导航:首页 > 网络数据 > 大数据风险投资

大数据风险投资

发布时间:2023-08-15 00:16:50

⑴ 有一个群买了大数据让大家投资利息很高有风险吗

有一个群买了大数据让大家投资利息很高有风险。因为通过微信群、朋友圈向你推荐“高回报”投资项目,鼓吹“致富机会”,其实背后隐藏着危险的骗局。已经有很多受骗者报警处理了。

⑵ 优秀的互联网金融公司,都是怎么玩大数据风控的

现在一提起互联网金融行业、Fintech领域,人工智能、大数据风控的热度就直线飙升。许多交易规模比较大的互联网金融公司都在努力发展大数据风控技术,以构建提供普惠金融服务的能力。
那么,这些优秀的互联网金融公司,都是怎么玩大数据风控的呢?
陆金所:KYC 2.0系统
精准判断投资者的风险承受能力
陆金所自成立起就引进国际领先的第四代风险管理系统,借鉴平安集团经验,形成了成熟的风险管理数据模型。其近日又推出了KYC 2.0系统,力求通过大数据技术、机器学习以及金融工程等方法,建立完整的互联网财富管理平台投资者适当性管理体系,在资金端对投资者进行“精准画像”,并提供智能推荐服务。
据了解,KYC2.0系统在原有的保守、稳健、平衡、成长、进取五大类型基础上对投资者风险承受力评估结果进行量化,每位用户都会获得专属的风险承受能力分值,又称“坚果财智分”,对投资者风险承受能力的判断更精准。
点评:量化数据信息,进行大数据建模。
风控最好的数据还是金融数据,例如年龄、收入、职业、学历、资产、负债等信用数据,这些数据同信用相关度高,可以反映用户的还款能力和还款意愿,这些数据因子在风控模型中必不可少,权重也很高,是风险评估最好的数据。
所以,陆金所以平安集团经验为基础运用到的大数据风控,使用的是围绕用户周围的信用数据,这些数据的特点是和用户的信用情况高度相关,可以作为一个重要因子进行录入,对其个人进行打分,再对其进行个体分析,最终得到一个综合评分,这就对用户进行了一个精准的风险承受能力评判。
民贷天下:拓宽数据维度
实现纯线上智能化服务
民贷天下基于稳健、安全、规范的风控理念,其风控部门确定了“风控从严”原则,设定了借款审查、贷中管理、贷后跟踪等风控流程。目前,民贷天下正全力推进全智能化建设,构造一个完整的、从资产端到平台端的全链路大数据风控系统,通过对人工智能、大数据分析、知识图谱、区块链等技术的运用,为平台运营及业务发展提供强大动力。
在传统数据之外,民贷天下还不断拓展数据维度,如在用户授权下,对用户社交数据、访问时间、相关认证、通讯记录等数据整合分析,并且与蚂蚁金服、芝麻信用、前海征信、同盾等第三方机构紧密合作,进一步丰富对用户的数据画像,使民贷天下的大数据风控系统更加精准,从而实现从客户申请、受理、审核、授信、放款到贷中贷后管理等纯线上智能化服务。
点评:拓宽数据维度,是对传统风控的补充。
传统风控模型已经不能适应复杂的现代风险管理环境,特别在数据信息录入维度上,影响用户信用评分的信息较多,很多都没有引入到风险评估流程。而大数据风控可以提供全面的数据(数据的广度),强相关数据(数据的深度),实效性数据(数据的鲜活度)。
民贷天下利用这样的大数据风控,通过与第三方合作等方式,将内部数据以及原有数据打通和整合之后,就会影响风险评估结果,提升信用风险管理水平,客观地反映用户风险水平。这些多维度、全面的信息正是大数据风控的优势所在,同时也是对传统风控一个很好的补充,进一步实现智能化服务。
真融宝:以数据介质为主
构建数据和模型算法的核心技术
真融宝以数据介质为主,利用分布式计算处理数据,以公众互联网的全网为平台,以全网收集的数据来补充内部网集成的数据。并且在用户数据方面,对每个新进用户建立一份电子档案,对每名用户投资需求进行了解登记,并对每一笔资金进行多重备份,形成动态的用户资金数据。
除此之外,真融宝还利用大数据进行决策,将金融活动转化为智能数据处理活动,降低人为因素的干扰,提高风险评估、分析和预警能力,大数据提供的信息使得真融宝的决策更加科学智能化,对于风控的精准度控制起到非常大的帮助作用。
点评:数据和模型算法,可建立实时风险管理视图。
大数据的数据采集和计算能力,可以帮助企业建立实时的风险管理视图。借助于全面多纬度的数据、自我学习能力的风控模型、实时计算结果、坏种子数据,真融宝可以通过大量的数据累积,能够产生出非常有效的识别客户的能力,提升量化风险评估能力。
数据、技术、模型、分析将成为信用风险评估的四个关键元素,其背后的力量就是大数据的技术和分析能力。真融宝利用大数据的风控能力,实时输出风险因子信息,提高了风险管理的及时性。
一直以来,风控都是金融机构的生命线。从陆金所、民贷天下、真融宝这三家互联网金融公司为例,预计在未来,可能每家做借贷类的互联网金融公司都会发展出属于自己的一套大数据风控体系,并且随着互联创业公司的业务数据越来越大,数据基础会逐渐扎实。

