
㈦ 大数据展厅设计具有什么特点呢
1、要突出主题
因为现在的大数据影响着人们的生活,因此展厅设计中可以以大数据改变生活为主题,巧妙加入生活中会使用到的智能化应用,大大提升了大数据展厅的互动体验感,增强趣味性。
2、风格注重科技感
让整体空间充满科技感基调,可通过静态展示、数字创意、互动体验等结合展示内容。设计色彩上可适当采用蓝色元素,突出了大数据展厅未来感的空间风格。
3、合理运用多媒体技术
可以采用互动大屏的形式来展现,比如:可以通过隔空手势操作查看某一组或是某一时间的数据,加上一些交互效果,给人的体验是非常不错的。定制大数据VR交通体验场景,比如:可以模拟驾驶员在驾车过程中借助交通大数据避开拥堵路线等,快速到达目的地。定制大数据VR旅游体验场景,比如:对著名旅游景点进行三维场景建模,体验者佩戴VR眼镜以第一人称视角进行3D场景游览,参观至不同景观会有相应的信息提示。
㈧ 大数据可视化平台展示出来的效果是怎么样子的
大概分为几个模块:
2D区域
此方法使用的地理空间数据可视化技术,往往涉及到事物特回定表面答上的位置。2D区域的数据可视化的例子包括点分布图,可以显示诸如在一定区域内犯罪情况。
时态
时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。
多维
可以通过使用常用的多维方法来展示目前2维或高维度的数据。多维可视化的一个例子可能是一个饼图,它可以显示诸如政府开支。
分层
分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。
网络
在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。