导航:首页 > 网络数据 > 大数据防控金融风险

大数据防控金融风险

发布时间:2023-08-14 21:22:44

大数据如何助力银行业金融机构舆情防控

金融企业运用大数据和机器学习算法,对欠款客户进行人群聚类并根据聚类的结果识别骗贷、恶意欠款、恶意透支、盗刷盗用、对交易有疑问拒绝还款、经济状况恶化无力还贷、遗忘还贷等多种欠款类型;从而准确预测客户的还款概率和金额,从而进行催收策略评估,最大限度降低催收成本。
中国建设银行资产总行风险管理部/资产保全部副总经理谭兴民曾详尽分析大数据何以帮助银行提高征信水平和风险管控能力:
首先,一站式征信平台可以进行贷前客户甄别。目前,银行查询客户的情况既费时、费力,又增加银行费用,而利用企业的一站式征信平台,则可以最大限度地节省银行的人力、物力及时间,并确保数据有效、及时、准确。
其次,风险量化平台可以助力贷后风险管控。平台基于企业日常经营数据,结合平台数据模型,采用动态、实时的云端数据抓取技术,对企业的发展进行分析和评测,给出风险量化分数,并第一时间发现企业的生产经营异动,在风险触发前3到6个月预警,使银行等金融机构能够及时采取相应措施,防止和减少损失发生。
同时,利用“企业族谱”查询,对不良贷款进行监控。如一些企业通过关联交易转移利润、制造亏损的假象,为不偿还银行贷款寻找理由;或者通过关联交易制造虚假业绩,为继续获得银行贷款提供依据,这些假象通过关联交易查询,都可以很快发现蛛丝马迹,让企业造假暴露原形,可防止银行上当受骗。
大数据风控相对于传统风控来说,建模方式和原理其实是一样的,其核心是侧重在利用更多维的数据,更多互联网的足迹,更多传统金融没有触及到的数据。比如电商的网页浏览、客户在app的行为轨迹、甚至GPS的位置信息等,这些信息看似和一个客户是否可能违约没有直接关系,但实则通过大量的数据累积,能够产生出非常有效的识别客户的能力。
在运行逻辑上,大数据风控不强调较强的因果关系,看重统计学上的相关性是大数据风控区别于传统金融风控的典型特征。传统金融机构强调因果,讲究两个变量之间必须存在逻辑上能够讲通因果。
在数据维度这个层级,传统金融风控和大数据风控还有一个显著的区别在于传统金融数据和非传统金融数据的应用。传统的金融数据包括上文中提及的个人社会特征、收入、借贷情况等等。而互金公司的大数据风控,采纳了大量的非传统金融数据。
相对于传统金融机构,互金公司扩大了非传统数据获取的途径,对于新客户群体的风险定价,是一种风险数据的补充。当然,这些数据的金融属性有多强,仍然有待验证。
巨头优势明显,并不代表创业公司的路已被堵死。大公司不可能面面俱到,布局各种场景。在互联网巨头尚未涉及的领域,小步快跑,比巨头更早的抢下赛道,拿到数据,并且优化自己的数据应用能力,成为创业公司杀出重围的一条路径。

㈡ 防范外资银行泄露重要金融信息:金融大数据下金融安全三大战略点

#管清友:防外资行泄重要信息#

金融信息安全越来越重要已经成为一个不争的事实,更是一个紧迫的事实。

管清友的观点和指向是非常明确的,而其提出的银行信息安全是外资银行的金融信息安全却具有非常大的普遍性意义和战略性意义,特别是在金融大数据趋势之下,金融信息越来越具有战略性和国家安全特性,而曾经或者已经出现的一些事件也大多与金融信息相关。

在金融大数据下金融信息安全三大战略要点:



一是在金融大数据下,金融信息安全应该上升为国家安全战略

我国已经进入一个金融大数据时代,金融大数据的火爆已经远远超出人们的想象。经过几年的发展和新技术的广泛应用,金融大数据的分析和应用已经进入到了一个新的层次,也就是说经过十年的数据积累和 科技 分析能力的提升,目前的大数据分析进入到了一个广泛的应用阶段,又一次的火爆并进入人们的视野也就是理所应当的。