⑶ 大数据有什么风险

当大数据充斥各种场合,从马云到释昭慧都侃侃而谈,你还能不懂什么是大数据吗?你也许已经听过无数的大数据神话,但对于大数据仍停留在一知半解阶段,公子义为整理为梳理什么才是真正的大数据。

大数据是什么?

大数据(Big Data)又被称为巨量资料,其概念其实就是过去10年广泛用于企业内部的资料分析、商业智慧(Business Intelligence)和统计应用之大成。但大数据现在不只是资料处理工具,更是一种企业思维和商业模式,因为资料量急速成长、储存设备成本下降、软件技术进化和云端环境成熟等种种客观条件就位,方才让资料分析从过去的洞悉历史进化到预测未来,甚至是破旧立新,开创从所未见的商业模式。

一般而言,大数据的定义是Volume(容量)、Velocity(速度)和Variety(多样性),但也有人另外加上Veracity(真实性)和Value(价值)两个V。但其实不论是几V,大数据的资料特质和传统资料最大的不同是,资料来源多元、种类繁多,大多是非结构化资料,而且更新速度非常快,导致资料量大增。而要用大数据创造价值,不得不注意数据的真实性。

为什么需要大数据?

因为当从人到机器都已经被数据解构,数据不仅仅是欧巴马口中的石油或是黄金,它更是血液,贯穿每个人一生中每个生命阶段。这并非危言耸听,更不是科幻电影,而是正在逐步成真的现实。

大数据的应用广泛

对企业而言,大数据可望提升服务质量、增加管理效率、帮助决策和创造商业模式;对一般民众而言,大数据是另一个自我,它可能比本人更了解本人,为你预先解决每个未知,当一切都开始数据化,你能够不需要数据吗?

大数据一定要很大吗?

虽然大数据的狭义定义是,资料量要在100TB到PB之间,但其实绝大多数的企业,都不符合这个标准,大企业如eBay、亚马逊或AT&T或许符合大数据的标准。但其实资料量只是大数据的其中一个面向,大数据揭示的是一种「资料经济」的精神,而非只是「大」。

「大,是大数据中最无趣的部分。」公子义认为,企业真正要寻找的是非传统的、而且未曾被挖掘过的资料,并且从这些资料中去提炼出价值,这才是对大数据应有的正确认知,而非只是执着于资料大小,只要能从看似毫无意义的数据矿坑中挖掘出金矿,有谁会在意那座矿坑原本是大得像座山还是小得像狗屋呢?和沛科技创办人翟本乔就指出,大数据这个名字容易让人误导,因为真正重要的其实是大智慧。大数据不只是说资料量有多大,速度快和资料量大都可以用技术轻易解决,但种类(Variety)比较需要智慧。

没有大数据就不能用大数据吗?

