⑴ 大数据在云计算方面有什么应用吗
可以应用在云计算方面。
大数据具体的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
4、麻省理工学院利用手机定位数据和交通数据建立城市规划。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗亏乱机构有资金来做大数据分析。
7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。
9、分析所有SKU,以利润最大化为目标来定价和清理库存。
10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
大数据的用处:
1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。
自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命灶空敬,让大数据营销发挥出更大的影响力。
2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,隐慎实现科学技术上的突破。
网络--大数据
⑵ 云计算和大数据哪个就业前景好
两者属于相辅相成,从应用角度来讲,大数据离不开云计算,因为大规模的数据运算需要很多计算资源,大数据是云计算的应用案例之一,云计算是大数据的实现工具之一。二者的就业前景都很不错,可以根据个人爱好进行选择。
1、大数据:大数据技术是一种新一代技术和构架,以快速的采集、处理和分析技术,从各种超大规模的数据中提取价值。大数据涉及到数据的采集、整理、存储、安全、分析、呈现和应用,大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
2、云计算:云计算是一种创新的技术,底层离不开虚拟化,平台操作系统,数据库,存储技术,负载均衡,高可用,群集技术,分布式技术,安全技术等等,想要学习云计算,就要精通其中的一门技术。云计算技术从技术应用服务的场景可划分为三个层次IaaS(基础架构即服务)、PaaS(平台即服务)、SaaS(软件即服务)。
想了解更多有关云计算和大数据的详情,推荐咨询达内教育。达内教育是引领行业的职业教育公司,致力于面向IT互联网行业,培养软件开发工程师、系统管理员、UI设计师、网络营销工程师、会计等职场人才,拥有强大的师资力量,实战讲师对实战经验倾囊相授,部分讲师曾就职于IBM、微软、Oracle-Sun、华为、亚信等企业,其教研团队更是有独家26大课程体系,助力学生系统化学习,助力学生职业方向的发展。感兴趣的话点击此处,免费学习一下
⑶ 大数据和云计算的区别是什么啊
一、大数据与云计算的概念及特点
大数据:在维基网络中,大数据(big data)是用于数据集的一个术语,是指大小超出了常用软件工具在运行时间内可以承受的收集,管理和处理数据能力的数据集。与传统海量数据相比,它不仅在数据规模上呈几何倍数的增长,还在于它集收集,分类,处理,分析于一体,能够充分挖掘出一份数据的潜在价值。
云计算:根据美国国家标准与技术研究院定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投人很少的管理工作,或与服务供应商进行很少的交互。也就是说云计算既是一种商业模式,也是一种计算模式。
二、大数据和云计算的区别及联系
云计算是一种商业模式,也是一种计算模式。所以,云计算是在大数据的基础上进行的,大数据的目的主要是通过海量数据发现潜在价值,使人们更好的理解和把握信息,云计算更倾向于提供服务,二者相互关联。
1、大数据和云计算的区别
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
2、大数据和云计算的联系
大数据和云计算的相同点在于它们都是数据存储和处理服务,都需要占用大量的存储和计算资源,因而都要用到海量数据存储技术、海量数据管理技术等/随着数据量的递增、数据处理复杂程度的增加,相应的性能和扩展瓶颈将会越来越大。在这种情况下,云计算所具备的弹性伸缩和动态调配、资源的虚拟化,按需使用,以及绿色节能等基本要素正好契合了新型大数据处理技术的需求。在数据量爆发增长以及对数据处理要求越来越高的先当下,实现大数据和云计算的结合,才能最大程度上发挥二者的优势,满足用户的需求,带来更高的商业价值。
三、如何理解大数据与云计算的关系
简单来说就是,大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。
其实,云计算是工业时代的电,大数据就是福特生产线,云存储就是钢铁工业。也就是说,没有钢铁,就没有电,就不会有大规模工业化生产。没有云计算,大数据不会出来,如果云计算没有解决云存储的问题,也不会出来。
四、大数据和云计算的发展前景
1、提升网络质量。随着互联网以及移动互联网的持续发展网络将会更加繁忙,用于监测网络状态的信令数据也会快速增长。通过对海量运维信息以及信令数据的智能分析,能够提高网络维护的实时性,预测网络流量峰值,预警异常流量。从而有效地防止网络拥塞和系统宕机,从而提高网络服务质量,提升用户体验。
2、提升客户价值通过使用大数据分析、数据挖掘等工具和方法,企业能够整合来自市场部门、销售部门、服务部门的数据,从各种不同的角度全面了解自己的客户,对客户形象进行精准刻画,以寻找目标客户,制定有针对性的营销计划、产品组合或商业决策,提升客户价值。
3、提升行业信息化水平。智慧城市的发展以及教育、医疗、交通、环境保护等关系到国计民生的行业,都具有极大的信息化需求。
4、提高用户体验。高速的信息处理,更优质的服务,能够更好地满足用户需要,使用户能够以最廉价的成本为生活带来更好的便利,最大程度上提高了用户的生活学习工作质量。
⑷ Hadoop,大数据,云计算三者之间有什么关系
大数据和云计算是何关系?关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。大数据、hadoop及云计算之间到底是什么关系呢?