但在金融大数据背景下,金融信息安全越来越应该受到重视。今年以来,金融安全成为人们热议最多的话题,许多 社会 热点话题都或多或少与金融安全高度相关。我国也前所未有地对金融安全问题高度重视,将维护金融安全视作“关系我国经济 社会 发展全局的一件带有战略性、根本性的大事”。

金融安全风险和经济安全风险、生态安全风险、网络安全风险等都属于非传统安全风险范畴,但非传统安全风险越来越对我国的国家安全产生非常大的危害,以前我们对传统金融信息的安全是比较重视的,但在传统金融信息安全的前提下,非传统金融信息安全更应该上升到国家安全战略以提升我国金融信息安全的保障能力。



二是在金融大数据的大环境下,金融信息安全要内外兼治,特别是对外资金融机构涉及我国金融信息的安全要强化战略构想和设计

应该说,我们对我国内资金融机构和内资金融信息的安全还是比较重视的,对相关风险的处理也是非常重视和有力度的。

以前我们常说,金融改变人们的生活,生活也会改变着金融;但如今却是,金融大数据已经成为改变人们的生活和金融行为的重要手段和方式,而这种对生活的改变和对行为的改变却有可能成为我国的一种国家安全的风险隐患。

近年来,金融领域的个人信息保护也开始受到重视,而银行客户信息泄露的事件也时有发生,包括个人征信信息未经授权被查询甚至泄露、银行内鬼倒卖客户信息谋利、贷款客户财产信息被泄露、银行App违规收集信息屡遭点名等,不仅仅体现出了金融信息的价值,更体现出了金融信息安全的重要性。

而外资银行涉及的金融信息安全更对我国的经济安全和经济风险带来非常大的安全隐患,特别是华为事件的发生和发展,更是对我国的金融信息安全特别是外资银行、外资审计机构、外资评估机构和外资投资银行机构的金融信息安全敲响了警钟,内外统筹治理金融信息安全应该上升到国家战略的角度并不为过,而且很紧迫。

三是在金融大数据的大背景下,金融信息安全要做到标本兼治,特别是强化国家法律的硬性约束特别关键

金融大数据之下,不仅对未来的金融产业发展前景产生重要的影响,会催生和细分出很多新的行业,如数据存储行业、数据分析行业以及新的其它行业,如人工智能医生、人工智能分析师,都依托于大数据,更重要的是任何人都可以借助于大数据的分析和应用,对产业模式和人们的行为习惯进行改进和引导,从而导致金融服务方式和模式的改变。

更严重的是,如果这些金融大数据被一些不怀好意的境外机构所利用,那就不仅仅涉及到盈利和亏损多少的问题,更可能会在经济安全和国家安全领域带来无法弥补的损失。

由于金融行业数据的量级和复杂性,对金融数据的风险控制、信息安全和数据防护能力以及技术处理手段都提出了更高的要求。更重要的是,我国目前金融信息法律保障机构不健全,缺乏专门性立法,对违法机构和个人的法律追究机制尚不健全。虽然我国从近年来先后出台了关于金融信息的保护性法律法规,但从进一步建立健全金融信息安全的法律法规上还需要进一步完善,特别是对外资银行机构和金融机构涉及金融信息安全的违法行为,一定要从标本兼治的高度进行设计和完善,从而为我国的金融国家安全提供法律保障。

金融信息安全已经上升到国家安全和国家战略,三大战略因素成为重点。 (麒鉴)


㈢ 银行数字化转型加速,潜在风险如何防范业内共识:加强监管!

金融业数字化转型正衔枚疾进。

这条因新冠肺炎疫情倒逼而来的转型之路,已由匀速变成加速。而市场需求之迫切,更是超乎想象:数字化转型,不仅成为近来很多金融论坛的重要议题,一些互联网银行以及传统金融机构金融 科技 方面的负责人,更成为炙手可热的嘉宾,或专题讲座,或网上授课,或论坛演讲。而金融 科技 巨头更是大举进军金融业,为数字化转型需求迫切的金融机构提供 科技 支撑。继阿里云加码“数字农信”战略,将开放更多智能风控、数据智能经验和数字生活场景等生态资源,助力农信社、农商银行等中小银行形成特有的创新型服务业态后,8月16日,腾讯云也与昆山农商银行正式签署战略合作协议,双方将在银行私有云平台建设、分布式架构转型、分布式数据库应用、移动端开发等金融新基建领域展开合作,同时依托双方优势资源,推进零售业务数字化建设以及场景金融创新,构建面向未来金融场景的数字新连接能力。