非也,建置大数据架构与环境的确所费不赀,一般中小企业通常无法轻易投入巨额成本,但大数据时代的精神在于如何妥善利用既有或非传统资料,从中挖掘出新商机,因此即使是中小企业甚或者是新创企业,都能在大数据时代用「大数据」。

数据应该如何建立?

就技术面来说,现在有许多业者开始提供建置成本较低的大数据处理工具和云端系统,有些甚至跟App一样,只要根据自身需求挑选需要购买的功能即可,例如科智提供的工业化数据管理工具即为一例。另一方面,很多时候中小企业其实不需要建设大数据系统。公子义认为,在绝大多数情况下,大数据项目其实不需要建置Hadoop系统,先用小量资料去验证一个概念,是否能将资料转换成商业机会,再来决定要不要建置大数据的作业环境。

大数据领域权威麦尔苟伯格(Viktor Mayer-Schönberger)在《大数据》一书中便提及,大公司有巨量资料的规模优势,但小公司有成本及创新上的优势,小公司因为速度够快、灵活度高,就算维持小规模,还是能够蓬勃发展。

要怎么开始进行大数据项目?

第一步设置专门统筹大数据项目的部门和职衔, 而且层级越高越好,企业领导人必须足够正视大数据的力量,才能带动整个组织重视数据的文化。Etu负责人蒋居裕便指出,大数据其实是管理问题,而非技术问题,缺少跨部门协作,大数据项目很难有个美好的开始。

第二步,切勿陷入大数据迷思,与其急着想用数据变现,不如先回头看看自己企业内部的问题为何,先定义问题,再试图用数据找解方。 阿里巴巴集团副总裁车品觉建议,与其整天想着大数据,不如先整顿自己企业内部的数据,很多时候光是企业内部的数据就问题丛生,不同部门之间的数据无法兼容,「整个数据在一个中小企业里面也是四分五裂,在这个地方没做好的情况下,居然说你想用大数据,其实是有点难以理解。」

大数据从哪来?

任何地方。随着物联网兴起,任何以前不可能产生资料的东西或地方都可能「资料化」。公子义认为大数据的发展可以分成三阶段,正说明了大数据的来源多样化:.com时期、社群网络时期和物联网时期。早在2000年初网络热潮兴起,人们就已经开始研究log资料,搜集使用者的cookie和搜寻行为等。而社群网络如Facebook或Twitter将人们的互动关系数据化,这些社群数据创造了大量的商业价值。而第三阶段物联网时期,可能是最有趣的阶段,无论是机器还是人都开始被数据解构,数据可能来自手表、鞋垫甚至皮带,这些物联网数据将是接下来重要的数据分析对象。

大数据有什么风险?

传统商业分析会有的风险,大数据也都会有,这并非大数据才有的问题,「个资安全问题」一直都存在,只是随着资料来源越来越多且资料量越来越大,资安问题更显迫切罢了。市场研究机构Gartner研究副总裁布莱恩(Brian Prentice)指出,大数据本身并没有资安问题,问题在企业应用资料的方式,Gartner预测2018年,企业违反商业伦理的案件中,有近50%都来自不当的大数据应用。

另一值得关切的是大数据可能带来的「资料独裁问题」,根据大数据领域权威麦尔苟伯格(Viktor Mayer-Schönberger)的说法,资料独裁指的是任由资料来管控我们,盲目受到分析结果的制约,导致滥用或误用资料。例如根据数据分析将人群分类,其实有可能会把个体给标签化,甚至污名化某些族群,想象未来若我们用数据预先打击犯罪,那会是什么情景?