大数据开发入门 课程:hadoop大数据与hadoop云计算,Hadoop最擅长的事情就是可以高效地处理海量规模的数据,这样Hadoop就和大数据及云计算结下了不解之缘。先介绍与大数据相关的内容,然后讲解Hadoop、大数据以及云计算之间的关系,使读者从大数据和云计算的角度来认识Hadoop。
正是由于大数据对系统提出了很多极限的要求,不论是存储、传输还是计算,现有计算技术难以满足大数据的需求,因此整个IT架构的革命性重构势在必行,存储能力的增长远远赶不上数据的增长,设计最合理的分层存储架构已成为信息系统的关键。分布式存储架构不仅需要scale up式的可扩展性,也需要scale out式的可扩展性,因此大数据处理离不开云计算技术,云计算可为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,大数据技术与云计算技术必将有更完美的结合。
我们知道云计算的关键技术包括分布式并行计算、分布式存储以及分布式数据管理技术,而Hadoop就是一个实现了Google云计算系统的开源平台,包括并行计算模型MapRece、分布式文件系统HDFS,以及分布式数据库Hbase,同时Hadoop的相关项目也很丰富,包括ZooKeeper、Pig、Chukwa、Hive、hbase、Mahout等,这些项目都使得Hadoop成为一个很大很完备的生态链系统。目前使用Hadoop技术实现的云计算平台包括IBM的蓝云,雅虎、英特尔的“云计划”,网络的云计算基础架构,阿里巴巴云计算平台,以及中国移动的BigCloud大云平台。
总而言之,用一句话概括就是云计算因大数据问题而生,大数据驱动了云计算的发展,而Hadoop在大数据和云计算之间建起了一座坚实可靠的桥梁。东时java大数据培训培养能够满足企业要求的以java web开发技术为主要能力的工程师。完成学习后的工程师应当胜任java web开发工程师、大数据开发工程师等职位。
⑸ 大数据和云计算的关系
大数据与云计算的概念
大数据
指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的采集、整理、存储、安全、分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。关于大数据的话题,基本围绕三个问题展开:一是数据从哪里来,二是数据如何进行分析,三是数据如何进行商品化。
云计算
是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
云计算的应用目前正在经历从IaaS向PaaS和SaaS发展,在用户分布上也逐渐开始从互联网企业向广大传统企业过渡,未来的市场空间还是非常大的。
大数据与云计算的联系
大数据与云计算经常联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十数百或甚至数千的服务器分配工作,大数据需要特殊的技术,以有效地处理大量数据。适用大数据的技术,包括大规模并行处理数据库、数据挖掘电网、分布文件系统、分布式数据库、计算平台、互联网和可扩展的存储系统,大数据指的海量的数据一般日处理PB级别以上,一般用于挖掘,分析,做一些智能性商业板块。
从理论角度来看,二者属于不同层次的事情,云计算研究的是计算问题,大数据研究的是巨量数据处理问题,而巨量数据处理依然属于计算问题的研究范围,因此,从这个角度来看,大数据是云计算的一个子领域。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术,随着云时代的来临,大数据也吸引了越来越多的关注。
从应用角度来看,大数据是云计算的应用案例之一,云计算是大数据的实现工具之一。综上,大数据与云计算既有不同又有联系,但在现实中,由于大数据处理时为了获得良好的效率和质量,常常采用云计算技术,因此,大数据与云计算便常常同时出现于人们的眼前,从而造成了人们的困惑。
大数据注重的是数据分析,云计算是偏向计算机软硬件架构与应用。大数据方向需要有一定的数学基础,如果数学不是很好,这个学习起来比较吃力。云计算需要计算机技术能力较强。两个方向应该来说都需要良好的数学基础和编程基础。
大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。
总结,不管云计算怎样去变化,必然需要依托数据中心实现落地。可以说,云计算是数据中心“叶子”,云计算通过“光合作用”促进数据中心的发展,而数据中心得壮大又为云计算发展提供了坚实的基础,这二者起到相互依存,互相促进的作用。
⑹ 云计算与大数据的关系
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Maprece数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。