然而,数字化转型从来不像人们想象的那样,将业务从线下搬到线上,就一劳永逸;也不是成立一个金融 科技 部,做几个银行APP那么轻巧。由于涉及金融机构整个内部架构、流程和理念等全方位重构,想要实现真正意义上的数字化转型,并非易事。这其中,在转型过程中,如何有效防控未来智能金融的潜在风险,尤其困难。

众所周知,数字化转型离不开大数据、云计算、人工智能;只有充分发挥技术的力量,才能实现传统金融向数字化时代智能金融的转变。利用大数据,金融机构可以构建符合自身实际需求的业务、风控模型;利用云计算,可以按照模型,进行高效快速运算,将结果用于日常运营;利用人工智能,可以实现高频小额贷款的自动发放,实现真正意义上的“秒贷”。可以说,数字化时代的智能金融,颠覆了传统金融业务模式,省去了大量人工操作过程,极大提升了客户体验和满意度,让以客户为中心的经营理念变成了现实。这从头部民营互联网银行每年动辄服务数千万,甚至上亿客户,发放数千万笔贷款中可窥见一斑。

不过,硬币总有两面。当金融机构享受数字化转型后的智能金融带来的便利、高效等好处的同时,潜在的风险也如影随形。

中国证监会原主席肖钢日前警告称,“人工智能与金融业深度融合的新业态,是金融模式变革的方向,在大力发展的同时亦需要提防可能带来的系统性风险。”他表示,由于人工智能主要依靠模型和算法,因此在该技术运用于金融市场时,一旦数据质量不高或出现偏差,则有可能产生蝴蝶效应,带来系统性风险。例如,在资本市场上,事先设定的投资模型往往在实施中没有人为干预,这可能使得投资策略产生高度一致性,并在某个时点上对市场造成冲击,由此引发系统性风险。美股就曾经出现过“闪电崩盘”,道琼斯指数在极短时间内暴跌上千点。

虽然肖钢的观点,业内早有认知,但在当前金融机构纷纷加大数字化转型、发展智能金融的大背景下,仍具有振聋发聩的意义。

事实上,业内对智能金融潜在风险认识非常深刻。苏宁银行董事长黄金老此前在接受采访时就表示,通过数字化转型,金融服务会像水一样渗透到各个场景各个生态之中,把金融服务或者金融产品内嵌到企业的生产环节、交易环节和个人的生活环节,但这种“渗透”也会带来新的风险和挑战。第一大风险是数据风险,这来源于金融的全自动化,要依靠数据来决策。银行是数据化应用最丰富,或者是最全面的一个领域。如何合理整合这些数据是数字化转型中银行的必修课。应对不当,就会产生数据造假、数据中断、数据泄露、数据滥用等风险。第二大风险是技术风险,既包括算法的可解释性和可评估性,比如构造了包含一百个变量的模型来评估贷款是否可以发放,但由谁衡量这个模型是否适当。也涵盖技术带来的安全风险,在高度依赖数字化系统的情况下,一旦系统被攻击或者停摆,可能会对金融安全造成更大的危害。

正因为数据采集来自于人,模型搭建来自于人,因此,智能金融虽然省事,虽然智能,但也会因为数据质量问题和算法参数设定等问题,潜藏较大风险。如果建立模型的人再有不良用心,潜藏的风险更大。而智能金融一旦发生风险,常常是系统性的。因此,未雨绸缪,做好风险防控工作,非常重要。

如何防范潜在风险?业内共识是,加强监管。

智能金融时代,传统监管理念和手段,无法有效匹配。因此,金融机构在加速数字化转型,监管当局的监管手段也应当加速转换。既然智能金融的风险点潜藏在数据治理和算法等方面,那么,监管对象就应当既包含对模型的可解释性的监管,要让监管对象能够解释清楚模型到底基于何种逻辑;也应包含对智能金融有关模型和算法的构建者、设计者的监管,为此要及时完善监管制度,堵塞监管盲区,通过资质认定,让相关从业者具有监管层认可的资质。最重要的是,监管层要有懂行的监管者,要能看得明白,管得到位,治得有效。