⑷ 大数据对投资管理的影响

正在来临的大数据时代,金融机构之间的竞争将在网络信息平台上全面展开,说到底就
是“数据为王”。谁掌握了数据,谁就拥有风险定价能力,谁就可以获得高额的风险收益,最终赢得竞争优势。中国金融业正在步入大数据时代的初级阶段。经过多年的发展与积累,目前国内金融机构的数据量已经达到100TB以上级别,并且非结构化数据量正在以更快的速度增长。金融机构行在大数据应用方面具有天然优势
一方面,
金融企业在业务开展过程中积累了包括客户身份、资产负债情况、资金收付交易等大量高价值密度的数据,这些数据在运用专业技术挖掘和分析之后,将产生巨大的商业价值;
另一方面,金融机构具有较为充足的预算,可以吸引到实施大数据的高端人才,也有能力采用大数据的最新技术。

总体看,正在兴起的大数据技术将与金融业务呈现快速融合的趋势,给未来金融业的发展
带来重要机遇。

首先,
大数据推动金融机构的战略转型。在宏观经济结构调整和利率逐步市场化的大环境
下,国内金融机构受金融脱媒影响日趋明显,表现为核心负债流失、盈利空间收窄、业务定位亟待调整。业务转型的关键在于创新,但现阶段国内金融机构的创新往往沦为监管套利,没有能够基于挖掘客户内在需求,提供更有价值的服务。而大数据技术正是金融机构深入挖掘既有数据,找准市场定位,明确资源配置方向,推动业务创新的重要工具。

其次,
大数据技术能够降低金融机构的管理和运行成本。通过大数据应用和分析,金融机构能够准确地定位内部管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,进而降低管理运营成本。
此外,大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销效果。
第三,
大数据技术有助于降低信息不对称程度,增强风险控制能力。金融机构可以摈弃原来过度依靠客户提供财务报表获取信息的业务方式,转而对其资产价格、账务流水、相关业
务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。
目前,先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、
纳税和信用记录等,对客户行为进行全方位评价,计算动态违约概率和损失率,提高贷款决策的可靠性。
当然,也必须看到,金融机构在与大数据技术融合的过程中也面临诸多挑战和风险。
一是大数据技术应用可能导致金融业竞争版图的重构。信息技术进步、金融业开放以及监管政策变化,客观上降低了行业准入门槛,非金融机构更多地切入金融服务链条,并且利用自身技术优势和监管盲区占得一席之地。而传统金融机构囿于原有的组织架构和管理模式,无法充分发挥自身潜力,反而可能处于竞争下风。

⑸ 大数据银行理财的作用及意义

大数据银行理财是一种新型的投资服务,它利用大数据分析技术对银行客户的投资组合进行精准分析和管理,帮助客户建立更精确的投资组合,了解客户的财务状况,分析客户的投资风格,推荐最佳的投资策略,从而实现最佳的投资收益。

大数据银行理财的作用和意义在于:

1、帮助客户更好地把握投资机会:利用大数据分析技术,可以更好的帮助客户把握投资机会,实现更佳的投资收益。

2、提高客户的投资风险管理水平:通过分析客户的投资风格,推荐客户最佳的投资策略,极大的提高客户的投资风险管理水平,避免客户出现投资失败的情况。

3、提升客户的投资效率:大数据银行理财的分析技术可以极大的提高客户投资的效率,节省客户的时间和精力,减少投资失误,从而实现最佳的投资收益。

⑹ 金融大数据应用面临哪些风险

1.金融科技巨头可能产生数据垄断
一些金融科技巨头凭借其在互联网领域的固有优势,掌握了大量数据,客观上可能会产生数据寡头的现象,可能会带来数据垄断。一些机构掌握了核心的信用数据资源,由于缺乏分享的激励机制,导致与征信的共享理念存在冲突。
2.存在数据孤岛现象,数据融合困难
政府和企业都面临数据孤岛难题。大数据时代,数据已经成为核心资源,企业出于保护商业机密或者节约数据整理成本的考虑而不愿意共享自身数据,一些政府部门也缺乏数据公开的动力。数据孤岛现象的存在,将导致大数据信用评估模型采用的数据维度和算法的不同,大数据征信模型的公信力和可比性容易遭到质疑。
3.数据安全和个人隐私保护难度升级
目前,大数据的获取大致有四种方法:自有平台积累、通过交易或合作获取、通过技术手段获取、用户自己提交的数据等。但是由于相关的法律法规体系尚不健全,数据交易存在许多不规范的地方,甚至出现数据非法交易和盗取信息的现象。大数据来源复杂多样加大了用户隐私泄露的风险,其一,我国金融大数据行业的发展乃至Fintech行业的发展,在很大程度上得益于互联网应用场景的发展,而大数据从互联网应用场景向金融领域的转移往往发生在一些金融科技企业的集团内部,这个过程缺乏监管和规范,可能会侵犯到用户的知情权、选择权和隐私权。其二,应用数据存在多重交易和多方接入的可能性,隐私数据保护的边界不清晰;其三,技术手段的加入,加大了信息获取的隐蔽性,一旦出现隐私泄露纠纷,用户将面临取证难、诉讼难的问题;其四,大数据采集数据的标准不一,用户的知情权、隐私权可能受到侵犯。可见,在大数据环境下,个人数据应用的隐私保护是一个复杂的消费者权益保护问题,涉及到道德、法律、技术等诸多领域。