㈣ 如何利用大数据防范金融风险

1、征信大数据挖掘: 互联网海量大数据中与风控相关的数据。在数据原料方面,越来越多的互联网在线动态大数据被添加进来。 2、风控运营: 贷前营销:帆没 1、已有客户开发、新客户开发; 2、预审批、申请评分; 3、预审批,客户准入、预授信额度估算。 贷中审批: 1、欺诈甄别、反欺诈液此监测; 2、申请再评分; 3、授信审批; 4、贷款定价。 贷后管理: 1、行为评分模型; 2、额度管理; 3、风险预警、预态埋纳催收; 4、催收评分、催收策略。

㈤ 如何利用大数据做金融风控

大数据能够进行数据变现的商业模式目前就是两个,一个是精准营销,典型的场景是商品推荐和精准广告投放,另外一个是大数据风控,典型的场景是互联网金融的大数据风控。

金融的本质是风险管理,风控是所有金融业务的核心。典型的金融借贷业务例如抵押贷款、消费贷款、P2P、供应链金融、以及票据融资都需要数据风控识别欺诈用户及评估用户信用等级。

传统金融的风控主要利用了信用属性强大的金融数据,一般采用20个纬度左右的数据,利用评分来识别客户的还款能力和还款意愿。信用相关程度强的数据 纬度为十个左右,包含年龄、职业、收入、学历、工作单位、借贷情况、房产,汽车、单位、还贷记录等,金融企业参考用户提交的数据进行打分,最后得到申请人 的信用评分,依据评分来决定是否贷款以及贷款额度。其他同信用相关的数据还有区域、产品、理财方式、行业、缴款方式、缴款记录、金额、时间、频率等。普惠在线

互联网金融的大数据风控并不是完全改变传统风控,实际是丰富传统风控的数据纬度。互联网风控中,首先还是利用信用属性强的金融数据,判断借款人的还 款能力和还款意愿,然后在利用信用属性较弱的行为数据进行补充,一般是利用数据的关联分析来判断借款人的信用情况,借助数据模型来揭示某些行为特征和信用 风险之间的关系。

互联网金融公司利用大数据进行风控时,都是利用多维度数据来识别借款人风险。同信用相关的数据越多地被用于借款人风险评估,借款人的信用风险就被揭示的更充分,信用评分就会更加客观,接近借款人实际风险。

常用的互联网金融大数据风控方式有以下几种:

验证借款人身份
验证借款人身份的五因素认证是姓名、手机号、身份证号、银行卡号、家庭地址。企业可以借助国政通的数据来验证姓名、身份证号,借助银联数据来验证银行卡号和姓名,利用运营商数据来验证手机号、姓名、身份证号、家庭住址。

如果借款人是欺诈用户,这五个信息都可以买到。这个时候就需要进行人脸识别了,人脸识别等原理是调用国政通/公安局 API接口,将申请人实时拍摄的照片/视频同客户预留在公安的身份证进行识别,通过人脸识别技术验证申请人是否是借款人本人。

其他的验证客户的方式包括让客户出示其他银行的信用卡及刷卡记录,或者验证客户的学历证书和身份认证。
分析提交的信息来识别欺诈

大部分的贷款申请都从线下移到了线上,特别是在互联网金融领域,消费贷和学生贷都是以线上申请为主的。
线上申请时,申请人会按照贷款公司的要求填写多维度信息例如户籍地址,居住地址,工作单位,单位电话,单位名称等。如果是欺诈用户,其填写的信息往 往会出现一些规律,企业可根据异常填写记录来识别欺诈。例如填写不同城市居住小区名字相同、填写的不同城市,不同单位的电话相同、不同单位的地址街道相 同、单位名称相同、甚至居住的楼层和号码都相同。还有一些填写假的小区、地址和单位名称以及电话等。

如果企业发现一些重复的信息和电话号码,申请人欺诈的可能性就会很高。

分析客户线上申请行为来识别欺诈

欺诈用户往往事先准备好用户基本信息,在申请过程中,快速进行填写,批量作业,在多家网站进行申请,通过提高申请量来获得更多的贷款。

企业可以借助于SDK或JS来采集申请人在各个环节的行为,计算客户阅读条款的时间,填写信息的时间,申请贷款的时间等,如果这些申请时间大大小于 正常客户申请时间,例如填写地址信息小于2秒,阅读条款少于3秒钟,申请贷款低于20秒等。用户申请的时间也很关键,一般晚上11点以后申请贷款的申请 人,欺诈比例和违约比例较高。

这些异常申请行为可能揭示申请人具有欺诈倾向,企业可以结合其他的信息来判断客户是否为欺诈用户。
利用黑名单和灰名单识别风险

互联网金融公司面临的主要风险为恶意欺诈,70%左右的信贷损失来源于申请人的恶意欺诈。客户逾期或者违约贷款中至少有30%左右可以收回,另外的一些可以通过催收公司进行催收,M2逾期的回收率在20%左右。

市场上有近百家的公司从事个人征信相关工作,其主要的商业模式是反欺诈识别,灰名单识别,以及客户征信评分。反欺诈识别中,重要的一个参考就是黑名单,市场上领先的大数据风控公司拥有将近1000万左右的黑名单,大部分黑名单是过去十多年积累下来的老赖名单,真正有价值的黑名单在两百万左右。

黑名单来源于民间借贷、线上P2P、信用卡公司、小额借贷等公司的历史违约用户,其中很大一部分不再有借贷行为,参考价值有限。另外一个主要来源是催收公司,催收的成功率一般小于于30%(M3以上的),会产生很多黑名单。

灰名单是逾期但是还没有达到违约的客户(逾期少于3个月的客户),灰名单也还意味着多头借贷,申请人在多个贷款平台进行借贷。总借款数目远远超过其还款能力。

黑名单和灰名单是很好的风控方式,但是各个征信公司所拥有的名单仅仅是市场总量的一部分,很多互联网金融公司不得不接入多个风控公司,来获得更多的 黑名单来提高查得率。央行和上海经信委正在联合多家互联网金融公司建立统一的黑名单平台,但是很多互联网金融公司都不太愿意贡献自家的黑名单,这些黑名单 是用真金白银换来的教训。另外如果让外界知道了自家平台黑名单的数量,会影响其公司声誉,降低公司估值,并令投资者质疑其平台的风控水平。

利用移动设备数据识别欺诈
行为数据中一个比较特殊的就是移动设备数据反欺诈,公司可以利用移动设备的位置信息来验证客户提交的工作地和生活地是否真实,另外来可以根据设备安装的应用活跃来识别多头借贷风险。

欺诈用户一般会使用模拟器进行贷款申请,移动大数据可以识别出贷款人是否使用模拟器。欺诈用户也有一些典型特征,例如很多设备聚集在一个区域,一起 申请贷款。欺诈设备不安装生活和工具用App,仅仅安装和贷款有关的App,可能还安装了一些密码破译软件或者其他的恶意软件。

欺诈用户还有可能不停更换SIM卡和手机,利用SIM卡和手机绑定时间和频次可以识别出部分欺诈用户。另外欺诈用户也会购买一些已经淘汰的手机,其机器上面的操作系统已经过时很久,所安装的App版本都很旧。这些特征可以识别出一些欺诈用户。

利用消费记录来进行评分

大会数据风控除了可以识别出坏人,还可以评估贷款人的还款能力。过去传统金融依据借款人的收入来判断其还款能力,但是有些客户拥有工资以外的收入,例如投资收入、顾问咨询收入等。另外一些客户可能从父母、伴侣、朋友那里获得其他的财政支持,拥有较高的支付能力。

按照传统金融的做法,在家不工作照顾家庭的主妇可能还款能力较弱。无法给其提供贷款,但是其丈夫收入很高,家庭日常支出由其太太做主。这种情况,就需要消费数据来证明其还款能力了。

常用的消费记录由银行卡消费、电商购物、公共事业费记录、大宗商品消费等。还可以参考航空记录、手机话费、特殊会员消费等方式。例如头等舱乘坐次数,物业费高低、高尔夫球俱乐部消费,游艇俱乐部会员费用,奢侈品会员,豪车4S店消费记录等消费数据可以作为其信用评分重要参考。

互联网金融的主要客户是屌丝,其电商消费记录、旅游消费记录、以及加油消费记录都可以作为评估其信用的依据。有的互联金融公司专门从事个人电商消费数据分析,只要客户授权其登陆电商网站,其可以借助于工具将客户历史消费数据全部抓取并进行汇总和评分。