⑺ 如何利用大数据和人工智能技术,提高股市投资的精准度和成功率

利用大数据和人工智能技术,可以通过以下方式提高股市投资誉者纳的精准度和成功率:

1. 数据分析:使用大数据技术,收集和分析股市嫌行数据,包括公司财务数据、市场数据和宏观经济数据等,以帮助投资者做出更明智的投资决策。

2. 机器学习:通过机庆没器学习算法,能够对历史股市数据进行分析和预测,以预测股市未来的趋势和走势,帮助投资者做出更准确的决策。

3. 情感分析:利用自然语言处理技术对社交媒体、新闻和公告等信息进行情感分析,以了解市场情绪和投资者情感,帮助投资者做出更明智的投资决策。

4. 特征工程:通过特征工程技术,提取和选择与股市投资相关的特征,以建立更准确的股市预测模型,提高投资的成功率。

5. 风险管理:利用大数据和人工智能技术,对股市风险进行分析和管理,以减少投资者的风险和损失。

⑻ 如何利用机器学习和大数据分析来优化投资组合和风险管理策略

机器学戚扒习和大数据分析可以在投资组合和风险管理方面提供有价值的信息和洞见,以下是一些基本的步骤:
数据准备:获取和整理数据,包括资产价格、财务指标、市场数据、宏观经济数据等。
特征工程:从数据中提取有意义的特征,如市场波动、行业变化、财务稳定性等,用于机器学习模型的训练和预测。
模型选择和训练:根据投资组合和风险管理的需求,选择合适的机器学习算法,如回归、分类、聚类等,利用历史数据对模型进行训练。
模型评估和优化:评估模型的表现,比较不同算法和参数组合的效果,进行枯缺优化,以提高预测准确度和投资回报率。
风险管理:利用机器学习模型高败昌预测风险和波动性,制定相应的风险管理策略,如对冲、分散投资等。
实时监控和调整:定期更新数据和模型,实时监控投资组合和风险管理策略的表现,及时调整和优化。
在以上步骤中,特征工程和模型选择和训练是非常重要的,需要具备一定的数据科学和机器学习技能。此外,还需要一定的金融和投资知识,以确保模型的合理性和有效性。

阅读全文

与大数据风险投资相关的资料

热点内容
华为手机出现联系人微信重复联系人 浏览:550
鑫融小额借款app 浏览:555
代还app有什么功能 浏览:291
重装系统覆盖原系统文件夹 浏览:937
win7系统文件加密码 浏览:660
手游英雄杀360安卓版 浏览:301
苹果更新以后数据网络怎么用不了 浏览:666
蓝牙怎么接收文件在哪里 浏览:230
win10移动热点5ghz 浏览:630
小米8备份的数据如何还原 浏览:167
尚观linux讲义 浏览:464
三毛设计教程 浏览:789
如何做好招标网站 浏览:339
哈密logo设计欣赏网站有哪些 浏览:387
文件属性在哪里找隐藏 浏览:705
音频剪辑导出文件去了哪里 浏览:271
不弹出u盘强制拔掉文件 浏览:526
编程要会什么语言 浏览:676
御龙在天51级怎么升级 浏览:27
读取excel多个文件的数据 浏览:781

友情链接