参考社会关系来评估信用情况

物以类聚,人与群分。一般情况下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

参考借款人常联系的朋友信用评分可以评价借款人的信用情况,一般会采用经常打电话的朋友作为样本,评估经常联系的几个人(不超过6六个人)的信用评分,去掉一个最高分,去掉一个最低分,取其中的平均值来判断借款人的信用。这种方式挑战很大,只是依靠手机号码来判断个人信用可信度不高。一般仅仅用于反欺诈识别,利用其经常通话的手机号在黑名单库里面进行匹配,如果命中,则此申请人的风险较高,需要进一步进行调查。

参考借款人社会属性和行为来评估信用

参考过去互联网金融风控的经验发现,拥有伴侣和子女的借款人,其贷款违约率较低;年龄大的人比年龄低的人贷款违约率要高,其中50岁左右的贷款人违 约率最高,30岁左右的人违约率最低。贷款用于家庭消费和教育的贷款人,其贷款违约率低;声明月收入超过3万的人比声明月收入低于1万5千的人贷款违约率 高;贷款次数多的人,其贷款违约率低于第一次贷款的人。

经常不交公共事业费和物业费的人,其贷款违约率较高。经常换工作,收入不稳定的人贷款违约率较高。经常参加社会公益活动的人,成为各种组织会员的人,其贷款违约率低。经常更换手机号码的人贷款违约率比一直使用一个电话号码的人高很多。

午夜经常上网,很晚发微博,生活不规律,经常在各个城市跑的申请人,其带贷款违约率比其他人高30%。刻意隐瞒自己过去经历和联系方式,填写简单信 息的人,比信息填写丰富的人违约概率高20%。借款时间长的人比借款时间短短人,逾期和违约概率高20%左右。拥有汽车的贷款人比没有汽车的贷款人,贷款 违约率低10%左右。

利用司法信息评估风险

涉毒涉赌以及涉嫌治安处罚的人,其信用情况不是太好,特别是涉赌和涉毒人员,这些人是高风险人群,一旦获得贷款,其贷款用途不可控,贷款有可能不会得到偿还。

寻找这些涉毒涉赌的嫌疑人,可以利用当地的公安数据,但是难度较大。也可以采用移动设备的位置信息来进行一定程度的识别。如果设备经常在半夜出现在 赌博场所或赌博区域例如澳门,其申请人涉赌的风险就较高。另外中国有些特定的地区,当地的有一部分人群从事涉赌或涉赌行业,一旦申请人填写的居住地址或者 移动设备位置信息涉及这些区域,也要引起重视。涉赌和涉毒的人员工作一般也不太稳定或者没有固定工作收入,如果申请人经常换工作或者经常在某一个阶段没有 收入,这种情况需要引起重视。涉赌和涉毒的人活动规律比较特殊,经常半夜在外面活动,另外也经常住本地宾馆,这些信息都可以参考移动大数据进行识别。

总之,互联网金融的大数据风控采用了用户社会行为和社会属性数据,在一定程度上补充了传统风控数据维度不足的缺点,能够更加全面识别出欺诈客户,评价客户的风险水平。互联网金融企业通过分析申请人的社会行为数据来控制信用风险,将资金借给合格贷款人,保证资金的安全。

阅读全文

与大数据防控金融风险相关的资料

热点内容
app资源库企业级app有哪些 浏览:400
直接在ftp中打开文件 浏览:595
华为手机出现联系人微信重复联系人 浏览:550
鑫融小额借款app 浏览:555
代还app有什么功能 浏览:291
重装系统覆盖原系统文件夹 浏览:937
win7系统文件加密码 浏览:660
手游英雄杀360安卓版 浏览:301
苹果更新以后数据网络怎么用不了 浏览:666
蓝牙怎么接收文件在哪里 浏览:230
win10移动热点5ghz 浏览:630
小米8备份的数据如何还原 浏览:167
尚观linux讲义 浏览:464
三毛设计教程 浏览:789
如何做好招标网站 浏览:339
哈密logo设计欣赏网站有哪些 浏览:387
文件属性在哪里找隐藏 浏览:705
音频剪辑导出文件去了哪里 浏览:271
不弹出u盘强制拔掉文件 浏览:526
编程要会什么语言 浏览:676

友情链接